+ All Categories
Home > Documents > Modular Multilevel Converter - Technology & Principles - Siemens

Modular Multilevel Converter - Technology & Principles - Siemens

Date post: 11-Feb-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
68
1 10-2009 Power Transmission Division E T PS SL/Re Title in English
Transcript
Page 1: Modular Multilevel Converter - Technology & Principles - Siemens

1 10-2009 Power Transmission DivisionE T PS SL/Re

Title in English

Page 2: Modular Multilevel Converter - Technology & Principles - Siemens

2 10-2009 Power Transmission DivisionE T PS SL/Re

Title in English

Modular Multilevel Converter –Technology & Principles

Dietmar Retzmann

Power Transmission Division

© Siemens AG 2009Energy Sector

Page 3: Modular Multilevel Converter - Technology & Principles - Siemens

3 10-2009 Power Transmission DivisionE T PS SL/Re

Source: National Transmission Grid Study; U.S. DOE 5/2002 – “Preview”

System Enhancement necessary !

Source: ITC 8/2003 – “Blackout”

The US Blackout 2003:Congestion, Overloadsand Loop Flows

Problems only in thesynchronously interconnected Systems

* PTDF = Power Transfer Distribution Factor

*

If Power Flow exceeds the Design Criteria: Blackout

PTD3333

E T PS SL/Re

10-2009

Page 4: Modular Multilevel Converter - Technology & Principles - Siemens

4 10-2009 Power Transmission DivisionE T PS SL/Re

Power-Flow Control – with FACTS and HVDC

Voltage Source Injection:

XX

Series Compensation

VV11 VV22

Parallel Compensation

PPACAC ==FACTS

VSCVSC11 or PSTPST22

∼∼

+

… Support of Power Flow

sin (sin (δδ 11 -- δδ 22)

1 Voltage-Sourced Converter

2 Phase-Shifting Transformer

Transmission Angle

PPDCDC

Power Transmission DivisionPower Transmission Division44

E T PS SL/Re

10-2009 E T PS SL/Re10-2009Each of these Parameters can be used for Load-Flow Control and Power Oscillation Damping

G ~ G ~

PPACAC

,, δδ 22,, δδ 11 XXVV11 VV22

HVDC… makes P flow

Page 5: Modular Multilevel Converter - Technology & Principles - Siemens

5 10-2009 Power Transmission DivisionE T PS SL/Re

Control Features of FACTS and HVDC

a)

b)

~

~

G ~

Loads

G ~

Loads

Loads

Loads

G ~

G ~

G ~

PP

5 10-2009 Power Transmission DivisionE T PS SL/Re

a) FACTS: Voltage / Load-Flow Control (one Direction only) & PODb) HVDC Back-to-Back or Long-Distance Transmission:

Voltage / Bidirectional Power-Flow Control, f-Control & POD

FACTS “Classic”

FACTS VSC

∼=

∼=

“Classic”

or VSC

∼∼

+/+/-- PP

Page 6: Modular Multilevel Converter - Technology & Principles - Siemens

6 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC – High-Voltage DC Transmission: It makes P flow

HVDC-LDT – Long-Distance Transmission

HVDC “Classic” with 500 kV – up to 4,000 MW*

HVDC “Bulk” with 800 kV – for 5,000 MW* up to 7,200 MW**

HVDC PLUS (Voltage-Sourced Converter – VSC)

HVDC can be combined with FACTS

V-Control included

Advanced Power Transmission Systems

B2B – The Short Link

Back-to-Back Station

AC AC

DC Cable

AC AC

Submarine Cable Transmission

800 kV for minimal LineTransmission Losses

Long-Distance OHL Transmission

DC Line

AC AC

* LTT = Light-Triggered Thyristor – up to 4 kA ** ETT = Electrically-Triggered Thyristor – up to 4.5 kA

Page 7: Modular Multilevel Converter - Technology & Principles - Siemens

7 10-2009 Power Transmission DivisionE T PS SL/Re

FACTS – Flexible AC Transmission Systems: Support of Power FlowSVC – Static Var Compensator* (The Standard of Shunt Compensation)SVC PLUS (= STATCOM – Static Synchr. Compensator, with VSC) FSC – Fixed Series Compensation TCSC – Thyristor Controlled Series Compensation*TPSC – Thyristor Protected Series Compensation**GPFC – Grid Power Flow Controller* (FACTS-B2B)UPFC – Unified Power Flow Controller (with VSC)

