+ All Categories
Home > Documents > Modular Permanent Magnet Machine Based on Soft Magnetic Composite

Modular Permanent Magnet Machine Based on Soft Magnetic Composite

Date post: 30-May-2018
Category:
Upload: latifpsh
View: 228 times
Download: 0 times
Share this document with a friend
6
Modular Permanent Magnet Machine Based o n Soft Magnetic Composite W e n Ouyang*, Surong Huang**, Anne Good***, T.A. Lipo* *Department of Electrical and Computer Engineering University of Wisconsin-Mad ison 1415 Engineering Drive Madison, W I 53706 " Department of Automation Shanghai U niversity Shanghai, 200072, P.R.China **Burgess-Norton 737 Peyton Street, Geneva, IL , 60134 Abstract With the improvement of soft magnetic composite (SMC) material, electric machine design i s n o longer limited to the traditional iron lamination technology. T h e single extrusion fabrication process of th e S M C material simplifies construction of machine armature core. Moreover, th e material property c a n be exploited for various machine structure design, compared with th e 2D flux distribution of typical iron laminations. In this paper, a drive system based o n a nov el m u lti phase modular perman ent magn et machine is proposed. T he concentric winding structure simplifies th e stator structure with th e benefit of less end winding loss, which also offers th e potential of fault tolerant capability. The performance of the drive system is analyzed discussed with th e simulation provided. Keywords Soft Magnetic Composite, Permanent Magnet (PM), Concentric Windings, Single Phase, Multiple Phase, Fault Tolerant INTRODUCTION T h e emergence of soft magnetic composite material has greatly changed th e nature of the electrical machine construction process. Th e possibility of a "one-punch" module reduces the work effort in lamination a n d stacking. Less copper loss c a n be ach iev ed with the concentric winding design d u e to the shorter e n d windings fo r the pole p ie ce modules.[1] T he progressive improvement of soft magnetic composite (SMC) material property as illustrated in Figure 1. T h e isotropic property to create a 3 D magnetic circuit creates possibilities fo r various novel electric machine designs. Some prototypes based o n S M C ha ve be e n reported[2-7], with[1] illustrating typical machine designs of surface permanent magnet motor, a n d [ 8 ] small induction motors. In this paper, novel single phase a n d multiphase permanent drive system based o n S M C modules are proposed a n d compared. T h e machine stator is assembled b y independent pole pieces fabricated from the S M C material, with ea ch pole piece mounted b y a n independent concentric phase winding, which also simplifies th e winding efforts in machine fabrication. T he rot or structure c a n be designed with surface permanentmagnet (SPM) o r internal perman en t magn et (1PM) for diffe ren t application requirement. Fo r the single phase design, th e machine winding achieves the maximum winding factor a n d minimum switching devices at the cost of air-gap length adjustment a n d current compensation fo r th e starting an d pulsating torque. Fo r the multiphase design, a five phase drive system is proposed with less torque ripple a n d potential for the phase fault operation capability, but at the cost of significant increase number of switching devices in th e driv e circuit. Fig. 1: Magnetic property of S M C I I MACHINE STRUCTURE In order to compare the effective usage of machine material, the winding factor K & is typically defined as in [9]. A higher winding factor means higher utilization of the stator module, which includes stator winding a n d stator iron volu me fo r th e energy conversion, thus higher power density when th e other factors are same. T h e general expression of K,,h with consideration of harmonic order h is expressed as: Kwh ::: KphKdhKXhKsh (1) Krh. Kdh. KAh. and K ~h are fa ct ors fo r pitch, distribution, slot opening, a n d skew. Fo r the surf ac e PM machine discussed in this paper, the distribution, skew a n d slot opening factors are unity d u e to th e concen tric winding, non-skew rotor structure a n d relative small slot opening design. Thus, the winding factor will be virtually determined b y the pole pitch factor, which is generally defined as (2 ) [9]: hWzT hz T K ph sin( - ) sin( ) T p 2 2 (2 ) T h e quantity W enotes the concentric winding span, a n d - r. is the pole pitch. Fo r th e fundamental component, the 23 5 S M C maeiaHCuv --I-- -- -- a - - Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.
Transcript
Page 1: Modular Permanent Magnet Machine Based on Soft Magnetic Composite

8/14/2019 Modular Permanent Magnet Machine Based on Soft Magnetic Composite

http://slidepdf.com/reader/full/modular-permanent-magnet-machine-based-on-soft-magnetic-composite 1/5

ModularPermanentMagnet MachineBasedonSoft Magnetic Composite

WenOuyang*, Surong Huang**, Anne Good***, T.A. Lipo*

*Department of Electrical andComputer Engineering

University ofWisconsin-Madison

1415 Engineering Drive

Madison,WI53706

" Department ofAutomation

Shanghai University

Shanghai, 200072, P.R.China

* * B u r g e s s - N o r t o n Mfg.Co.

737 Peyton Street,

Geneva, IL , 60134

Abstract With the improvement of soft magnetic composite

(SMC) material, electric machine design i s nolonger limited to the

traditional iron lamination t e c h n o l o g y . The s i n g l e extrusion

fabrication p r o c e s s of theSMCmaterial s i m p l i f i e s construction of

machine armature core. Moreover, the isotropic material

property canbe exploited for various machine structure design,

compared with the2Dflux distribution of typical iron laminations.

In this paper, a drive system based ona novel multi phase

modular permanent magnet machine is proposed. The concentric

winding structure simplifies the stator structure with the benefit

of less end winding loss, which also offers the potential of fault

tolerant capability. The performance of the drive system is

analyzed and discussed with the simulation results provided.

