+ All Categories
Home > Documents > Modul 5_FadingMitigation - REVISI -WCS

Modul 5_FadingMitigation - REVISI -WCS

Date post: 13-Oct-2015
Category:
Upload: dian-adventien-noke
View: 47 times
Download: 1 times
Share this document with a friend
Description:
to help you know about fading mitigation
Popular Tags:

of 57

Transcript
  • Modul 5 Fading Mitigation

    Wireless Communication Systems

    1

    Faculty of Electrical and CommunicationInstitut Teknologi Telkom

    Bandung 2012

    10/29/2012

  • Subject

    a. Diversity and Equalizationb. Channel Codingd. Teknik Multicarrier

    2

    a. Diversity and Equalizationb. Channel Codingd. Teknik Multicarrier

  • 3 Typical Mobile Radio Propagation Channel

  • Fading channel manifestations4

  • Small-scale Fading: Mechanisms, Degradationcategories, and Effects5

  • 6 Relationships among the channel correlationfunctions and power density functions

  • 7 Fading mechanisms Frequency Dispersion

    Time variations of the channel are caused by motion of the antenna Channel changes every half a wavelength Moving antenna gives Doppler spread Fast fading requires short packet durations, thus high bit rates Time variations poses requirements on synchronization and rate ofconvergence of channel estimation Interleaving may help to avoid burst errors

    Time Dispersion Delayed reflections cause intersymbol interference (ISI) Channel Equalization may be needed. Frequency selective fading Multipath delay spreads require long symbol times Frequency diversity or spread spectrum may help

    RSL Fluctuation Shadowing, obstruction, etc

    Frequency Dispersion Time variations of the channel are caused by motion of the antenna Channel changes every half a wavelength Moving antenna gives Doppler spread Fast fading requires short packet durations, thus high bit rates Time variations poses requirements on synchronization and rate ofconvergence of channel estimation Interleaving may help to avoid burst errors

    Time Dispersion Delayed reflections cause intersymbol interference (ISI) Channel Equalization may be needed. Frequency selective fading Multipath delay spreads require long symbol times Frequency diversity or spread spectrum may help

    RSL Fluctuation Shadowing, obstruction, etc

  • 8 Time Dispersion and Frequency Dispersion

    Time Domain Channel variations Delay spreadInterpretation Fast Fading InterSymbol Interference

    Correlation Distance Channel equalizationFrequency Doppler spread Frequency selective fadingDomain Intercarrier Interference Coherence bandwidthInterpretation

    Frequency Dispersion Time Dispersion

    Time Domain Channel variations Delay spreadInterpretation Fast Fading InterSymbol Interference

    Correlation Distance Channel equalizationFrequency Doppler spread Frequency selective fadingDomain Intercarrier Interference Coherence bandwidthInterpretation

  • 9 Effect of Fading

    Freq.

    Spec

    tral den

    sity

    Bc

    Bs

    Freq. Selective Fading

    TX BW > Channel BWBs > Bc

    Freq.

    Freq.

    Spec

    tral den

    sity

    Coherent BW, Bc

    Bc

    Bs

    Freq. Flat Fading

    TX BW < Channel BWBs < Bc

  • 10 Statistical Fluctuations Area-mean power

    is determined by path loss is an average over 100 m - 5 km

    Local-mean power is caused by local 'shadowing'

    effects has slow variations is an average over 40 (few

    meters)

    Area-mean power is determined by path loss is an average over 100 m - 5 km

    Local-mean power is caused by local 'shadowing'

    effects has slow variations is an average over 40 (few

    meters) Instantaneous power

    fluctuations are caused by multipath reception depends on location and frequency depends on time if antenna is in motion has fast variations (fades occur about every half a wave length)

  • 11 Basic mitigation types

  • 12 Fading Mitigation Techniques 3 techniques commonly used to combat the effectof fading without increasing TX Power and BW: Diversity : space/spatial, time, frequency Channel Encoding or Error protection coding Equalization

    While Fading Margin and Power Control are usedto maintain a good signal reception at Receiver.

    3 techniques commonly used to combat the effectof fading without increasing TX Power and BW: Diversity : space/spatial, time, frequency Channel Encoding or Error protection coding Equalization

    While Fading Margin and Power Control are usedto maintain a good signal reception at Receiver.

  • 13 FMT: Diversity Diversity exploits the random nature of radio propagation

    by finding the independent signal paths. If one pathundergo a deep fade, another path may have a strongsignal.

    Usually employed to reduce the depth and duration of fadeexperienced by receiver in flat fading channel.

    Types of diversity: spatial, frequency, time, and polarization

    Diversity exploits the random nature of radio propagationby finding the independent signal paths. If one pathundergo a deep fade, another path may have a strongsignal.