TCSC/TPSC

FSC

ACAC

/ TPSC

/ STATCOMSVC

ACAC

Advanced Power Transmission Systems

GPFC/UPFC

AC AC

/ UPFC

* with LT Thyristors** with special High

Power LT Thyristors

and SCCL **for Short-Circuit Current Limitation

LTT = Light-Triggered Thyristor

Page 8: Modular Multilevel Converter - Technology & Principles - Siemens

8 10-2009 Power Transmission DivisionE T PS SL/Re

LCC, LCC, CSC CSC &&VVSCSC

8 Power Transmission DivisionE T PS SL/Re

Trends in Converter Technologies

10-2009

Page 9: Modular Multilevel Converter - Technology & Principles - Siemens

9 10-2009 Power Transmission DivisionE T PS SL/Re

Pellet of LT Thyristor

Pellet ofGTO / IGCT

IGBT:

IGCT = Insulated Gate Commutated Thyristor

IGBT = Insulated Gate Bipolar Transistor

LTT = Light-triggered Thyristor

GTO = Gate Turn-Off Thyristor

High-Power Semiconductors

Chips / Module

Page 10: Modular Multilevel Converter - Technology & Principles - Siemens

10 10-2009 Power Transmission DivisionE T PS SL/Re

Structure of an IGBT Module (3.3kV – 1,200A)

10 Power Transmission DivisionE T PS SL/Re10-2009Source: Infineon

Page 11: Modular Multilevel Converter - Technology & Principles - Siemens

11 10-2009 Power Transmission DivisionE T PS SL/Re Power Transmission Division

Classification of Converters:A. Line-Commutated Converters

Current Sourced, e.g. HVDC; use of Reactor for keeping the DC Current constant (L is the “Smoothing” Element)

Voltage Sourced – e.g. for Drive Systems, Custom Power and Traction Supplies; use of Capacitor for keeping the DC Voltage constant (C is the “Smoothing” Element)

Features: robust Technology, low Losses, high Ratings (up to > 7 GW for new HVDC Schemes in Asia)

“Synergies” with FACTS, SVC: in some way, TCR is “CurrentSourced”, TSC is “Voltage Sourced” (but no DC Energy Storage)

Switching Frequency is defined by the System Frequency

Converter Technologies – LCC“Turn-On” Capability only, System Frequency is the “Driver” Thyristors

11111111

E T PS SL/Re

10-2009 E T PS SL/Re10-2009

Source: Cigré Task Force B4.43.02 – Future Ratings and Topologies of Power Electronic Systems

Page 12: Modular Multilevel Converter - Technology & Principles - Siemens

12 10-2009 Power Transmission DivisionE T PS SL/Re

B. Self-Commutated Converters (GTO, IGBT, IGCT etc.)Voltage-Sourced ConvertersThe “popular” Solution: 2 or 3-Level ConfigurationMultilevel Converters

Diode clamped“Flying” CapacitorsSubmodules

Series Connected H-Bridge Cells, Chain LinksResonant Converters

Current-Sourced Converters

Matrix Converters

Combinations of Technologies

High SwitchingFrequencies up to several kHz possible, however, with an Increase in Losses

Power Transmission Division

Classification of Converters contd.:

12121212

E T PS SL/Re

10-2009 E T PS SL/Re10-2009

Source: Cigré Task Force B4.43.02 – Future Ratings and Topologies of Power Electronic Systems

Page 13: Modular Multilevel Converter - Technology & Principles - Siemens

13 10-2009 Power Transmission DivisionE T PS SL/Re10-2009 E T PS SL/Re

Semiconductor Losses increase with high Switching Frequencies

kV

v (t), i (t)

t

kA

V = VD + RD x I

PL = v (t) x i (t)

Semiconductor Equivalent

PL = small

PL = very high

I ≈ 0

RDVDi(t)

v(t)

The “Switch” has to absorb a significant Amount of the total Losses

PL ≈ 0

Power Transmission Division10-2009 E T PS SL/ReSchematic Drawing for Turn-On13131313