Keywords Soft Magnetic Composite, Permanent Magnet

(PM), Concentric Windings, Single Phase, Multiple Phase, Fault

Tolerant

INTRODUCTION

The emergence of soft magnetic c o m po site material has

greatly changed the nature of the electrical machine

construction process. The possibility ofa "one-punch" module

reduces thework effort in lamination andstacking. Lesscopper

loss canbe achieved withthe concentric winding design dueto

the shorter end windings for the p ol e p ie ce modules.[1] The

progressive improvement of soft magnetic c o m po site (SMC)

material property as illustrated in Figure 1. The isotropic

property to create a3Dmagnetic circuit creates possibilities for

various novel electric machine designs. Someprototypes based

onSMChave been reported[2-7], with[1] illustrating typical

machine designs of surface permanent magnet motor, and [ 8 ]

small induction motors.

In this paper, novel single phase and multiphase permanent

magnet drive system based onSMCmodules are proposed and

compared. The machine stator is assembled by independent

pole pieces fabricated fromtheSMCmaterial, with each pole

piece mounted by anindependent concentric phase winding,

which also simplifies the winding efforts in machine

fabrication. The rotor structure canbe designed with surface

permanent magnet (SPM)orinternal permanent magnet (1PM)

for different application requirement.

For the single phase design, the machine winding achieves

the maximumwinding factor andminimum switching devices

at the cost of air-gap length adjustment and current

compensation for the starting and pulsating torque. For the

multiphase design, a five phase drive system is proposed with

less torque ripple and potential for the phase fault operation

capability, but at the cost of significant increase number of

switching devices in the drive circuit.

Fig. 1: Magnetic property ofSMC

I I MACHINESTRUCTURE

In order to compare the effective usage ofmachine material,

the winding factor K & is typically defined as in [ 9 ] . Ahigher

winding factor meanshigher utilization of the stator module,

which includes stator winding and stator iron volume for the

energy conversion, thus higher power density when the other

factors are same. The general expression of K,,h with

consideration ofharmonic order h is expressed as:

Kwh:::

KphK dhKXhKsh (1)

K r h . Kdh. K A h . and K ~h are factors for p i t c h , distribution, slot

opening, and skew. For the surfacePMmachine discussed in

this paper, the distribution, skew and s lot opening factors are

unity due to the concentric winding, non-skew rotor structure

andrelative small slot opening design. Thus, the winding factor

will be virtually determined by the pole pitch factor, which is

generally defined as (2) [ 9 ] :

hWzT hzTK ph s i n ( -) s i n ( )

T p2 2(2)

The quantityWenotes the concentric winding span, and - r .

is the pole pitch. For the fundamental component, the

235

S M C maeiaHCuv

--I-- -- -- a

- 4-

Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.

Page 2: Modular Permanent Magnet Machine Based on Soft Magnetic Composite

8/14/2019 Modular Permanent Magnet Machine Based on Soft Magnetic Composite

http://slidepdf.com/reader/full/modular-permanent-magnet-machine-based-on-soft-magnetic-composite 2/5

maximum w i n d i n g f a c t o r i s a c h i e v e d w h e n w i n d i n g s p a n i s

e q u a l t o t h e p o l e p i t c h , w h i c h l e a d s t o t h e s i n g l e p h a s e m a c h i n e

c o n c e p t a s i l l u s t r a t e d i n F i g u r e 2 . T h e s q u a r e w a v e o f b a c k

EMF a l s o s u g g e s t s t h e s q u a r e w a v e f o r m o f c u r r e n t s u p p l y t oa c h i e v e t h e maximum p o w e r d e n s i t y .

A

w a v e f o r m a n d t h e r e s u l t i n g m a c h i n e t o r q u e a r e p r o v i d e d i n

F i g u r e 5 f o r c o m p a r i s o n .

S I 4 4 E / 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ J l l ' '- . . X . . . V . % . A . . . . . f k p L j t

XVEIL';'.'L3X'.''.'''.t=''',~~~~~~~~2c2-----------4 E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . E . . . L . . . g E . . . . . E .R....o ........ 2 5 . . ... - .. .......6 0 1 0 0 1 5 0 20 0 2 5 0 3M 3 5 0

F h a e Ige4 o sltt vkn

F i g . 4 : S i m u l at io n o f s q u a r e wave c u r r e n t s u p p l y a n d m a c h i n e t o r q u e

F i g . 2 : S i n g l e p h a s e s u r f a c e PMm a c h i n e c o n c e p t

H o w e v e r , t h e i n t r i n s i c s t a r t i n g p ro b le m s o f t h e s i n g l e p h a s e

PM m o t o r m a k e i t n e c e s s a r y t o a p p l y s o m e v a r i a t i o n o n t h es t a t o r t e e t h s h a p e [ 1 0 ] . One o f t h e s u g g e s t e d t e c h n i q u e s i s t o

c r e a t e a t a p e r e d a i r - g a p l e n g t h b y s h a p i n g t h e t o o t h t i p d e p t h .By m a k i n g u s e o f t h e c o g g i n g t o r q u e g e n e r a t e d b y t h ea s y m m e t r i c r e l u c t a n c e c e n t e r s a r o u n d t h e t o o t h a x i s , t h e m o t o r

c a n pass t h e z e r o t o r q u e p r o d u c t i o n p o i n t a t t h e c o s t o f

f l e x i b i l i t y i n r o t a t i o n d i r e c t i o n . F i g u r e 3 g i v e s a n e x a m p l e

d e s i g n b as ed o n t h e s i n g l e p h a s e m a c h i n e c o n c e p t w i t h t a p e r e ds t a t o r t e e t h a n d t h e c o r r e s p o n d i n g c o g g i n g t o r q u e p r o p e r t y .T h e m a c h i n e s t a t o r i s a n a s s e m b l y o f e i g h t p o l e p i e c e sf a b r i c a t e d f r o m SMC m a t e r i a l o r e v e n s t e e l l a m i n a t i o n s . T h e

a i r - g a p l e n g t h b e t w e e n r o t o r r a r e e a r t h PMs a n d s t a t o r p o l e s i s

v a r i e d f r o m 0 . 7 mm t o 1 . 3 mm.

F i g . 3 : S i n g l e ph as e m a c h i n e e x a m p l e d e s i g n a n d t h e c o g g i n g t o r q u e p r o p e r t y

When t h e PM a x e s a r e a l i g n e d w i t h t h e s t a t o r p o l e p i e c e a x e s ,w h i c h c o r r e s p o n d s t o t h e r o t o r p o s i t i o n o f 2 2 . 5 d e g r e e s , t h em a c h i n e s t i l l d e v e l o p s s i g n i f i c a n t c o g g i n g t o r q u e t o r i d e o v e r

t h e p o i n t w i t h d i f f i c u l t y i n t h e a c t i v e t o r q u e p r o d u c t i o n , w h e r e

i s u s u a l l y t h e r o t o r p o s i t i o n p o i n t f o r c u r r e n t c o m m u t a t i o n .

W i t h a r a t e d s q u a r e w a v e f o r m c u r r e n t s u p p l y , t h e m a c h i n e t o t a lt o r q u e p r o p e r t y i s s i m u l a t e d a s s h o w n i n F i g u r e 4 . A l t h o u g h

t h e a v e r a g e t o r q u e i s s i g n i f i c a n t l y h i g h e r t h a n t h e r a t e d t o r q u e

o f a t y p i c a l 3 h p i n d u c t i o n m a c h i n e ( G E - 5 K I 8 2 B C 2 1 8 A ) a t

1 7 5 5 r p m f o r t h e s a m e e f f e c t i v e m a c h i n e v o l u m e , t h e m a c h i n e

t o r q u e f l u c t u a t i o n s a n d t h e c o r r e s p o n d i n g n o i s e a n d v i b r a t i o np r o b l e m s r e d u c e i t s s c o p e o f a p p l i c a t i o n . By p u s h i n g l i m i t o f

t h e w i n d i n g f a c t o r , t h e i n t r i n s i c p u l s a t i o n p r o b l e m t h a t c o m e s

w i t h t h i s m a c h i n e s t r u c t u r e c a n b e c o m p e n s a t e d b y t h e a c t i v ec o n t r o l o n t h e c u r r e n t s u p p l y [ 1 1 ] . T h e c o m p e n s a t i n g c u r r e n t

F i g . 5 : S i m u la t i o n o f c u r r e n t c o m p e n s a t i o n a n d m a c h i n e t o r q u e

A l t h o u g h t h e m a c h i n e t o r q u e c a n b e i m pr ov e d b y c u r r e n tc o m p e n s a t i o n , t h e t o r q u e c u r v e c o n t a i n s a s ag p o i n t w h e r e t h em a c h i n e s t a t o r c u r r e n t i s i n t h e c o m m u t a t i o n p r o c e s s . By

p r o p e r d e s i g n o f t h e m a c h i n e p o l e s h a p e , t h e t o r q u e v a l u e a t

t h i s s ag p o s i t i o n c a n s t i l l b e e n h a n c e d , b u t t h i s n e c e s s i t yd e p e n d s o n t h e a p p l i c a t i o n r e q u i r e m e n t . I n m o s t c a s e s , e f f o r t sa r e u s u a l l y f o c u s e d o n t h e r e d u c t i o n o f c o g g i n g t o r q u e . W h i l e

i n t h i s c a s e , t h e c o g g i n g t o r q u e h e l p s t h e o p e r a t i o n o f m a c h i n e .

T h e c u r r e n t c o m p e n s a t i o n a l s o i n c r e a s e s t h e s t r e s s o n t h es w i t c h i n g d e v i c e s d u e t o t h e maximum v a l u e a n d t h es i g n i f i c a n t h a r m o n i c c o m p o n e n t s , w h i c h a l s o d i r e c t l y i m p a c t st h e h e a l t h o f t h e c a p a c i t o r s o n t h e DC b u s . M o r e o v e r , d u e t o t h ep u l s a t i n g MMF w h e n t h e m a c h i n e i s o p e r a t e d i n s i n g l e p h a s e

m a n n e r , t h e s y n c h r o n i s m o f t h e r o t o r a n d t h e e x c i t a t i o n p h a s e

a n g l e i s a c o nc er n . T h e i n f o r m a t i o n o n r o t o r p o s i t i o n i s

n e c e s s a r y f o r t h e p r o p e r l y a p p l i e d c u r r e n t p h a s e , w i t h t h ec u r r e n t a m p l i t u d e c o n t r o l l e d b y t h e f e e d b ac k f ro m c u r r e n t

t r a c k i n g d e v i c e s a s a common p r a c t i c e .

A s i n g l e p h a s e m a c h i n e b e n e f i t s f r o m i t s s i m p l e m a c h i n e

s t r u c t u r e b as e d o n SMC m o d u l e s . T h e p o l e p i e c e n u m b e r c a n

b e s e l e c t e d w i t h f l e x i b i l i t y f o r d i f f e r e n t p o w e r r a t i n gr e q u i r e m e n t s . From a n i n v e s t i g a t i o n o f a n e x a m p l e d e s i g n , t h eSMC b a s e d m o d u l a r s i n g l e p h a s e m a c h i n e c a n b e s h o w n t o

a c h i e v e s i g n i f i c a n t h i g h e r p o w e r d e n s i t y c o m p a r e d w i t h t h ec o m m e r c i a l i n d u c t i o n m a c h i n e . W i t h t h e l a r g e s c a l e f a b r i c a t i o nb a s e , t h e m a c h i n e co s t c a n b e f u r t h e r r e d u c e d . T h e d r i v e c i r c u i tc a n a l s o b e o p t i m a l l y i m p l e m e n t e d b y o n l y t w o s w i t c h i n gd e v i c e s . A l l t h e s e m e r i t s m a k e i t a t t r a c t i v e f o r t h e l o w c o s t

a p p l i c a t i o n s . H o w e v e r , a s m e n t i o n e d b e f o r e , t h e i n c r e a s e dc o m p l e x i t y o f c u r r e n t c o n t r o l l e r a n d t h e i n t r i n s i c m a c h i n e

t o r q u e p u l s a t i o n a n d t h e c o r r e s p o n d i n g n o i s e a n d v i b r a t i o np r o b l e m s may a l s o l i m i t i t s a p p l i c a t i o n r a n g e . T h u s , t h e

2 3 6

Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.

Page 3: Modular Permanent Magnet Machine Based on Soft Magnetic Composite

8/14/2019 Modular Permanent Magnet Machine Based on Soft Magnetic Composite

http://slidepdf.com/reader/full/modular-permanent-magnet-machine-based-on-soft-magnetic-composite 3/5

m u l t i p h a s e m od u l ar m ac hi ne s t r u c t u r e i s p r o p o s e d a n d

c o m p a r e d w i t h t h e s i n g l e p h a s e m a c h i n e .

Due t o t h e f a c t o f m o d u l a r s t r u c t u r e o f s t a t o r , e a c h m o d u l e

c a n b e w o u n d e d b y a c o n c e n t r i c w i n d i n g s e p a r a t e l y , w h i c h n o t

o n ly s i m p l i f i e s t h e l a b o r e f f o r t o n w i n d i n g s , b u t a l s o o f f e r sf l e x i b i l i t y o f m u l t i p h a s e n u m b e r a n d c o n t r o l s t r a t e g i e s . I n

F i g u r e 6 , a s t a t o r m o d u l e i s i l l u s t r a t e d b a s e d o n t h i s d e s i g nc o n c e p t . T h e m o d u l e f u r t h e r b e n e f i t s f r o m t h e SMC's

f l e x i b i l i t y o f 3D f l u x p a t h f o r i t s e x t e n s i o n o f p o l e s h o e a n d

y o k e s e c t i o n s , a s d i s c u s s e d b y o t h e r r e s e a r c h e r s . W i t h t h e s a m e

t o t a l m a c h i n e v o l u m e , t h i s s t a t o r m o d u l e c a n m a k e f u l l u s a g e o f

t h e m a c h i n e a i r - g a p s p a c e , e n h a n c i n g m a c h i n e ' s t o r q u e

p r o d u c t i o n .

F i g . 6 : S t a t o r m o d u l e c o n c e p t

I n F i g u r e 7 , a f i v e p h a s e m a c h i n e c o n c e p t i s i l l u s t r a t e db as e d o n t h e m o d u l a r m a c h i n e s t r u c t u r e . T h e t h e o r e t i c a l f l u xl i n k a g e a n d b ac k EMF c u r v e s a r e a l s o d e p i c t e d f o r t w o o f t h ep h a s e s , w i t h 2 t 5 e l e c t r i c a l a n g l e s h i f t b e t w e e n p h a s e s . T h e

f u n d a m e n t a l w i n d i n g f a c t o r 0 . 9 5 1 c a n b e d i r e c t l y o b t a i n e d

f r o m ( 2 ) .

H C S ~ ~ ~ ~ ~ ~ ) 4A - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0. .....

F i g 7 : SxpLe iepaesraeP ahnocp

A l t h o u g h t h e w i n d i n g f a c t o r i s n o t a s h i g h a s t h e f u l l p i t c hs i n g l e p h a s e m a c h i n e s u g g e s t e d b e f o r e , t h e m a c h i n e c a n b e

o p e r a t e d m o r e e a s i l y w i t h a c c e p t a b l e p o w e r d e n s i t yp e r f o r m a n c e . ( 3 ) - ( 6 ) d e s c r i b e t h e m a c h i n e ' s g o v e r n i n g

e q u a t i o n s o f g e n e r a l o p e r a t i o n .

[ v ] = [ e ] + [ r ] [ i ] + d [ A ]dt

( 3 )

w h e r e v , e , i , i d e n o t e s t h e v e c t o r o f p h a s e t e r m i n a l v o l t a g e ,b a c k EMF ( e m f ) , c u r r e n t , a n d f l u x l i n k a g e .

[ i ] = I L I [ i d ( 4 )

L 1 l L 1 2 L 1 3 L 1 4 L 1 5

L 2 1 L 2 2 L 2 3 L 2 4 L 2 5[ L ] = L 3 1 L 3 2 L 3 3 L 3 4 L 3 5 ( 5 )

L 4 1 L 4 2 L 4 3 L 4 4 L 4 5

L 5 1 L 5 2 L 5 3 L 5 4 L 5 5 -

B a s e d o n t h e c l a s s i c e n e r g y c o n v e r s i o n , t h e m a c h i n e t o r q u e

a n d s p e e d p r o d u c t i o n e q u a l s t h e p o w e r i n p u t f r o m t h e i n v e r t e rs i d e a s ( 6 ) , i f t h e r e s i s t a n c e a n d o t h e r l o s s e s a r e n e g l e c t e d .

T e * m= [ e ] [ i ] ( 6 )

I n t h i s s t u d y , t w o t y p i c a l r o t o r s t r u c t u r e s , s u r f a c e p e r m a n e n t

m a g n e t ( S P M ) a n d i n t e r n a l p e r m a n e n t m a g n e t ( I P M ) , a r ed i s c u s s e d , a s t h e s e t w o t y p i c a l m a c h i n e t o p o l o g i e s i l l u s t r a t e d i nF i g u r e 8 . T h e SP M m a c h i n e s a r e w id el y u se d i n i n d u s t r ya p p l i c a t i o n s f o r i t s l o w c o s t a n d h i g h p e r f o r m an c e , b u t w i t h t h ed i f f i c u l t i e s i n t h e e x p e n d e d s p e e d o p e r a t i o n f o r i t s l i m i t e d f i e l d

w e a k e n i n g c a p a b i l i t y , d u e t o t h e f a c t t h e f l u x f r o m t h e PMs

c a n n o t b e t u r n e d o f f a n d t h e c u r r e n t c a p a b i l i t y l i m i t e d b y t h es u p p l y . H o w e v e r , t h e IPM m a c h i n e e x h i b i t s i m p r e s s i v e f i e l d

w e a k e n i n g c a p a b i l i t y f o r t h e r e l a t i v e l y h i g h e r m a c h i n e

i n d u c t a n c e d u e t o t h e l e s s e f f e c t i v e a i r - g a p l e n g t h .

( a ) ( b )F i g . 8 : S i x p o l e f i v e p h a s e m a c h i n e c o n c e p t . ( a ) S P M . ( b ) IP M

F o r t h e SP M r o t o r d e s i g n a s i l l u s t r a t e d i n F i g u r e 8 , t h ei n d u c t an c e m a t r i x L e x h i b i t s l o w c o u p l i n g b e t w e e n p h a s e s d u e

t o t h e l o w m u t u a l i n d u c t a n c e , w h i c h b e n e f i t s d e a l i n g w i t h

p h a s e f a u l t o p e r a t i o n . T h i s t y p i c a l d e s i g n l e a d s t o t h e L m a t r i x

( m H ) a s d e s c r i b e d i n ( 7 ) s i m u l a t e d b y s o f t w a r e p a c k a g e

M a x w e l l . O n t h e d i a g o n a l o f t h e m a t r i x L i n ( 7 ) , t h e s e l fi n d u c t a n c e e x h i b i t s q u i t e s i m i l a r v a l u e s d u e t o t h e l a r g e a i r g a p

t a k e n b y t h e P M s . W h i l e f o r t h e o f f - d i a g o n a l t e r m s , t h e m u t u a l

i n d u c t a n c e s a r e r e l a t i v e l y c o u p l e d s t r o n g e r w i t h t h e a d j a c e n tp ha s e w i n d i ng s f o r t h e s h o r t e r f l u x p a t h , a l t h o u g h t h i s k i n d o f

c o u p l i n g i s s t i l l w e a k w i t h t h e c o u p l i n g c o e f f i c i e n t o f 0 . 2 3 6 a n d

0 . 1 7 4 f o r t h e a d j a c e n t a n d n o n - a d j a c e n t p h a s e c o u p l i n g .

7 . 8 9 1 . 8 91 . 8 9 8 . 1 3

[ L S P M ] = 1 . 4 2 2 . 0 9

1 . 4 5 1 . 5 0

1 . 9 7 1 . 4 6

1 . 4 22 . 0 9

8 . 4 2

2 . 1 4

1 . 5 9

1 . 4 51 . 5 0

2 . 1 4

8 . 4 8

2 . 2 2

1 . 9 71 . 4 6

1 . 5 9

2 . 2 2

8 . 4 7

( 7 )

W i t h a n i n t e r n a l p e r m a n e n t m a g n e t d e s i g n f o r t h e r o t o r

s t r u c t u r e , t h e e f f e c t i v e a i r - g a p l e n g t h c o u l d b e r e d uc e d

s i g n i f i c a n t l y , r e s u l t i n g i n a r e l a t i v e l y h i g h e r m a c h i n e

i n d u c ta n c e m a t r i x a s s h o w n i n ( 8 ) . I t c a n b e o b se rv e d t h a t t h es e l f - i n d u c t a n c e s o f t h e IPM r o t o r d e s i g n ar e s i g n i f i c a n t l yi n c r e a s e d . M o r e o v e r , t h e s e l f i n d u c t a n c e v a r i e s n o t i c e a b l y d u e

t o t h e d - q a x i s e f f e c t , w h i c h c a n b e n e g l e c t e d i n t h e SP M r o t o rs t r u c t u r e . T h e d - a x i s i n d u c t a n c e L q = 2 6 . 2 2 m H , w i t h L d =

2 3 7

Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.

Page 4: Modular Permanent Magnet Machine Based on Soft Magnetic Composite

8/14/2019 Modular Permanent Magnet Machine Based on Soft Magnetic Composite

http://slidepdf.com/reader/full/modular-permanent-magnet-machine-based-on-soft-magnetic-composite 4/5

1 8 . 1 ImH f o r t h i s t y p i c a l d e s i g n . T h e a d j a c e n t p h as e c ou pl in g

i s q u i t e s i m i l a r w i t h SP M f o r t h e c o u p l i n g c o e f f i c i e n t 0 . 2 6 6 ,a l t h o u g h t h e i nd u c ta n ce v a l u e i s n e a r l y t r i p l e d . T h e c o u p l i n g

b e t w e e n t h e n o n- a d j a ce n t p h a se s i s f u r t h e r r e d u c e d t o a r o u n d

0 . 1 6 4 .

1 8 . 1 1

5 . 1 8

[ L I P M ] = 3 . 4 1

3 . 2 8

5 . 2 0

5 . 1 8

2 1 . 0 1

6 . 7 1

3 . 9 0

3 . 9 8

3 . 4 1

6 . 7 1

2 3 . 9 7

8 . 7 5

3 . 8 2

3 . 2 8

3 . 9 0

8 . 7 5

2 4 . 7 1

7 . 4 2

5 . 2 0

3 . 9 8

3 . 8 2

7 . 4 2

2 1 . 6 6

( 8 )

A s d i s c u s s e d b e f o r e , i t i s d i f f i c u l t t o o p e r a t e SP M m a c h i n e i n

t h e e x t e n d e d s p e e d r a n g e d u e t o t h e l i m i t e d f i l e d w e a k e n i n g

c a p a b i l i t y o f t h i s m a c h i n e d u e t o t h e l i m i t e d c o n t r o l l a b i l i t y o f

f l u x w h i c h d e p e n d s o n t h e i n d u c t a n c e a n d c u r r e n t p r o d u c t L i .

W i t h a n IPM d e s i g n , t h e hig he r i n d u c t a n c e m a k e s i t f e a s i b l e t o

o b t a i n a n e x t e n d e d s p e e d o p e r a t i o n i n f i e l d w e a k e n i n g r a n g e .

M o r e o v e r , t h e l o w e r a i r g a p f l u x d i s t r i b u t i o n f a v o r s IPMm a c h i n e f o r i n t h e h ig h s pe ed r a n g e a s s h o w n i n F i g u r e 9 . I nt h e s e t w o t y p i c a l SP M a n d IPM r o t o r d e s i g n s , r a r e e a r t h( N d F e B ) i s u s e d f o r t h e s i m u l a t i o n . T h e t h i c k n e s s o f PMs i n t h eSP M d e s i g n v a r i e s f r o m 3.5mm t o 6mm, w h i l e f o r I P M , 3mmPMs a r e i n s e r t e d i n t o t h e s l o t s . T h e a v e r a g e a i r g a p f l u x d e n s i t yp e r p o l e o f IPM d e s i g n i s n e a r l y h a l v e d c o m p a r e d w i t h t h eSP M d e s i g n . Due t o t h e e x i s t e n c e o f s a t u r a t e d b r i d g e s o n t h er o t o r s i d e s t r u c t u r e , s i g n i f i c a n t f l u x b y p a s s e d t h e m a i n f l u xp a t h a s p u r e l y l e a k a g e . To d e s i g n a n IPM r o t o r w i t h s p e c i f i e dd - q a x i s r e a c t a n c e u n d e r w i d e r a n g e o p e r a t i o n i s s t i l l ac h a l l e n g i n g t a s k f o r t h e v a r i a b l e l o a d c o n d i t i o n s a n d

c o r r e s p o n d i n g s a t u r a t i o n l e v e l . T h e s a t u r a t i o n b r i d g e s a r ed e s i g n e d w i t h c o n s i d e r a t i o n s f o r b o t h e l e c t r o m a g n e t i c a n d

m e c h a n i c a l s t r e s s e s , e s p e c i a l l y w h e n t h e m a c h i n e i s o p e r a t e d i nt h e h i g h s p e e d r a n g e .

1 - - - - - - r - - - - - - -- - t t - - - - - - T - - - -- ----- T - - - - - T - -- - - - - - - - T

O . S 0 l t - - - - - - - u - - - - + 5 - o ; \ - - - - - - - - - - - l -- - - - - - - - - -

n° ----- X---t--.-i-1

-L - --------- -X.

S M r d a f l u d e n s t5 -PM r a d r i a l f l u x e n s [ l y

0 5 1 ' 1 0 0 C C 1 5 0 2 2 0 0 1 2 5 0 C 3 0 0 1 3 5 0 2

a n g l e ( m q e c h )

F i g . 9 . A i r g a p r a d i a l f l u x d i s t r i b u t i o n f o r SPM a n d IPM

One o f t h e m a i n m e r i t s o f t h i s m o d ul ar m a ch i ne s t r u c t u r e i s

i t s f a u l t t o l e r a n t c a p a b i l i t y a n d e a s y r e p l a c e m e n t o f m o d ul es .

T h e c o n c e n t r i c w i n d i n g i s w o u n d o n e ac h s t a t o r SMC m o d u l e ,

r e s u l t i n g i n a n i n d e p e n d e n t c o n t r o l u n i t w i t h t h e f e a t u r e o f

r e p l a c e m e n t i n c as e o f u n i t f a i l u r e . E a c h u n i t i s a l s o c o n t r o l l e d

b y t h e i n d e p e n d e n t s w i t c h i n g d e v i c e s , w i t h t h e o p t i o n o f

m o u n t i n g c o n t r o l m o d u l e w i t h t h e m a c h i n e m o d u l e a t

a c c e p t a b l e c o s t . I n n o r m a l o p e r a t i o n , t h e m a c h i n e ' s s q u a r e

w a v e c u r r e n t i s i n p h as e w i th t h e b a c k EMF. I n ca s e o f p h as e

w i n d i n g f a i l u r e , a c o m p e n s a t i o n i mp le m e nt ed b y c o n t r o l

s t r a t e g y h e l p s t o m a i n t a i n t h e m a c h i n e t o r q u e .

M o s t o f t h e p h a s e f a u l t s a r e d i r e c t l y r e l a t e d w i t h t h ew i n d i n g f a i l u r e , i . e . , o p e n c i r c u i t a n d s h o r t c i r c u i t . O p e n c i r c u i t

i s q u i t e common f o r t h e t e r m i n a l c o n n e c t i o n f a i l u r e , a n d a l s o ,

t h e s w it c hi n g d e v i c e f a i l u r e . I n F i g u r e 1 0 , t h e f i v e - p h a s e SP Mm a c h i n e w i t h d i f f e r e n t o p e n c i r c u i t c a s e s a r e s i m u l a t e d .G e n e r a l l y , t h e a v e ra ge t or q ue i s d i r e c t l y p r o p o r t i o n a l t o t h ep h a s e n u m b e r i n s e r v i c e w i t h t h e s a m e c o n t r o l s t r a t e g ya s s u m e d f o r t h e n o r m a l o p e r a t i o n . I t i s a common p r a c t i c e t ob o o s t t h e t o r q u e l o s s b y a p p l y i n g c o m p e n s a t i n g c u r r e n t i n t h en o r m a l p h a s e s .

I

Ii

6~~~~~~~~

I ' I daetp e f

4 ---- -- - - - - -

- ---

-- -

l1'~~~~~~~~-----

-z -- I - -

~ ~ ~ ~ ~ ~ I - - - - I - - - -

1 2 - -- - - - - -- - - - r -- - - - - -- -- -- -- -- r - -- - - - - -- T - - -- - - - - - T - - -- - - - - - - - - - -- - - - - - -T

i\ _ f) < < ¢ /5,' % _ S' 1 ~ - --

l~~~~~~~~Tolacnphasel lo s

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T o n.-oae p h a e l o s s , ,0_ +______L_____X_L_______L_______L___

4 0 6 0 8 0ror p g s

1 4 0 lb 0 Th

P e g r

F i g . 1 0 : S q u a r e w a v e p h a s e c u r r e n t a n d m a c h i n e t o r q u e u n d e r v a r i o u s o p e n

c i r c u i t f a i l u r e s

H o w e v e r , w h e n t h e w i n d i n g f a i l u r e i s s h o r t c i r c u i t e d ,w h i c h i s u s u a l l y r e l a t e d w i t h t h e i n s u l a t i o n d e f e c t , i t i s s t i l l a

t o u g h t a s k t o m i t i g a t e t h e f a i l u r e f o r t h e h u g e c u r r e n t

c i r c u l a t i n g i n t h e s h o r t e d w i n d i n g . W i t h t h e IPM d e s i g n , i t i s

p o s s i b l e m a k e u s e o f t h e s p e c i f i c a l l y i n j e c t e d c u r r e n t o f t h e

n o r m a l p ha s e w i n d i ng s t o r e d u c e t h e f l u x l i n k a g e o f t h e s h o r t e d

2 3 8

11

Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.

Page 5: Modular Permanent Magnet Machine Based on Soft Magnetic Composite

8/14/2019 Modular Permanent Magnet Machine Based on Soft Magnetic Composite

http://slidepdf.com/reader/full/modular-permanent-magnet-machine-based-on-soft-magnetic-composite 5/5

w i n d i n g . T h u s , t h e f a i l u r e c o u l d b e t o l e r a t e d a n d t h e m a c h i n e

c a n s t i l l b e o p e r a t e d u n d e r l i m i t e d c o n d i t i o n s .

I I I . CONCLUSION

I n t h i s p a p e r , a n o v e l m o d u l a r PMm a c h i n e w i t h f a u l t t o l e r a n tc a p a b i l i t y i s d i s c u s s e d . T h e s i n g l e p h a s e d es ig n c an m a k e f u l l

u s a g e o f t h e m a c h i n e m a t e r i a l f o r i t s h i g h e s t w i n d i n g f a c t o r , b u t

i t i s v u l n e r a b l e t o s t a r t i n g p r o b l e m s w h i c h c a n n o t b e a v oi d e d

b y n o r m a l m a c h i n e d e s i g n . T h e m a c h i n e c a n b e o p e r a t e d w i t h at r a d e - o f f b e t w e e n s p e c i a l l y d e s i g n e d a i r - g a p l e n g t h a n d

c o m p l e x i t y o f t h e c o n t r o l c i r c u i t . T h u s , t h e m u l t i - p h a s em o d u l a r c o n c e p t i s p r o p o s e d f o r t h e a p p l i c a t i o n s r e q u i r e f a u l t

t o l e r a n t c a p a b i l i t y w i t h c o m p a r a b l e p o w e r d e n s i t y . A f i v ep h a s e m o d ul ar m a ch in e w i t h SP M a n d IPM r o t o r s t r u c t u r e i s

s t u d i e d . From t h e p r e l i m i n a r y s i m u l a t i o n r e s u l t s , 5 p h a s e

m o d u l ar m a c h in e e x h i b i t s s a t i s f a c t o r y t o r q u e c a p a b i l i t y b o t h i n

n o r m a l o p e r a t i o n c o m p a r e d w i t h a t y p i c a l 3 H I P i n d u c t i o nm a ch in e a nd u n d e r a f a u l t c o n d i t i o n w i t h o n e o r t w o p h a s e l e gl o s s . T h e p r o t o t y p e m a c h i n e i s u n d e r c o n s t r u c t i o n . T h e t e s t i n gr e s u l t s w i l l b e r e p o r t e d i n a f u t u r e p a p e r .

P o w e r E l e c t r o n i c s , M a c h i n e s a n d D r i v e s , 2 0 0 2 . I n t e r n a t i o n a l C o n f e r e n c e ,

J u n e 2 0 0 2 , p p . 6 4 4

[ 7 ] J . C r o s a n d P . V i a r o u g e , "New s t r u c t u r e s o f po l y ph as e c l a w - p o l e

m a c h i n e s " , I n d u s t r y A p p l i c a t i o n s C o n f er e n ce , 3 7 t h I A S A n n u a l M e e t i n g ,

O c t . 2 0 0 2 , p p . 2 2 6 7 , v o l . 4[ 8 ] R . Q u , G . B . K l i m a n , a n d R . C a r l , " S p l i t - p h a s e c l a w - p o l e i n d u c t i o n

m a c h i n e s w i t h s o f t m a g n et i c c o m po s i te c o r e s " , I n d u s t r y A p pl ic at io n sC o n f e r e n c e , 3 9 t h I A S A n nu al M e e t i n g , O c t . 2 0 0 4 , p p . 2 5 1 4 , v o l . 4

[ 9 ] T . A . L i p o , " I n t r o d u c t i o n t o AC M a c h i n e D e s i g n " , ( b o o k ) , U n i v e r s i t y o f

W i s c o n s i n , 2 0 0 4 .

[ 1 0 ] S . B e n t o u a t i , Z . Q . Z h u, a nd D . H o w e , " I n f l u e n c e o f d e s i g n p a r a m e t e r s o n

t h e s t a r t i n g t o r q u e o f a s i n g l e - p h a s e PM b r u s h l e s s DC m o t o r , " M ag n e t ic s ,

IEEE T r a n s a c t i o n s o n , v o l . 3 6 , p p . 3 5 3 3, 2 0 0 0 .

[ 1 1 ] T . M . J a h n s , Wen L . S o o n g , " P u l s a t i n g T o r q u e M i n i m i z a t i o n T e c h n i q u e s

f o r P e r m a n e n t M a g n e t AC M o t o r D r i v e s - A R e v e w " , I n d u s t r i a lE l e c t r o n i c s , IEEE T r a n s a c t i o n s o n , v o l . 4 3 , p p . 3 2 1 , A p r i l , 1 9 9 6 .

[ 1 2 ] B . A . W e l c h k o , J . W a i , T . M . J a h n s , T . A . ; L i p o , , " M a g n e t f l u x c o n t r o l o f

i n t e r i o r PM m a c h i n e d r i v e s f o r i m p r o v e d r e s po n s e t o s h o r t - c i r c u i t f a u l t s " ,I A S 2 0 0 4 , IEEE c o n f e r e n c e , V o l u m e 1 , p p . 3 . 2 0 0 4 .

APPENDIX5 p h a s e SP M m a c h i n e p a r a m e t e r s

P a r a m e t e r s IM ( G E / 3 H P ) 5 P h a s e SP M M o t o r

OD 190mm 120mm

I D 120mm 72mm

RPM 1 7 5 0 1 8 0 0

M a c h i n e L en g t h 7 0 mm ( i r o n ) / 15 0 mm ( f u l l ) 140mm

T o r q u e ( T ) 1 1 . 8 7 N m 1 3 . 2 6 N m

E f f e c t i v e V o l u m e 4 . 2 5 2 9 x I 0 3 m 3 1 . 5 8 3 4 x 0 - 3 m 3

T o r q u e D e n s i t y 2 . 7 9 1 x I 0 3 N m / m 3 8 . 3 7 4 x I 0 3 N m / m 3

C o g g i n g T o r q u e 0 3 . 0 1 % o f r a t e d

T o r q u e D e n s i t y R a t i o 5 ph as e PM / IM = 3 . 0

REFERENCE

[ 1 ] L . 0 . H u l t m a n a n d A . G . J a c k , " S o f t m a g n e t i c c o m p o s i t e s - m a t e r i a l s a n d

a p p l i c a t i o n s , " 2 0 0 3 . I E M D C ' 0 3 , v o l . 1 , p p : 5 1 6 , J u n e 2 0 0 3.

[ 2 ] A . J a c k , " E x p e r i e n c e w i t h u s i n g s o f t m a g n e t i c c o m p o s i t e s f o r e l e c t r i c a lm a c h i n e s " , New M a g n e t i c M a t e r i a l s - B o n d e d I r o n , L a m i n a t i o n S t e e l s ,S i n t e r e d I r o n a n d P e r m a n e n t M a g n e t s , I E E C o l l o q u i u m o n 2 8 , May1 9 9 8 p p : 3 / 1 - 3 / 4 .

[ 3 ] A . G . J a c k , B . C . M e c r o w , C . P . M a d d i s o n , a n d N . A . W a h a b , " C l a w p o l ea r m a t u r e p e r m a n e n t m a g n e t m a c h i n e s e x p l o i t i n g s o f t i r o n p o w d e rm e t a l l u r g y , " E l e c t r i c M a c h i n e s a n d D r i v e s C o n f e r e n c e R e c o r d , 1 9 9 7 ,IEEE I n t e r n a t i o n a l , p p . 1 8 - 2 1 , May 1 9 9 7 .

[ 4 ] A . G . J a c k , B . C . M e c r o w , P . G . D i c k i n s o n , D . S t e p h e n s o n , J . S . B u r d e s s ,N . F a w c e t t , a n d J . T . E v a n s , " P e r m a n e n t - m a g n e t m a c h i n e s w i t h

p o w d e r e d ir o n c o r e s a n d p r e p r e s s e d w i n d i n g s , " I n d u s t r yA p p l i c a t i o n s , IEEE T r a n s a c t i o n s o n , v o l . 3 6 , p p . 1 0 7 7 , 2 0 0 0 .

[ 5 ] Y . G . G u o , J . G . Z h u , P . A . Wat t e r s o n , a n d W. Wu, " C o m p a r a t i v e s t u d y o f

3D f l u x e l e c t r i c a l m a c h i n e s w i t h s o f t m a g n e t i c c o m p o s i t e c o r e s " , I n d u s t r yA p p l i c a t i o n s C o n f e r e n c e , 2 0 0 2 . 3 7 t h I A S A n n u a l M e e t i n g , p p . 1 1 4 7 v o l . 2

[ 6 ] B . C . M e c r o w , A . G . J a c k , D . J . A t k i n s o n , P . G . D i c k i n s o n , a n d S .

S w a d d l e , " H i g h t o r q u e m a c h i n e s f o r p o w e r h a n d t o o l a p p l i c a t i o n s " ,

2 3 9

Authorized licensed use limited to: Chaitanya Bharathi Institute of Technology. Downloaded on July 9, 2009 at 02:54 from IEEE Xplore. Restrictions apply.


Recommended