+ All Categories
Home > Documents > Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V....

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V....

Date post: 18-Dec-2015
Category:
Upload: angel-short
View: 212 times
Download: 0 times
Share this document with a friend
21
Modular Neural Networks Modular Neural Networks Approach to Chemical Approach to Chemical Content Analysis of Content Analysis of Vegetation Vegetation 1 N. Kussul, N. Kussul, 1 V. Yatsenko, V. Yatsenko, 2 A. Sachenko, A. Sachenko, 3 G. G. Markowsky, Markowsky, 1 A. Sydorenko, A. Sydorenko, 1 S. Skakun, S. Skakun, 2 S. Ganzha S. Ganzha 1 Space Research Institute NASU- NSAU, 40 Glushkov Ave 03187 Kiev, Ukraine, [email protected] v.ua 2 Institute of Computer Information Technologies of Ternopil Academy of National Economy 3 Peremoga Square, 46004, Ternopil, Ukraine, [email protected] 3 Department of Computer Science, 5752 Neville Hall, University of Maine, Orono, ME 04469- 5752, [email protected]
Transcript
Page 1: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Modular Neural Networks Modular Neural Networks Approach to Chemical Content Approach to Chemical Content

Analysis of VegetationAnalysis of Vegetation

11N. Kussul, N. Kussul, 11V. Yatsenko, V. Yatsenko, 22A. Sachenko, A. Sachenko, 33G. Markowsky,G. Markowsky,11A. Sydorenko, A. Sydorenko, 11S. Skakun, S. Skakun, 22S. GanzhaS. Ganzha

1Space Research Institute NASU-NSAU,

40 Glushkov Ave 03187 Kiev, Ukraine,

[email protected]

2Institute of Computer Information Technologies of Ternopil Academy

of National Economy3 Peremoga Square, 46004, Ternopil,

Ukraine, [email protected]

3Department of Computer Science,

5752 Neville Hall, University of Maine,

Orono, ME 04469-5752, [email protected]

Page 2: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 3: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 4: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

IntroductionSpectral characteristics of light, which is reflected from Earth objects, represent convenient and high informative data sources for remote investigations. It can be used for estimation of vegetation state to determine infection and pollution level of vegetation.

150

250

350

450

550

400 600

2,76

6,82

6,15

9,18

4,62

3,75

7,65

1,46

5,29

Intensity dependence of reflected light on wave-length with different chlorophyll content

Page 5: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Each spectral curve contains 350 points, which determines the dimension of Neural Network input layer. It is evident that high dimension of input data and large training set requires the use of modular Neural Network architecture.

150

250

350

450

550

400 600

2,76

6,82

6,15

9,18

4,62

3,75

7,65

1,46

5,29

Intensity dependence of reflected light on wave-length with different chlorophyll content

Introduction

Page 6: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 7: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

To determine plants damage (infection) level a modular Neural Network is used. It consists of classifier and interpolator.

Classifier InterpolatorXInput

Y

X

(1-Y)XY=0 - damagedY=1 - undamaged

Classifier InterpolatorXInput

X

(1-Y)XY=0 - damagedY=1 - undamaged

Chlorophyllcontent

Architecture

Page 8: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Classifier executes data pre-processing (brute classification), dividing input data into 2 classes: damaged and undamaged.

Classifier InterpolatorXInput

Y

X

(1-Y)XY=0 - damagedY=1 - undamaged

Classifier InterpolatorXInput

X

(1-Y)XY=0 - damagedY=1 - undamaged

Chlorophyllcontent

Architecture

Page 9: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

If classifier output is 0 (i.e. input pattern is classified as damaged), then it is put on interpolator input.

Classifier InterpolatorXInput

Y

X

(1-Y)XY=0 - damagedY=1 - undamaged

Classifier InterpolatorXInput

X

(1-Y)XY=0 - damagedY=1 - undamaged

Chlorophyllcontent

Architecture

Page 10: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 11: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Before the investigation of modular architecture effectiveness is done, we will define the best training parameters of Neural Network and find the quantitative rates of training process

Problem solution

Training Methods Number of training epochs

Fletcher-Powell method not trained

Levenberg-Marquardt method 456 168 117

Back propagation on-line 2740 2644 2407

Back propagation off-line not trained

Page 12: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

To estimate the best Neural Network training parameters appropriate experiments were run.

0

100000

200000

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Dependence of number of training epochs on learning coefficient (full range)

Problem solution

Page 13: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Dependence of number of training epochs on learning coefficient (smaller range)

2500

3500

4500

5500

0 0,05 0,1

It is evident that the best values are the following: learning coefficient — 0.06, moment coefficient — 0.125.

Problem solution

Page 14: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

It is evident that the best values are the following: learning coefficient — 0.06, moment coefficient — 0.125.

0

10000

20000

30000

0 0,1 0,2 0,3 0,4 0,5 0,6

Dependence of number of training epochs on moment coefficient

Problem solution

Page 15: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 16: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Obtained experimental results showed that both types of classifiers train quickly enough (classifier of the first type for 300-400 epochs, and classifier of the second type — for about 20 epochs.

Classifier training process

Experimental results

Page 17: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

For interpolator a described above multi-layered Neural Network was used. A training set has smaller dimension.

0

200

400

600

800

1000

1200

0 0,02 0,04 0,06 0,08 0,1 0,12

0

100

200

300

400

500

600

0 0,1 0,2 0,3 0,4 0,5 0,6

Dependence of interpolator training time on learning

coefficient

Dependence of interpolator training time on moment

coefficient

Experimental results

Page 18: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 19: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Conducted experiments showed that modular architecture has advantages over traditional in the sense of training time.

Comparative training time analysis of traditional and modular NN architectures. On x-axis there are values of learning coefficients (uniform fill) and moment coefficients (line fill). On y-axis there is a ratio between numbers

of training iterations for traditional NN (T) and for modular NN (M)

0

2

4

6

8

10

12

14

0,1 0,09 0,08 0,075 0,06 0,05 0,04 0,03 0,15 0,25 0,35 0,45

T/M

Comparison

Page 20: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Introduction

Contents . . .

Architecture

Problem solution

Experimental results

Comparison

Conclusions

Page 21: Modular Neural Networks Approach to Chemical Content Analysis of Vegetation 1 N. Kussul, 1 V. Yatsenko, 2 A. Sachenko, 3 G. Markowsky, 1 A. Sydorenko,

Forward

Back

Modular Neural Networks Approach to Chemical Content Analysis of Vegetation

Full spectral analysis of plants (determination of full chemical composition of plants) with expansion of Neural Network architecture.

Proposed modular architecture of NN for extended analysis of plants chemical contents

Classifier

Interpolator

Othersubstances

contentInterpolator

Decision-makingblockInput

XY

X

Chlorophyllcontent

Y=0 - damagedY=1 - unndamaged

(1-Y)*X

Conclusions


Recommended