    Usually employed to reduce the depth and duration of fadeexperienced by receiver in flat fading channel.

    Types of diversity: spatial, frequency, time, and polarization

  • 14 Spatial Diversity Use two or more receiving antenna While one antenna sees a null signal, the othersmay receive a peak signals.

    The received signals are then combined andprocessed by an algorithm to get best reception.

    Can be implemented in both BS and MS receiver

    Use two or more receiving antenna While one antenna sees a null signal, the othersmay receive a peak signals.

    The received signals are then combined andprocessed by an algorithm to get best reception.

    Can be implemented in both BS and MS receiver

  • 15 Spatial Diversity Antenna is spaced each

    other by an odd integermultiply of /4, usually d >8 .

    Spatial diversity canimprove SNR at receiver byas much as 20 dB to 30dB.

    wow1

    wK

    ro(t)

    r1(t)

    rK(t)

    y(t)d

    Combining algorithm commonly used: Selective, Equal gain, andMaximal ratio combining.

    Antenna is spaced eachother by an odd integermultiply of /4, usually d >8 .

    Spatial diversity canimprove SNR at receiver byas much as 20 dB to 30dB.

    wKProcessor

    rK(t)

  • Diversity Combining Methods

    Switching/selection Memilih sinyal terkuat dari dua sinyal sesaat (instantaneously):

    ~1 dB hysteresis saat pemilihan sinyal Menyebabkan pergeseran fasa random (random phase shifts)

    Akan menjadi problem bagi yang menggunakan modulasi fasa sepertiIS-136, IS-95, where switch times between antennas is restricted to theboundaries of data bit fields

    Struktur paling sederhana, dgn peningkatan C/(I+n) antara 1.5 sampai 4 dB Equal gain

    Adaptive phase shift hardware digunakan untuk menggeser fasa salah satukanal , disamakan fasanya dengan fasa kanal yang lain, untuk kemudiandijumlahkan secara koheren

    1.5 dB lebih baik dari switching diversity Maximal ratio

    Seperti equal gain, tetapi sinyal yang lemah dikuatkan pada level rata-ratayang sama dengan sinyal yang kuat sebelum dijumlahkan

    Paling kompleks , tetapi tipikalnya 2dB lebih baik dari switching diversity.10/29/2012 16

    Switching/selection Memilih sinyal terkuat dari dua sinyal sesaat (instantaneously):

    ~1 dB hysteresis saat pemilihan sinyal Menyebabkan pergeseran fasa random (random phase shifts)

    Akan menjadi problem bagi yang menggunakan modulasi fasa sepertiIS-136, IS-95, where switch times between antennas is restricted to theboundaries of data bit fields

    Struktur paling sederhana, dgn peningkatan C/(I+n) antara 1.5 sampai 4 dB Equal gain

    Adaptive phase shift hardware digunakan untuk menggeser fasa salah satukanal , disamakan fasanya dengan fasa kanal yang lain, untuk kemudiandijumlahkan secara koheren

    1.5 dB lebih baik dari switching diversity Maximal ratio

    Seperti equal gain, tetapi sinyal yang lemah dikuatkan pada level rata-ratayang sama dengan sinyal yang kuat sebelum dijumlahkan

    Paling kompleks , tetapi tipikalnya 2dB lebih baik dari switching diversity.

  • 17 Selective Combiner

    G1SwitchingLogicor

    Demodulator

    output

    Ant. 1

    Ant. 2 G2

    Gm

    SwitchingLogicor

    Demodulator

    output

    Variable gain

    Ant. 2

    Ant. m

  • 18 Selective Combining

    Receiver only select one strongest signal to detect. If average SNR of received signal in a branch = and threshold SNR

    = , then probability that M branches of antenna receive signals withSNR below the threshold is:

    P( i < ) = PM( 1 - e- In other word, probability that received signal SNR above the threshold

    is :

    P( i > ) = 1 - PM( 1 - e-

    Receiver only select one strongest signal to detect. If average SNR of received signal in a branch = and threshold SNR

    = , then probability that M branches of antenna receive signals withSNR below the threshold is:

    P( i < ) = PM( 1 - e- In other word, probability that received signal SNR above the threshold

    is :

    P( i > ) = 1 - PM( 1 - e-

  • 19 Selective CombiningExample: 4 antenna diversity is used. If average SNR is 20 dB,

    determine the probability that SNR will drop below 10 dB (badreception), and also that good reception (SNR above 10 dB) will mostlytake place. Compare with single antenna receiver!

