+ All Categories
Home > Documents > Modular ultrasound arrays with co-integrated electronics

Modular ultrasound arrays with co-integrated electronics

Date post: 26-Mar-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
17
Modular ultrasound arrays with co-integrated electronics Robert Wodnicki, USC University of Southern California Department of Biomedical Engineering Ultrasound Transducer Resource Center (UTRC)
Transcript

Modular ultrasound arrays with

co-integrated electronics

Robert Wodnicki, USC

University of Southern California

Department of Biomedical Engineering

Ultrasound Transducer Resource Center (UTRC)

14th Int. