+ All Categories
Home > Documents > Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC...

Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC...

Date post: 20-Apr-2018
Category:
Upload: truongdan
View: 232 times
Download: 4 times
Share this document with a friend
30
Zenghai Li Advanced Computations Dept., SLAC Presented at ICFA Crab-cavity Workshop, Shanghai, April 23-25, 2008 Modeling Wakefield Damping for the ILC and LHC Crab Cavities * Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515
Transcript
Page 1: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Zenghai LiAdvanced Computations Dept., SLAC

Presented at ICFA Crab-cavity Workshop, Shanghai, April 23-25, 2008

Modeling Wakefield Damping forthe ILC and LHC Crab Cavities

* Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515

Page 2: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

HPC Accelerator Simulation In ACD @SLAC

A. CandelA. KabelK. KoZ. LiC. Ng L. Xiao V. AkcelikS. ChenL. GeL. LeeG. SchussmanR. Uplenchwar

Advanced Computations Department (ACD)

Page 3: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Outline

• Parallel electromagnetic tools for cavity design and simulation

• ILC crab cavity LOM/HOM coupler design

• LHC crab cavity RF parameter & coupler studies – preliminary

• Multi-physics analysis for cavity design

Page 4: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

SLAC Parallel EM CodesFrequency Domain:

Omega3P – eigensolver for mode damping S3P – S-parameter

Time Domain:

T3P – transients & wakefieldsPic3P – self-consistent particle-in-cell

Particle Tracking:Track3P – dark current and multipactingGun3P – space-charge beam optics

Multi-physics:TEM3P – EM-thermal-mechanical

Graphics:V3D – visualization of meshes, fields and particles

Page 5: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

1.2985

1.29875

1.299

1.29925

1.2995

1.29975

1.3

0 100000 200000 300000 400000 500000 600000 700000 800000mesh element

F(G

Hz)

67000 quad elementsError ~ 20 kHz (1.3GHz)(<1 min on 16 CPU,6 GB)

Key Strength of SLAC’s EM Codes

Tetrahedral Conformal Meshw/ quadratic surface

Higher-order Finite Elementsbasis order p = 1- 6

Parallel Computinglarge memory & speedup

dense

Example:LL end cell with Input Coupler Only

Convergence vs FE basis-order Convergence vs N_elements

Page 6: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

ILC Crab Cavity LOM/HOM Couplers

• Cockcroft, FNAL, SLAC Collaboration• ILC crab cavity based on FNAL 3.9GHz

deflecting mode cavity• SLAC work involved in

– Optimizing the LOM/HOM couplers for wakefielddamping

– Multipacting analysis of the cavity and the LOM/HOM couplers

Page 7: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

ILC Crab Cavity HOM/LOM Coupler Notch Filter

-120

-100

-80

-60

-40

-20

03.6E+09 3.7E+09 3.8E+09 3.9E+09 4.0E+09 4.1E+09 4.2E+09

F (Hz)

S12

(dB

)

notch gap=0.6mm

notch gap=0.64mm

HOM: df/dgap=1.6MHz/μm

LOM filter for crab-cavity-120

-100

-80

-60

-40

-20

02.7E+09 2.9E+09 3.1E+09 3.3E+09 3.5E+09 3.7E+09 3.9E+09 4.1E+09 4.3E+09 4.5E+09 4.7E+09

F (Hz)

S12

(dB

)gap=0.5mml

gap=0.475mm,l_bend+2.4mm

LOM: df/dgap=2.2MHz/μm

Original HOM/LOM Couplers

(TESLA: 0.13MHz/μm)

New HOM design improved the notch sensitivity by one order of magnitudedf/dgap= 0.1MHz/μm

Page 8: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

LOM/HOM Damping And Mode Mixing

LOM in Crab-cavity

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

2.78E+09 2.80E+09 2.82E+09 2.84E+09 2.86E+09F (Hz)

Qex

t

Qext in the original designQext in the new design

Horizontal 7π/9 mode

Vertically aligned SOM

x-y coupled modes

Improved LOM/HOM damping

Simplified LOM coupler geometry

Improved mode separation through cell shape modification

Eliminated V-H mode mixing

SOM

Omega3P calculations

Page 9: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

MP Simulation Benchmark With ICHIRO Cavity Measurement

• Multipacting found in the end beam pipe step of ICHIRO cavity• Simulation agree well with measurement

(Left) MP barriers in 9-cell ICHIRO cavity calculated with Track3P, (Right) MP barriers measured on ICHIRO prototype (K. Saito, KEK).

Simulation MeasurementTrack3P

Page 10: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Track3P Applied to ILC Crab Cavity Multipacting Simulation

• Deflecting field level scanned up to 5 MV/m• No multipacting activities observed in cavity

Nb SEY Curve

00.20.40.60.8

11.21.41.6

0 500 1000 1500 2000impact energy (eV)

delta

E & B field distributions in cell

EB

Page 11: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Multipacting In ILC-CC LOM/HOM Couplers

LOM Coupler

• No resonant trajectories found up to 5 MV/m deflecting gradient

Region scanned for MP

HOM Coupler

• Resonant particle trajectories found for deflecting gradient around 3-5 MV/m

• Impact Energy at 85–240 eV• Soft MP if use Cu antenna• Antenna shape being modified to alienate

resonate trajectories

Cu Nb

Page 12: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Preliminary Studies for LHC Crab Cavity RF Parameters & Couplers

Page 13: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

800 MHz Cavity Design For LHC Crab-Cavity

• Scaled from Rama Calaga’s 400 MHz baseline design

Page 14: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

RF Parameter vs Cavity Shape

angle=0, A=B,a=b

12

14

16

18

20

22

50 55 60 65 70 75 80A=B (mm)

Bpea

k(m

T)/E

kick

(MV/

m)

3

3.2

3.4

3.6

3.8

4

Epea

k/Ek

ick

Bpeak/EkickEpeak/Ekick

A=B=60mm

12

14

16

18

20

22

0 2 4 6 8 10

angle (degree)

Bpe

ak (m

T)/E

kick

(MV/

m)

3.0

3.2

3.4

3.6

3.8

4.0

Epea

k/E

kick

Bpeak/EkickEpeak/Ekick

A=B=60mm, a=33.75mm

12

14

16

18

20

22

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3ratio: b/a

Bpe

ak (m

T)/E

kick

(MV/

m)

3

3.2

3.4

3.6

3.8

4

Epea

k/Ek

ick

Bpeak/EkickEpeak/Ekick

disk thickness disk angle iris ellipticity

• Maximum kick gradient limited by Bpeak• Optimize disk parameters for optimal Epeak and Bpeak• rbp=riris=70mm, cell length=187.5mm

A=B=60mm, a=33.75mm

100

104

108

112

116

120

0.6 0.8 1 1.2ratio: b/a

(R/Q

)_T

(ohm

/cav

ity)

(R/Q)_T

A=B=60mm

100

104

108

112

116

120

0 2 4 6 8 10angle (degree)

(R/Q

)_T

(ohm

/cav

ity)

(R/Q)_T

angle=0, A=B,a=b

100

104

108

112

116

120

50 60 70 80A=B (mm)

(R/Q

)_T

(ohm

/cav

ity)

(R/Q)_T

Page 15: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Cell Squash Ratio

A

B

B/A A (Fy-Fx) (MHz)0.90 235.97 420.85 240.10 650.80 244.92 89

• Racetrack or Elliptical

• Chose squash ratio to optimize mode spectrum

Fc=1.2GHz @ Riris=70mm

Dispersion Curve

5.50E+08

6.00E+08

6.50E+08

7.00E+08

7.50E+08

8.00E+08

8.50E+08

9.00E+08

9.50E+08

1.00E+09

1.05E+09

1.10E+09

0.7 0.75 0.8 0.85 0.9 0.95 1Cross Section Elliptical Ratio

F (H

z)TM010-1 TM010-2 TM110-1-H (opt.mode) TM110-2-HTM110-1-V (SOM) TM110-2-VTE111-1-H TE111-2-HTE111-1-V TE111-2-V

LOM

HOM(TE111)

SOM

FM

Page 16: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Preliminary Cavity RF Parameters

Frequency 800MHz(R/Q) 117ohm/cavityDeflecting Voltage VT 2.5MVDeflecting Gradient Ekick 6.67MV/mEpeak 24.72MV/mBpeak 82.75mTMode separation (Opt.-SOM) 89MHz

BpEpE-field

TESLA TDR cavity peak fields for comparison

(Eacc: 37-47MV/m):Epeak: 70-90MV/mBpeak: 150-190mT

B-field

Squash ratio: 0.8

Page 17: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

LOM/SOM and HOM Damping

• Parameters provided for beam dynamics and damping requirement studies(Frank Zimmermann, Rama Calaga)

• Qext of 102-103 is considered not far off for preliminary designs • Various damping schemes being studied. Optimal choice of damping

scheme will depend on Qext requirements

F (MHz)

R/Q(mono) (ohm/cavity)

R/Q (dipole) (ohm/cavity)

593.6 35.2 LOM

597.4 194.5 LOM

800.0 117.3 H-operating

812.9 0.5 H

889.6 93.4 V-SOM

909.0 6.8 V

Dominate LOM and SOM and HOM modes for a 800-MHz cavity design

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

500 600 700 800 900 1000F (MHz)

R/Q

(ohm

/cav

ity)

H-Dip (R/Q)_tV-SOM (R/Q)_tLOM (R/Q)

Page 18: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

KEKB Crab Cavity & Damping Scheme

KEKB crab cavity utilizes a choked coaxial-coupler damping scheme

Courtesy of K. Hosoyama

Page 19: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Conceptual Damping Studies

• LOM/SOM damping Schemes– Waveguide coupler– Coaxial coupler– Coax-to-coax coupler (coaxial-beampipe to coax)– Coax-to-waveguide coupler

• HOM damping– Waveguide coupler - needs to cut off operating mode.

Can it damp the adjacent mode efficiently?– Coupler with choke or filter, e.g. ILC crab cavity HOM

coupler– …

Page 20: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Waveguide LOM/SOM Coupler

• Spacing between cavity and coupler is 25mm.• Waveguide cutoff = 536MHz

– Waveguide with short on one end improves damping – Optimal short position is frequency dependent– Could be optimized to damp both LOM and SOM more effectively

mode F(MHz) Qext

LOM-1 593

597

889LOM-2

8.55e3

8.80e3

SOM 4.86e3

mode F(MHz) Qext

LOM-1 593

597

889LOM-2

3.05e3

2.65e3

SOM 3.93e3

short

Symmetric Waveguide

Shorted Waveguide

Page 21: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Coaxial LOM/SOM Coupler

• Hard to achieve much lower Qext• Not suitable for either LOM or SOM• An option for operating mode input

mode F(MHz) Qext

LOM 593 7.22e5

LOM 597 7.29e5

SOM 890 1.23e5

E-field of SOMZ(TEM)=50ohm

Page 22: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Coupler With Coaxial Beam Pipe To Enhance Damping

Coax-to-coax Coupler• Beamline coaxial to enhance coupling• More compact than coax-to-

waveguide coupler

Coax-to-waveuide Coupler• Beamline coaxial to enhance coupling• More bulkier than coax-to-coax• Maybe easier for assembly

• These two schemes can provide lower Qext• Multipacting and surface field enhancement need to be analyzed

Page 23: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

LOM: F=601MHz, Qext=1376

LOM: F=608MHz, Qext=176

SOM: F=893MHz, Qext=209

Beampipe radius adjusted to fit the beamline coax into the beampipe

Coax-to-coax Coupler

• Damping Results are very encouraging• More improvement under way

Page 24: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

F=600MHz, Qext=3022

F=604MHz, Qext=2575

F=892MHz, Qext=1263

Coax with a simple short does not yield satisfactory damping

Will use door-knob shape or tapered junction to improve the matching between waveguide and coaxial beampipe

Coax-to-waveguide Coupler

Page 25: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

MP region

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.0495 0.05 0.0505 0.051 0.0515 0.052 0.0525 0.053

Z (m)

r (m

)

Eacc=2MV/m, 4th order MP

Impact energy: 540~790MeVLtube=105.6mm

Z=0

Example Of Multipacting Study In Coaxial Coupler

TESLA 1.3GHz Accelerating Cavity

Coax dimensions are important for suppressing MP

Page 26: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Spoke Cavity ?

• Need minimum iris radius of 60mm• Outer radius can be smaller than regular shape (e.g. ~ 170mm for 800 MHz)• Explore possibilities for both 800-MHz and 400-MHz cavities• Optimize spoke shape and end-group to improve R/Q and surface fields• Explore option of opening hole on outer wall for wakefield damping• Multipacting and structural analysis, etc

E-field in a spoke cellSpoke – optimize to minimize surface fields

Goal is to minimize the transverse dimension to fit in tight transverse space of the existing latticeWork in progress

Page 27: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

TEM3P: Multi-Physics Analysis

• Finite element based with high-order basis functions– Natural choice: FEM originated from structural analysis!

• Use the same software infrastructure as Omega3P– Reuse solvers framework– Mesh data structures and format

• Multi-physics analysis– EM heating– Thermal radiation– Lorentz force detuning– Mechanical stress

• Parallel large-scale simulations for accurate and reliable multi-physics analysis

– Virtual prototyping through computing

CAD Model

EM Analysis

Thermal Analysis

Mechanical Analysis

TEMP Flow Chart

Page 28: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

TEM3P Example: LCLS RF Gun

EM DomainThermal/MechanicalDomain

CAD Model (courtesy of Eric Jongewaard)

TEM3P Mesh: 0.6 million nodes.Materials: Copper + Stainless steelThermal analysis: 7 cooling channelsResult benchmarked with ANSYS

EM Heating

Page 29: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Thermal Analysis:Max temperature

ANSYS: 49.96 degCTEMP3P: 49.82 degC

TEM3P: RF Gun Thermal/Mechanical Analysis Comparison With ANSYS

TEM3P ANSYS

Mechanical Analysis:Max displacement

ANSYS: 3.71e-5 mTEM3P: 3.70e-5 m

Page 30: Modeling Wakefield Damping for the ILC and LHC Crab … · Modeling Wakefield Damping for the ILC and LHC Crab Cavities ... RF Parameter vs Cavity Shape angle=0, A=B,a=b 12 14 16

Summary

• SLAC parallel electromagnetics and beam dynamics codes facilitate the design and optimization of cavities

• LOM and HOM coupler designs and multipactinganalysis for the ILC crab cavity have been performed

• Design and optimization of the LHC crab cavity are being studied for– Cavity shape and RF parameters– Wakefield damping schemes for LOM, SOM and HOM modes– Multipacting and multi-physics analysis


Recommended