    Answer:Threshold SNR = = 10 dB, = 20 dB, = 0.1

    P4( i< 10 dB) = (1 e-0.1)4 = 0.000082, andP4( i> 10 dB) = 1- (1 e-0.1)4 = 0.999918 or 99.9918%

    With single antenna:P ( i< 10 dB) = (1 e-0.1) = 0.095, andP ( i> 10 dB) = 1- (1 e-0.1) = 0.905 or 90.5%

    Example: 4 antenna diversity is used. If average SNR is 20 dB,determine the probability that SNR will drop below 10 dB (badreception), and also that good reception (SNR above 10 dB) will mostlytake place. Compare with single antenna receiver!

    Answer:Threshold SNR = = 10 dB, = 20 dB, = 0.1

    P4( i< 10 dB) = (1 e-0.1)4 = 0.000082, andP4( i> 10 dB) = 1- (1 e-0.1)4 = 0.999918 or 99.9918%

    With single antenna:P ( i< 10 dB) = (1 e-0.1) = 0.095, andP ( i> 10 dB) = 1- (1 e-0.1) = 0.905 or 90.5%

    Improvement factor about 3 order in magnitude!

  • 20 Selective CombiningPerbaikan SNR:

    Pada contoh di atas:

    M

    k k11

    Improvement factor about twice in SNR!

    083.225.0333.5.011

    1

    M

    k k

  • 21 Equal Gain Combining

    If weight of each branch is set to unity and co-phased, Max. ratio combining become equal gaincombining.

    Less complex with slightly lower performance thanmax. ratio combining.

    Without continuously adapt each weight ofbranches differently, it allows receiver to exploitreceived signals simultaneously.

    If weight of each branch is set to unity and co-phased, Max. ratio combining become equal gaincombining.

    Less complex with slightly lower performance thanmax. ratio combining.

    Without continuously adapt each weight ofbranches differently, it allows receiver to exploitreceived signals simultaneously.

  • 22 Max. Ratio Combiner

    G1Co-phase

    andSum

    output

    Ant. 1

    Ant. 2MG2

    Gm

    Co-phaseandSum

    output

    Variable gain

    Ant. 2

    Ant. m

    Detector

    m

    M

    Adaptive control

  • 23 Max. Ratio Combining Signals from each branch/antenna are co-phasedand individually weighted to provide coherentaddition to get optimal SNR.

    Probability that received signal SNR belowthreshold is:

    Probability of good reception:

    M

    k

    kM keP 1

    1/

    )!1()/(1

    Signals from each branch/antenna are co-phasedand individually weighted to provide coherentaddition to get optimal SNR.

    Probability that received signal SNR belowthreshold is:

    Probability of good reception:

    M

    k

    kM keP 1

    1/

    )!1()/(1

    M

    k

    kM keP 1

    1/

    )!1()/(

  • 24 Maximal Ratio CombiningSNR improvement:

    In the example above :

    Probability (good signal)=e-0.1(1+0.1+0.12/2+0.13/6)=0.9999961531

    M

    MM

    M

    kM

    1

    SNR improvement:

    In the example above :

    Probability (good signal)=e-0.1(1+0.1+0.12/2+0.13/6)=0.9999961531

    Improvement factor about four times in SNR!

    4MM

  • 25 Frequency Diversity Use two or more carrier frequency for transmission with spacing aboutUse two or more carrier frequency for transmission with spacing about22 5 % f5 % foo.. Need to employ two or more Transmitter and ReceiverNeed to employ two or more Transmitter and Receiver

    Improvement factor :Improvement factor :

  • 26 Time Diversity Interleaver

    1 m+12 m+2

    mrows

    Read out bits to modulator one row at a time

    M 2m nm

    .

    n columns

    mrows

    Read inCoded bitsfromencoder

  • 27 Channel Encoding Channel encoding is done by encode the data into a special form, and

    introduce redundancies in the transmitted data. It protects data/information from error and distortion introduced by the

    channel. Redundant bits increase data rate hence the bandwidth, but improve

    BER performance especially in fading channel. Reduce BW efficiency of the link in high SNR condition, but provide

    excellent performance in low SNR condition Two types mostly used: Block Codes, Convolutional code and Turbo

    Codes

    Channel Coding meningkatkan kinerja hubungan small scale denganpenambahkan bit data dalam pesan yang dikirimkan sehingga jika terjadisuatu pelemahan seketika itu terjadi dalam saluran, data masih dapatdipulihkan pada penerima

    Channel coding digunakan oleh penerima untuk mendeteksi ataumemperbaiki beberapa (atau semua) dari kesalahan terdapat padasaluran dalam urutan tertentu bit pesan

    Channel encoding is done by encode the data into a special form, andintroduce redundancies in the transmitted data.

    It protects data/information from error and distortion introduced by thechannel.

    Redundant bits increase data rate hence the bandwidth, but improveBER performance especially in fading channel.

    Reduce BW efficiency of the link in high SNR condition, but provideexcellent performance in low SNR condition

    Two types mostly used: Block Codes, Convolutional code and TurboCodes

    Channel Coding meningkatkan kinerja hubungan small scale denganpenambahkan bit data dalam pesan yang dikirimkan sehingga jika terjadisuatu pelemahan seketika itu terjadi dalam saluran, data masih dapatdipulihkan pada penerima

    Channel coding digunakan oleh penerima untuk mendeteksi ataumemperbaiki beberapa (atau semua) dari kesalahan terdapat padasaluran dalam urutan tertentu bit pesan

  • 28 Fading Margin

    Kuat sinyal (dB) setelahditambah fading margin (FM)

    t

    Theshold FM

    Fading margin depends upon target availability of the link/coverage.

    Greater availability requires larger fading margin.Kuat sinyal (dB) setelah

    ditambah fading margin (FM)

    t

    Theshold FM

  • 29 Fading Margin

    2FMerf2

    121dm)m(p)Thm(PRP

    mThTh

    If fading margin FM applied to the link, then probabilitythat RSL at receiver separated at distance R above thethreshold can be written as:

    2FMerf2

    121dm)m(p)Thm(PRP

    mThTh

    Fading margin improve signal reception hence thelink performance, in an expense of increasingtransmission power.

  • 30 Power Control

    User 2

    User 1

    d1d2

    Basestation

    Pr2

    Pr1

    Pt2Pt1

    Mitigating the effect of shadowing and near-far problemIf user 1 at 3 km from BTS transmitting with 100mWatt, how much power is needed by user 2 at9 km away from BTS using Okumura Hattamodel in urban area to achieve the same powerat the BTS with 10 m high above ground level?

    User 2

    User 1

    d1d2

    Basestation

    Pr2

    Pr1

    Pt2Pt1

    Answer: Path loss slope Hatta-Urban is( 44.9 6.55 log 10) =38.35.W2 = (d2/d1)3.835 W1 = 38.3 dBm =6.76 Watt

  • Power Control

    t

    Channelvariation(i)

    est PCC biterrorDTpLoopdelay

    _

    +

    +

    e(i) 1 Base station

    channel

    Small Scale Fading Mitigation -31

    31

    Channelvariation(i) DTp

    Loopdelay

    pTpIntegrator

    Transmitpower p(i)

    Step size

    +

    +

    + _ Mobile station

    channel

  • 32 Power Control

    0 50 100 150 200 250 300-30

    -20

    -10

    0

    10

    20

    30

    Time slot (0.67 ms)

    Signallevel(dB)

    Received signal amplitudeControlled transmit powerControlled SIR (target = 10 dB)

    Channel is estimated atthe receiver, then Tx isinstructed to adjust Txpower according to theestimated channel (e.g.SNR).Problem:Control rate >> fadingrateControl step sizesingle step or variablestepWhat is thebenefit/drawbacks ofsingle or variable stepsize ?

    Rayleigh fading

    0 50 100 150 200 250 300-30

    -20

    -10

    0

    10

    20

    30

    Time slot (0.67 ms)

    Signallevel(dB)

    Received signal amplitudeControlled transmit powerControlled SIR (target = 10 dB)

    Channel is estimated atthe receiver, then Tx isinstructed to adjust Txpower according to theestimated channel (e.g.SNR).Problem:Control rate >> fadingrateControl step sizesingle step or variablestepWhat is thebenefit/drawbacks ofsingle or variable stepsize ?

  • 0 50 100 150 200 250 300 350 400 450 500-20

    -15

    -10

    -5

    0

    5

    10

    Fadingamplitude[dB]

    time x 0.67 msec

    0b0b

    e

    I/E1I/E12

    1

    2/12/12

    1BERP

    Fading channel

    Example for fading rate fd= 5o Hz ( vehiche speed 30 km/hr at 1.8 GHz).

    Power ControlSmall Scale Fading Mitigation -33

    330 50 100 150 200 250 300 350 400 450 500-20

    -15

    -10

    -5

    0

    5

    10

    Fadingamplitude[dB]

    time x 0.67 msec

    0b0b

    e

    I/E1I/E12

    1

    2/12/12

    1BERP

    0

    be N

    E2QBERPAWGN channel

  • Example To achieve a satisfactory power control performance

    when a vehicle moving at 30 km/h (carrier freq = 1.8GHz) the rate of power control is at least 30 timeshigher than the fading rates. Compute the minimum signalling rate required for power

    control. If the voice channel is transmitted at 9.6 kbps, what

    percentage of band width is lost due to power control with (a)fixed step algorithm (b) variable step with 3 bit algorithm

    If the deepest fading is 30 dB below its average level, what isthe incremental power ajustment (step size) if fixed stepadjustment is employed to equalize the deepest fading.