E T PS SL/Re

10-2009

Page 14: Modular Multilevel Converter - Technology & Principles - Siemens

14 10-2009 Power Transmission DivisionE T PS SL/Re

Use of Power Electronics for HVDC & FACTSTransient Performance and Losses

More Dynamics for better Power Quality:Use of Power Electronic Circuits for Controlling P, V & QParallel and/or Series Connection of ConvertersFast AC/DC and DC/AC Conversion

Transition from “slow” to “fast”

Switching Frequency

On-Off Transition 20 - 80 ms

Depending on Solution

GTO / IGCT

< 500 Hz

IGBT> 1000 Hz1-2 %

Losses

14141414

E T PS SL/Re

10-2009

50/60 Hz

ThyristorThyristor

The Solution for Bulk Power Transmission

2-6 %

Page 15: Modular Multilevel Converter - Technology & Principles - Siemens

15 10-2009 Power Transmission DivisionE T PS SL/Re

The Evolution of VSC and PLUS Technology

15 Power Transmission Division

Power Electronic Devices:

IGBT in PP IGBT ModuleGTO / IGCT

E T PS SL/Re10-2009

Topologies: Two-Level Three-Level Multilevel

Page 16: Modular Multilevel Converter - Technology & Principles - Siemens

16 10-2009 Power Transmission DivisionE T PS SL/Re

Power Quality for AC & DC Systems

16 E T PS SL/Re10-2009 Power Transmission Division

HVDCHVDCwithwith VSCVSC ––

HVDCHVDC PLUSPLUS

Page 17: Modular Multilevel Converter - Technology & Principles - Siemens

17 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC “Classic” versus HVDC PLUS

~= =

~

AC Grid 1 AC Grid 2

G ~G ~G ~G ~

C

AG G

E

CC

E

PDC PDC

Power Reversal by

CurrentVoltage only Enables the Use of XLPE Cables

Use of MI Cables only

DC+

- +

- +

-

Page 18: Modular Multilevel Converter - Technology & Principles - Siemens

18 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC PLUS – Typical P/Q Diagram

1818

E T PS SL/Re

10-2009 E T PS SL/Re10-2009Power Transmission Division

The Reactive Power can be controlled at any Value between the red and blue Curve

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

P [p.u.]

Q [p

.u.]

Rectifier Inverter

“Over-excited”

“Under-excited”

(capacitive)

(inductive)

Example of a P/Q Design Specification

Current Limit

Voltage Limit

Page 19: Modular Multilevel Converter - Technology & Principles - Siemens

19 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC “Classic” – Generic P/Q Diagram

Rectifier Inverter

“Over-excited”

“Under-excited”

The Reactive Power is defined by both red and blue Curves. It is a Function of Active Power and AC-Voltage

(capacitive)

(inductive)

Typically, Reactive Power Consumption of HVDC Classic is Q = 0.5 Pd

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

P [p.u]

Q [p

.u.]

19 10-2009 Power Transmission DivisionE T PS SL/Re

Page 20: Modular Multilevel Converter - Technology & Principles - Siemens

20 10-2009 Power Transmission DivisionE T PS SL/Re

General Features of VSC* Technology

20 E T PS SL/Re10-2009 Power Transmission Division

Grid Access for weak AC Networks

Multiterminal easier with 4-Quadrant Capability

Independent Control of Active and Reactive Power

Supply of passive Networks and Black-Start Capability

Low Space Requirements

VSC Technology makes it feasible

* VSC: Voltage-Sourced Converter

HVDC PLUS offers additional Benefits

High dynamic Performance

Page 21: Modular Multilevel Converter - Technology & Principles - Siemens

21 10-2009 Power Transmission DivisionE T PS SL/Re

Benefits of HVDC PLUS

Low Switching Frequency

Reduction in Losses

Less Stresses

In Comparison with 2 and 3-Level Converter Technologies

… with Advanced VSC Technology

Siemens uses MMC Technology(Modular Multilevel Converter)

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

~

=

=

21212121

E T PS SL/Re

10-2009 PTDClean Energy to and from Platforms & Islands …

Page 22: Modular Multilevel Converter - Technology & Principles - Siemens

22 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC PLUS with MMC – Basic Scheme

22 Power Transmission DivisionE T PS SL/Re

PM 1

PM 2

PM n

PM 1

PM 2

PM n

PM 1

PM 2

PM n

PM 1

PM 2

PM n

PM 1

PM 2

PM n

PM 1

PM 2

PM n

ud

Phase Unit

Vd

10-2009

IGBT2D2

D1IGBT1

Power Module (PM)

Power Electronics

Converter Arm

Page 23: Modular Multilevel Converter - Technology & Principles - Siemens

23 10-2009 Power Transmission DivisionE T PS SL/Re

The Result: MMC – a perfect Voltage Generation

23 Power Transmission Division

VConv.

- Vd /2

0

+Vd /2

AC and DC Voltages controlled by Converter Arm Voltages:

VAC

10-2009 E T PS SL/Re

Page 24: Modular Multilevel Converter - Technology & Principles - Siemens

24 10-2009 Power Transmission DivisionE T PS SL/Re

MMC – AC & DC Converter Currents ...

24 Power Transmission Division10-2009 E T PS SL/Re

… controlled by Voltage Sources

Page 25: Modular Multilevel Converter - Technology & Principles - Siemens

25 10-2009 Power Transmission DivisionE T PS SL/Re25 Power Transmission DivisionE T PS SL/Re

VDC + 200 kV

VDC - 200 kV

PLOTS : Graphs

1.000 1.010 1.020

-250 -200 -150 -100 -50

0 50

100 150 200 250

U [k

V]

+Ud -Ud US1 US2 US3

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

I [kA

]

is1 is2 is3

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

I [kA

]

i1p i2p i3p i1n i2n i3n

AC Converter Voltages

Currents at the AC Terminals

Six Converter Arm Currents

Obviously, no AC Filters required

Results of Computer Simulation: 400 MW with 200 Power Modules per Converter Arm

10-2009

Page 26: Modular Multilevel Converter - Technology & Principles - Siemens

26 10-2009 Power Transmission DivisionE T PS SL/Re26 Power Transmission DivisionE T PS SL/Re

Power Module

PLUSCONTROL

High-Speed Bypass Switch

MMC – Redundant Power Module Design

10-2009

Phase Unit

Single Module Failure

Page 27: Modular Multilevel Converter - Technology & Principles - Siemens

27 10-2009 Power Transmission DivisionE T PS SL/Re

Fully suitable for DC OHL Application:Line-to-Line Fault – a crucial Issue

27 Power Transmission DivisionE T PS SL/Re

Phase Unit

PLUSCONTROL

Power Module

Protective Thyristor Switch

10-2009

Page 28: Modular Multilevel Converter - Technology & Principles - Siemens

28 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC PLUS – The Advanced MMC Technology

28 Power Transmission DivisionE T PS SL/Re

Some more Views of a 400 MW Converter

10-2009

Page 29: Modular Multilevel Converter - Technology & Principles - Siemens

29 10-2009 Power Transmission DivisionE T PS SL/Re

Control and Protection:System Hierarchy Win-TDC with PLUSCONTROL

I/O Unit

Measuring

I/O Unit

CCSPLUSCONTROL

MMS nMMS 1

Remote HMISCADA InterfaceLocal HMI SIMATIC WinCC

I/O Level

C&P Level

Operator Level

RCI

SIMATIC TDC

Switchgear & Auxiliaries Voltages & Currents Converter – Power Module Electronics

Current Control System

DC ControlP ControlQ Control

Page 30: Modular Multilevel Converter - Technology & Principles - Siemens

30 10-2009 Power Transmission DivisionE T PS SL/Re30 Power Transmission DivisionE T PS SL/Re10-2009

PLUSCONTROL – Main Tasks: Current Control & Module Management

Individual Switching of Power Modules

Power Module Charge Balancing

Calculation of required Converter Arm Voltages

Control of Active and Reactive Power

Current & Voltage Balancing Control

Power Module Monitoring

1

2

n

SIMATIC TDCC&P System

SIMATIC TDCMeasuring System

Page 31: Modular Multilevel Converter - Technology & Principles - Siemens

31 10-2009 Power Transmission DivisionE T PS SL/Re

HVDC PLUS – Modular Multilevel VSC

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet31 10-2009 Power Transmission DivisionE T PS SL/Re

“Off“ State “On“ State

Source:PM = Power Module – “Marquardt” Circuit

PM PM

Upper IGBT: offLower IGBT: on

Upper IGBT: onLower IGBT: off

Page 32: Modular Multilevel Converter - Technology & Principles - Siemens

32 10-2009 Power Transmission DivisionE T PS SL/Re

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet32 10-2009 Power Transmission DivisionE T PS SL/Re

VDC/2

vUM(t)

off

PM4

on

PM5

on

PM6

on

PM7

onoffoffoffVDC/2

PM8PM3PM2PM1vUM

vUM = VDC/2

t

VDC/4

-VDC/4

-VDC/2

vC = VDC/nCellnCell = 4

Phase Unit States and Voltages – for n = 4

Source:

PM8

PM1

PM2

PM3

PM4

PM5

PM6

PM7

Page 33: Modular Multilevel Converter - Technology & Principles - Siemens

33 10-2009 Power Transmission DivisionE T PS SL/Re

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet33 10-2009 Power Transmission DivisionE T PS SL/Re

Phase Unit States and Voltages – for n = 4

VDC/2

vUM(t)

on

PM4

on

PM5

on

PM6

on

PM7

offoffoffoffVDC/4

PM8PM3PM2PM1vUM

vUM = VDC/4

t

VDC/4

-VDC/4

-VDC/2

Source:

PM8

PM1

PM2

PM3

PM4

PM5

PM6

PM7

Page 34: Modular Multilevel Converter - Technology & Principles - Siemens

34 10-2009 Power Transmission DivisionE T PS SL/Re

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet34 10-2009 Power Transmission DivisionE T PS SL/Re

Source:

Phase Unit States and Voltages – for n = 4

VDC/2

vUM(t)

on

PM4

on

PM5

on

PM6

off

PM7

offonoffoff0V

PM8PM3PM2PM1vUM

vUM = 0V

t

VDC/4

-VDC/4

-VDC/2

PM8

PM1

PM2

PM3

PM4

PM5

PM6

PM7

Page 35: Modular Multilevel Converter - Technology & Principles - Siemens

35 10-2009 Power Transmission DivisionE T PS SL/Re

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet35 10-2009 Power Transmission DivisionE T PS SL/Re

Source:

Phase Unit States and Voltages – for n = 4

VDC/2

vUM(t)

on

PM4

on

PM5

off

PM6

off

PM7

offononoff-VDC/4

PM8PM3PM2PM1vUM

vUM = -VDC/4

t

VDC/4

-VDC/4

-VDC/2

PM8

PM1

PM2

PM3

PM4

PM5

PM6

PM7

Page 36: Modular Multilevel Converter - Technology & Principles - Siemens

36 10-2009 Power Transmission DivisionE T PS SL/Re

Faculty of Electrical Engineering and Information Technology – Prof. Dr. St. Bernet36 10-2009 Power Transmission DivisionE T PS SL/Re

Source:

Phase Unit States and Voltages – for n = 4

VDC/2

vUM(t)

on

PM4

off

PM5

off

PM6

off

PM7

offononon-VDC/2

PM8PM3PM2PM1vUM

vUM = -VDC/2

t

VDC/4

-VDC/4

-VDC/2

PM8

PM1

PM2

PM3

PM4

PM5

PM6

PM7

Page 37: Modular Multilevel Converter - Technology & Principles - Siemens

37 10-2009 Power Transmission DivisionE T PS SL/Re

Features and Benefits of MMC Topology

37 Power Transmission DivisionE T PS SL/Re

Low Switching Frequency of Semiconductors

Low Generation of Harmonics

High Modularity in Hardware and Software

Use of well-proven Standard Components

Sinus shaped AC Voltages and Currents

Easy Scalability

Reduced Number of Primary Components

Low Rate of Voltage and Current Rise

Low Converter Station Losses *

No Filters required

High Flexibility, economical from low to high Power Ratings

High Availability of State-of-the-Art Components Use of standard AC

TransformersLow Engineering Efforts,

Power Range up to 1,000 MWHigh Reliability, low

Maintenance Requirements

Robust System

* close to 1 % – per Station

10-2009

Page 38: Modular Multilevel Converter - Technology & Principles - Siemens

38 10-2009 Power Transmission DivisionE T PS SL/Re

Benefits of HVDC PLUS

38 Power Transmission DivisionE T PS SL/Re

HVDC PLUS

HVDC “Classic”

Example 400 MW

Space Saving

10-2009

Page 39: Modular Multilevel Converter - Technology & Principles - Siemens

39 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS®

The Advanced STATCOMInnovation Meets Experience

39 Power Transmission DivisionE T PS SL/Re10-2009

Page 40: Modular Multilevel Converter - Technology & Principles - Siemens

40 10-2009 Power Transmission DivisionE T PS SL/Re

General Features of VSC* FACTS

40 E T PS SL/Re10-2009 Power Transmission Division

Grid Access for Wind Farms and Renewables

Elimination of Voltage Fluctuations and Flicker

Low Space Requirements

VSC Technology makes it feasible

High dynamic Performance

* VSC: Voltage-Sourced Converter

SVC PLUS offers additional Benefits

Page 41: Modular Multilevel Converter - Technology & Principles - Siemens

41 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS – a wide Range of Configuration Possibilities

41 Power Transmission Division10-2009 E T PS SL/Re

Containerized Solutions:SVC PLUS S: +/- 25 MVArSVC PLUS M: +/- 35 MVArSVC PLUS L: +/- 50 MVAr

Open Rack Solution (Building):SVC PLUS C: +/-100 MVAr

SVC PLUS Hybrid (Option):MSR (Mechanically Switched Reactors)

MSC (Mechanically Switched Capacitors)

HV

LV

MSR MSC

8 kV – 36 kV

SVC PLUS+/-25 ... +/ -200 MVAr

Up to 4 parallel L-Units: +/- 200 MVAr

Page 42: Modular Multilevel Converter - Technology & Principles - Siemens

42 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS – A View of the Technology

Cooling System Converter Control & Protection

Page 43: Modular Multilevel Converter - Technology & Principles - Siemens

43 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS – a highly flexible System

43 Power Transmission DivisionE T PS SL/Re10-2009

Siemens uses MMC Technology(Modular Multilevel Converter)

Low Generation of Harmonics

Low Level of HF-Noise

Low Switching Losses

No Snubbers required

Page 44: Modular Multilevel Converter - Technology & Principles - Siemens

44 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: HMI, local and remote Control

Power Transmission DivisionE T PS SL/Re10-2009

Local: WinCC, PC

Remote: SCADA Interface

44

External Devices

SVC PLUS

External Devices

Page 45: Modular Multilevel Converter - Technology & Principles - Siemens

45 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: Converter, Control and Protection

Power Transmission Division45 E T PS SL/Re10-2009

Page 46: Modular Multilevel Converter - Technology & Principles - Siemens

46 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: Advanced Control System

46 Power Transmission DivisionE T PS SL/Re10-2009

SIMATIC TDCPlant CoordinationReference ValuesMeasurements

PLUSCONTROLCurrent ControlConverter Coordination

GIB on Power ModuleCapacitor ProtectionPiloting of IGBT DriversDC Voltage Measurement

Page 47: Modular Multilevel Converter - Technology & Principles - Siemens

47 10-2009 Power Transmission DivisionE T PS SL/Re

Space Requirements – Example of +/- 50 MVAr:SVC PLUS L versus SVC “Classic”

47 Power Transmission Division10-2009 E T PS SL/Re

Space Saving

Page 48: Modular Multilevel Converter - Technology & Principles - Siemens

48 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: Example of Factory Acceptance Tests – Nuremberg, Germany

48 Power Transmission Division10-2009 E T PS SL/Re

Page 49: Modular Multilevel Converter - Technology & Principles - Siemens

49 10-2009 Power Transmission DivisionE T PS SL/Re

Single Line Diagram of SVC PLUS in Comparison with SVC “Classic“

49 Power Transmission Division10-2009 E T PS SL/Re

SVC PLUSSVC PLUSSVC “Classic”SVC “Classic” SVC PLUSSVC “Classic”

Variable Impedance Controlled Voltage Source

STATCOM = Static Synchronous Compensator – with Multilevel

Page 50: Modular Multilevel Converter - Technology & Principles - Siemens

50 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS – the Operation Principle

50 Power Transmission DivisionE T PS SL/Re10-2009

H H

H H

H H

L1

L2

L3

vconv 12

vconv 23

vconv 31

i12

i23

i31

i1

i2

i3

L

L

L

AC Equivalent

Xfmrs, Lines Loads

VSC

Electronic Generatorfor Reactive PowerVSC =

Voltage Stabilization

Page 51: Modular Multilevel Converter - Technology & Principles - Siemens

51 10-2009 Power Transmission DivisionE T PS SL/Re51 Power Transmission DivisionE T PS SL/Re10-2009

Power Module 1 Power Module 2 Power Module 3 Power Module 4 Power Module n

vconv 12

Lv 12conv 12v

iconv 12

SVC PLUS – Modular Multilevel Converter

Conv 12Conv 12

SVC Voltage v12

Page 52: Modular Multilevel Converter - Technology & Principles - Siemens

52 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: The Power Module

52 Power Transmission DivisionE T PS SL/Re10-2009

IGBTs

Bypass Switch

GIB (Gate-Interface Board)

DC Storage Capacitor

Page 53: Modular Multilevel Converter - Technology & Principles - Siemens

53 10-2009 Power Transmission DivisionE T PS SL/Re

From Power Module to Converter –the Multilevel Voltage Generation

53 Power Transmission Division10-2009 E T PS SL/Re

Power Module with DC Capacitor

vv

Page 54: Modular Multilevel Converter - Technology & Principles - Siemens

54 10-2009 Power Transmission DivisionE T PS SL/Re

States and Current Paths of a Power Module in the MMC Topology – an Advanced Solution

54 Power Transmission Division10-2009 E T PS SL/Re

ON ON

OFF OFF

C uDC

ON OFF

OFF ON

C VDC+ VDC

Capacitor charging/discharging

Capacitor bypassed“Off“ State

“On“ State

Page 55: Modular Multilevel Converter - Technology & Principles - Siemens

55 10-2009 Power Transmission DivisionE T PS SL/Re

off

S2’

on

S3

off

S3’

off

S4

onononoffVdc/2

S4’S2S1

’S1Vph

12ph dcV V=

Vdc/2

-Vdc/2

vph

Vdc/4

-Vdc/4

dc

S1

S’1 S’

2

S3

S’3

S4

S’4

Vph

Vdc /4

Vdc /4

S2

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

Configuration of 5-Level H-Bridge VSC

Page 56: Modular Multilevel Converter - Technology & Principles - Siemens

56 10-2009 Power Transmission DivisionE T PS SL/Re

14ph dcV V=

Vdc/2

-Vdc/2

Vdc/4

-Vdc/4

dcvph

Vph

S1

S’1

S3

S’3

S’2

S4

S’4

S2

Vdc /4

Vdc /4

off

S2’

on

S3

off

S3’

off

S4

ononoffVdc/4

S4’S2S1

’S1Vph

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

on

Configuration of 5-Level H-Bridge VSC

Page 57: Modular Multilevel Converter - Technology & Principles - Siemens

57 10-2009 Power Transmission DivisionE T PS SL/Re

off

S2’

on

S3

off

S3’

on

S4

offonoffon0

S4’S2S1

’S1Vph

0ph dcV V=

Vdc/2

-Vdc/2

Vdc/4

-Vdc/4

Vdcvph

Vph

S1

S’1

S’3

S’2

S4

S’4

S2

S3

Vdc /4

Vdc /4

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

Configuration of 5-Level H-Bridge VSC

Page 58: Modular Multilevel Converter - Technology & Principles - Siemens

58 10-2009 Power Transmission DivisionE T PS SL/Re

on

S2’

on

S3

off

S3’

on

S4

offoffoffon-Vdc/4

S4’S2S1

’S1Vph

14ph dcV V= −

Vdc/2

-Vdc/2

Vdc/4

-Vdc/4

vph

Vph

S1

S’1

S3

S’3

S’2

S4

S’4

S2

Vdc /4

Vdc /4

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

Configuration of 5-Level H-Bridge VSC

Page 59: Modular Multilevel Converter - Technology & Principles - Siemens

59 10-2009 Power Transmission DivisionE T PS SL/Re

on

S2’

off

S3

on

S3’

on

S4

offoffoffon-Vdc/2

S4’S2S1

’S1Vph

Vph

S1

S’1

S3

S’3

S’2

S4

S’4

S2

Vdc /4

Vdc /4

-Vdc/2-Vdc/4

Vdc/2Vdc/4

vph

14ph dcV V= −2

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

Configuration of 5-Level H-Bridge VSC

Page 60: Modular Multilevel Converter - Technology & Principles - Siemens

60 10-2009 Power Transmission DivisionE T PS SL/Re

on

S2’

on

S3

off

S3’

on

S4

offoffoffon-Vdc/4

S4’S2S1

’S1Vph

14ph dcV V= −

Vdc/2

-Vdc/2

Vdc/4

-Vdc/4

vph

Vph

S1

S’1

S3

S’3

S’2

S4

S’4

S2

Vdc /4

Vdc /4

Source: S. Bernet, T. Meynard, R. Jakob, T. Brückner, B. McGrath, “Tutorial Multi-Level Converters”, in Proc. IEEE-PESC Tutorials, 2004, Aachen, Germany

Configuration of 5-Level H-Bridge VSC

Page 61: Modular Multilevel Converter - Technology & Principles - Siemens

61 10-2009 Power Transmission DivisionE T PS SL/Re

Harmonics of SVC PLUS in Comparison with SVC “Classic”

61 Power Transmission Division10-2009 E T PS SL/Re

Page 62: Modular Multilevel Converter - Technology & Principles - Siemens

62 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS: V/I Diagram – Current Source

62 Power Transmission DivisionE T PS SL/Re10-2009

Capacitive Current Inductive Current

STATCOM:Current-SourceCharacteristics

Jump next Page (SVC “Classic”)

Page 63: Modular Multilevel Converter - Technology & Principles - Siemens

63 10-2009 Power Transmission DivisionE T PS SL/Re

SVC “Classic”: Examples of V/I Diagrams

ISVC (QSVC)

VSVC

63 Power Transmission DivisionE T PS SL/Re10-2009

1.0

Voltage Control Mode

• w/o slope

• with slope

• w/o Slope• with Slope

Reactive Power Control Mode

1.8

1.1

VSVC

ISVC

SVC: Impedance Characteristics

SVC: Impedance Characteristics

SVC: Impedance Characteristics

SVC: Impedance Characteristics

0.25 0.25

Page 64: Modular Multilevel Converter - Technology & Principles - Siemens

64 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS versus SVC “Classic” –Loss Characteristics

64 Power Transmission Division10-2009 E T PS SL/Re

0,0

0,5

1,0

1,5

-1 -0,5 0 0,5 1Q in pu

P in

%

SVC PLUS SVC Classic

capacitive inductive

Page 65: Modular Multilevel Converter - Technology & Principles - Siemens

65 10-2009 Power Transmission DivisionE T PS SL/Re

SVC PLUS – Control Features

65 Power Transmission DivisionE T PS SL/Re10-2009

SVC PLUS – Standard Control FunctionsVoltage ControlReactive Power Control Control of up to 4 External Devices

SVC PLUS – The Control OptionsPower Oscillation DampingVoltage Unbalance ControlCos φ ControlFlicker Control

SVC PLUS – Internal ControlsAdaptive Gain ControlDC ControlTransformer Overload ControlOver & Undervoltage Strategies

Page 66: Modular Multilevel Converter - Technology & Principles - Siemens

66 10-2009 Power Transmission DivisionE T PS SL/Re

The Advanced SVC PLUS Solution

66 Power Transmission DivisionE T PS SL/Re10-2009

Source: UCTE Interim Report 10-27-2003Rating: up to +/- 200 MVAr

8 Systems in 4 Transmission Projects:

Dynamic Voltage Support

2009 - 2011

Page 67: Modular Multilevel Converter - Technology & Principles - Siemens

67 10-2009 Power Transmission DivisionE T PS SL/Re

Intelligent Solutions for Power Transmission

with with HVDCHVDC & &

FACTSFACTS fromfrom

HVDC HVDC PLUSPLUSandand SVCSVC PLUSPLUS

Now available –with VSC PLUS Technology

SiemensSiemens

… and the Lights will keep shining !

Page 68: Modular Multilevel Converter - Technology & Principles - Siemens

68 10-2009 Power Transmission DivisionE T PS SL/Re

Intelligent Solutions for Power Transmission

SustainabilitySustainability &&

SecuritySecurity

Thank You for your Attention !

ofof

SupplySupply


Recommended