    Power ControlSmall Scale Fading Mitigation -34

    34

    Example To achieve a satisfactory power control performance

    when a vehicle moving at 30 km/h (carrier freq = 1.8GHz) the rate of power control is at least 30 timeshigher than the fading rates. Compute the minimum signalling rate required for power

    control. If the voice channel is transmitted at 9.6 kbps, what

    percentage of band width is lost due to power control with (a)fixed step algorithm (b) variable step with 3 bit algorithm

    If the deepest fading is 30 dB below its average level, what isthe incremental power ajustment (step size) if fixed stepadjustment is employed to equalize the deepest fading.

  • Antena Sektoral dan Smart Antenna Narrow sector akan mengurangi Co-channelinterference Mengijinkan pengulangan frekuensi yang lebih dekatsecara geografis

    Sehingga: lebih banyak carrier per-sel lebih besarkapasitas

    Tetapi sering back dan side lobe menjadiproblem Menghasilkan spot co-channel interference

    Merupakan interferensi tak terduga yang sulitdiidentifikasi dan diatasi

    smart antennas (adaptive phased arrays) dapatmengatasi persoalan ini lebih baik (tetapi high cost)

    Mengatasi Large Scale Fading35

    10/29/2012 35

    Narrow sector akan mengurangi Co-channelinterference Mengijinkan pengulangan frekuensi yang lebih dekatsecara geografis

    Sehingga: lebih banyak carrier per-sel lebih besarkapasitas

    Tetapi sering back dan side lobe menjadiproblem Menghasilkan spot co-channel interference

    Merupakan interferensi tak terduga yang sulitdiidentifikasi dan diatasi

    smart antennas (adaptive phased arrays) dapatmengatasi persoalan ini lebih baik (tetapi high cost)

  • Representasi hexagon ideal idealnya tidak ada backantenna signal pada arah uplink maupun downlink

    60 120Back ofblue sector

    Back andside lobes

    Antena Sektoral dan Smart AntennaMengatasi Large Scale Fading36

    10/29/2012 36

    6 sectors 3 sectorsReal sectored cells are non-ideal in several ways. One important difference:There is non-negligible power radiated in the back and side regions, andthe amount of such back and side lobe power is greater for narrow sectorsthan for wide angle sectors.

    Front ofblue sector

    Back ofblue sector RealSector

  • Teknik-Teknik Anti Frequency Selective FadingTeknik anti frequency selective fading diperlukan jika bandwidth sinyal lebihbesar dari bandwidth koheren kanal seperti yang sudah dijelaskan pada bagiansebelumnya.Teknik-teknik yang biasa dilakukan [PEI 97] adalah :

    Decision Feedback Equalizer dengan RLS Algorithm (algoritmaKalman), Fast Kalman Algorithm, dan juga Tap Gain Interpolasi

    Adaptive Array Antenna beamforming Rake Diversity untuk sinyal spread spectrum Multicarrier technique dll

    Mengatasi Small Scale Fading -37

    10/29/2012 37

    Decision Feedback Equalizer dengan RLS Algorithm (algoritmaKalman), Fast Kalman Algorithm, dan juga Tap Gain Interpolasi

    Adaptive Array Antenna beamforming Rake Diversity untuk sinyal spread spectrum Multicarrier technique dll

    Pertanyaan :Sejauh mana unjuk kerja masing-masing perangkat tersebutdalam memperbaiki frequency selective fading ? Pelajarilahdan diskusikan dengan teman anda

  • InterSymbol Interference (ISI) Ketika multipath delay spread mulai lebih besar 20% dari

    durasi symbol , ISI dapat menjadi problem. Untuk mengatasiISI...

    Pertama, receiver terpasang dengan adaptive equalizer Adaptive equalizer (and also the similar RAKE receiver used for CDMA)

    produces delayed copy/ies of the received signal waveform and use(s) thesecopy/ies to cancel the physically delayed radio signals

    Equalixer ini mendeteksi/mengetahui efek multipath delay pada deretantraining bit yang diketahui, dan menggunakan informasi itu untuk mengatasiISI pada deretan bit informasi dengan cara memberikan replika delayinternal pada sinyal

    Kedua, penggunaan error protection codes (channelcoding) untuk mendeteksi/mengkoreksi error (baik yangdisebabkan ISI ataupun fading)

    You know ? . ISI tak dapat diatasi dengan penguatansinyal.

    Mengatasi Small Scale Fading -38

    10/29/2012 38

    Ketika multipath delay spread mulai lebih besar 20% daridurasi symbol , ISI dapat menjadi problem. Untuk mengatasiISI...

    Pertama, receiver terpasang dengan adaptive equalizer Adaptive equalizer (and also the similar RAKE receiver used for CDMA)

    produces delayed copy/ies of the received signal waveform and use(s) thesecopy/ies to cancel the physically delayed radio signals

    Equalixer ini mendeteksi/mengetahui efek multipath delay pada deretantraining bit yang diketahui, dan menggunakan informasi itu untuk mengatasiISI pada deretan bit informasi dengan cara memberikan replika delayinternal pada sinyal

    Kedua, penggunaan error protection codes (channelcoding) untuk mendeteksi/mengkoreksi error (baik yangdisebabkan ISI ataupun fading)

    You know ? . ISI tak dapat diatasi dengan penguatansinyal.

  • Attenuation, Dispersion Effects: ISI!

    Inter-symbol interference (ISI)

    39

  • multi-path propagationPath Delay

    Powe

    r

    path-2path-2

    path-3

    path-1

    path-1

    Multipaths: Power-Delay Profile40

    Base Station (BS) Mobile Station (MS)path-3

    Channel Impulse Response:Channel amplitude |h| correlated at delays .Each tap value @ kTs Rayleigh distributed

    (actually the sum of several sub-paths)

    40

  • Inter-Symbol-Interference (ISI) due to Multi-Path Fading

    Transmitted signal:

    Received Signals:Line-of-sight:

    Reflected:

    The symbols add up onthe channel

    Distortion!

    41

    Transmitted signal:

    Received Signals:Line-of-sight:

    Reflected:

    The symbols add up onthe channel

    Distortion!Delays

    41

  • 42 Types of Equalizer

    Linear: Transversal filter (Zero forcing, LMS, RLS,fast RLS, Sq. root RLS)

    Lattice Filter (Gradient RLS) Non Linear:

    DFE (LMS, RLS, Fast RLS, Sq. root RLS) ML Symbol Detection MLSE

    Linear: Transversal filter (Zero forcing, LMS, RLS,fast RLS, Sq. root RLS)

    Lattice Filter (Gradient RLS) Non Linear:

    DFE (LMS, RLS, Fast RLS, Sq. root RLS) ML Symbol Detection MLSE

  • Channel Equalizer

    i index waktuV orde equalizerD index delay

    z-1 z-1 z-1(i-D-v)(i-D) (i-D-V+1)(i)

    Channel equalizer diperlukan untuk mengkompensasi ISI yang disebabkan kanalmultipath (Freq. Selective Fading Channel).

    Karena multipath fading channel bersifat dynamic random equalizer hrs bersifatadaptif

    43

    10/29/2012 43

    i index waktuV orde equalizerD index delayb0 bD+

    vbV-1

    (i)out

    Adaptivealgorithm

    (i)

  • Beamforming Beamforming adalah proses pembentukan beam menuju ke arah user

    yang diinginkan serta menekan sinyal pengganggu dari arah lain.Dengan demikian, beamforming bisa dikatakan sebagai spatial filteringsinyal

    Pembentukan beam ke arah sinyal yang diinginkan bisa dilakukandengan memberikan pembobotan dengan algoritma adaptif padaelemen antena pengganggu-1

    user yangdiinginkan

    pengganggu-2

    user yangdiinginkan

    10/29/2012 44

  • Beamforming dengan kriteria MMSE(Minimum Mean Squared Error)

    MSE, E{|e(n)|2}diminimumkan. Disini e(n)adalah

    Solusi optimum Wienerdiberikan oleh

    x1(n)

    x2(n)

    w1*(n) y(n)=wH(n).x(n) )(.)()( nxwndne H

    MSE, E{|e(n)|2}diminimumkan. Disini e(n)adalah

    Solusi optimum Wienerdiberikan olehx2(n)

    w2*(n)AlgoritmaAdaptif

    - + d(n)e(n))( nd

    xdxxopt rRw .1 )()( nxnxER Hxx )()( * ndnxEr xd

    adalah matriks kovarians sinyal terima

    adalah vektor kroskorelasi antara vektor sinyal terima x dansinyal referensi d .

    45

  • 46 CDMA RAKE Receiver

    Correlator 2

    Correlator 1

    .

    ...

    Int. DCr(t)IF or base bandCDMA signalwith multipathcomponents

    Z1Z2 Z Z m(t)

    2

    Correlator m

    .

    ...IF or base bandCDMA signal

    with multipathcomponents Zm

    m

    Since chip rate of CDMA much greater than coherence BW, delay spreadmerely provide a multiple delayed version of signals at receiver. Instead ofcausing ISI, RAKE receiver attempts to collect multipath signals, process it byseparate correlator receiver, and combine the signals to have a better detection.

  • Multicarrier CDMA:

    Gabungan OFDM dan CDMA

    10/29/2012 47

  • OFDM membagi data serial

    kecepatan tinggimenjadi data paralelkecepatan rendah

    Data paralel tersebutdibawa oleh masing-masing subcarrier

    Antar subcarrier satudengan yang lain salingorthogonal

    -8 -6 -4 -2 0 2 4 6 8-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Normalized Frequency(FT)

    NormalizedAmplitude

    10/29/2012 48

    membagi data serialkecepatan tinggimenjadi data paralelkecepatan rendah

    Data paralel tersebutdibawa oleh masing-masing subcarrier

    Antar subcarrier satudengan yang lain salingorthogonal

    -8 -6 -4 -2 0 2 4 6 8-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Normalized Frequency(FT)

    NormalizedAmplitude

  • Analog Carrier frequency is low enough to avoid problems

    GSM Channel bit rate well above Doppler spread TDMA during each bit / burst transmission the channel is fairly

    constant. Receiver training/updating during each transmission burst Feedback frequency correction

    DECT Intended to pedestrian use: only small Doppler spreads are to be anticipated for Original DECT concept did not standardize an equalizer

    IS95 Downlink: Pilot signal for synchronization and channel estimation Uplink: Continuous tracking of each signal

    How do systems handle Doppler Spreads?Kasus-Kasus Fading Mitigation

    10/29/2012 49

    Analog Carrier frequency is low enough to avoid problems

    GSM Channel bit rate well above Doppler spread TDMA during each bit / burst transmission the channel is fairly

    constant. Receiver training/updating during each transmission burst Feedback frequency correction

    DECT Intended to pedestrian use: only small Doppler spreads are to be anticipated for Original DECT concept did not standardize an equalizer

    IS95 Downlink: Pilot signal for synchronization and channel estimation Uplink: Continuous tracking of each signal

  • How do systems handle delay spreads? fenomena ISIAnalog Narrowband transmissionGSM Adaptive channel equalization Channel estimation training sequenceDECT Use the handset only in small cells with small delay spreads Diversity and channel selection can help a little bit

    pick a channel where late reflections are in a fadeIS95 Rake receiver separately recovers signals over paths with excessivedelays

    Digital Audio Broacasting OFDM multi-carrier modulationThe radio channel is split into many narrowband (ISI-free) subchannels

    Kasus-Kasus Fading Mitigation

    10/29/2012 50

    Analog Narrowband transmissionGSM Adaptive channel equalization Channel estimation training sequenceDECT Use the handset only in small cells with small delay spreads Diversity and channel selection can help a little bit

    pick a channel where late reflections are in a fadeIS95 Rake receiver separately recovers signals over paths with excessivedelays

    Digital Audio Broacasting OFDM multi-carrier modulationThe radio channel is split into many narrowband (ISI-free) subchannels

  • Typical Delay SpreadsMacroce lls TRMS < 8 sec GSM (256 kb it/s ) uses an equa lize r IS -54 (48 kb it/s ): no equa lize r In m oun tanous reg ions de lays o f 8 sec and m ore

    occu rGSM has som e p rob lem s in Sw itze rland

    M icroce lls TRMS < 2 sec Low an tennas (be low tops o f bu ild ings )P icoce lls TRMS < 50 nsec - 300 nsec Indoor: o ften 50 nsec is assum ed DECT (1 Mb it/s ) wo rks we ll up to 90 nsec

    Outdoors , DECT has p rob lem if range > 200 .. 500 m

    Kasus-Kasus Fading Mitigation

    10/29/2012 51

    Macroce lls TRMS < 8 sec GSM (256 kb it/s ) uses an equa lize r IS -54 (48 kb it/s ): no equa lize r In m oun tanous reg ions de lays o f 8 sec and m ore

    occu rGSM has som e p rob lem s in Sw itze rland

    M icroce lls TRMS < 2 sec Low an tennas (be low tops o f bu ild ings )P icoce lls TRMS < 50 nsec - 300 nsec Indoor: o ften 50 nsec is assum ed DECT (1 Mb it/s ) wo rks we ll up to 90 nsec

    Outdoors , DECT has p rob lem if range > 200 .. 500 m

  • How to handle fast multipath fading?A n a l o g

    U s e r m u s t s p e a k s lo w lyG S M

    E r r o r c o r r e c t io n a n d in t e r le a v in g t o a v o idb u r s t e r r o r s

    E r r o r d e t e c t io n a n d s p e e c h d e c o d in g F a d e m a r g in s in c e l l p la n n in g

    D E C T D iv e r s i t y r e c e p t io n a t b a s e s t a t io n

    I S 9 5 W id e b a n d t r a n s m is s io n a v e r a g e s c h a n n e l

    b e h a v io u rT h is a v o id s b u r s t e r r o r s a n d d e e p f a d e s

    Kasus-Kasus Fading Mitigation

    10/29/2012 52

    A n a l o g U s e r m u s t s p e a k s lo w ly

    G S M E r r o r c o r r e c t io n a n d in t e r le a v in g t o a v o id

    b u r s t e r r o r s E r r o r d e t e c t io n a n d s p e e c h d e c o d in g F a d e m a r g in s in c e l l p la n n in g

    D E C T D iv e r s i t y r e c e p t io n a t b a s e s t a t io n

    I S 9 5 W id e b a n d t r a n s m is s io n a v e r a g e s c h a n n e l

    b e h a v io u rT h is a v o id s b u r s t e r r o r s a n d d e e p f a d e s

  • How to handle long fades when the user is stationary?Analog Disconnect userGSM Slow frequency hopping Handover, if appropriate Power controlDECT Diversity at base station Best channel selection by handsetIS95 Wide band transmission avoids most deep fades (at least in macro-cells) Power controlWireless LANs Frequency Hopping, Antenna Diversity

    Kasus-Kasus Fading Mitigation

    10/29/2012 53

    Analog Disconnect userGSM Slow frequency hopping Handover, if appropriate Power controlDECT Diversity at base station Best channel selection by handsetIS95 Wide band transmission avoids most deep fades (at least in macro-cells) Power controlWireless LANs Frequency Hopping, Antenna Diversity

  • MengatasiLarge Scale

    Fading

    memperbesardaya kirim Tx

    Antisipasi pengaruhnyaterhadap interferensi !!

    Uplink

    Downlink

    Power control

    FadingMargin

    Mengatasi Large Scale Fading

    Tidak dominan

    Link budget calculation

    10/29/2012 54

    MengatasiLarge Scale

    Fading

    memperbaikikualitas

    penerima Rx

    Uplink

    Downlink

    FadingMargin

    Diversitas

    Perbaikansensitivitashandset

    Sectoral &Smartantena

    Catatan: dapat dikerjakan engineer

  • Mengatasi Small Scale Fading

    MengatasiFlat Fading

    Fast FadingRate simbol >rate fading

    Atau, melaluidesain Fading

    Margin

    Masalahpenurunansinyal diatas

    denganDiversitas

    Fading dibuatmenjadi Slow

    Modulator ygrobust yg tidak

    perlu carriertracking error correction

    coding daninterleaving

    Karena Eb/Norequirement lebihkecil

    Flat fading umumnyaFast

    10/29/2012 55

    MengatasiFlat Fading

    Slow Fading

    Power control

    Catatan: dapat dikerjakan engineer

    Atau, melaluidesain Fading

    Margin

    Untuk Fast Fading, responpower control mungkinterlambat thd fading rate

    Masalahpenurunansinyal diatas

    denganDiversitas

    What next ?

  • Mengatasi Small Scale FadingFrequency Selective Fading, terjadi karena bandwidthsinyal lebih besar dari bandwidth koheren kanalSehingga persoalan fading frekuensi selektif terjadi padasistem broadband wireless

    Persoalan sistembroadbandwireless

    Masalahmultipath Frequencyselectivefading

    10/29/2012 56

    Persoalan sistembroadbandwireless

    Masalahmultipath Frequencyselectivefading

    Kompleksitasequalizer

  • Kesimpulan singkat, fading akan diatasi dengan berbagaicara : Fading Margin dalam desain cakupan RF Diversitas: space, time, frequency

    Interleaving, suatu bentuk dari diversitas waktu Error protection coding, (atau channelcoding) dengan menambahkan bit-bitredundant

    Receive antenna diversity: Fading jarang terjadi pada 2 lokasi secarasimultan, khususnya pada jarak kelipatan ganjil seperempat panjanggelombang

    10/29/2012 57

    Fading Margin dalam desain cakupan RF Diversitas: space, time, frequency

    Interleaving, suatu bentuk dari diversitas waktu Error protection coding, (atau channelcoding) dengan menambahkan bit-bitredundant

    Modul 5 Fading Mitigation SubjectTypical Mobile Radio Propagation ChannelFading channel manifestationsSmall-scale Fading: Mechanisms, Degradation categories, and EffectsSlide39Fading mechanismsTime Dispersion and Frequency Dispersion Effect of FadingStatistical FluctuationsSlide40Fading Mitigation TechniquesFMT: DiversitySpatial DiversitySpatial DiversitySlide115Selective CombinerSelective CombiningSelective CombiningSelective CombiningEqual Gain CombiningMax. Ratio CombinerMax. Ratio CombiningSlide34Frequency DiversityTime DiversityChannel EncodingFading MarginFading MarginPower ControlSlide83Power ControlSlide84Slide85Slide106Slide107Slide108Slide109Attenuation, Dispersion Effects: ISI!Slide98Inter-Symbol-Interference (ISI) due to Multi-Path FadingTypes of EqualizerSlide110BeamformingBeamforming dengan kriteria MMSE (Minimum Mean Squared Error)CDMA RAKE ReceiverSlide118OFDMSlide119Slide120Slide121Slide122Slide123Slide104Slide105Slide117Slide114


Recommended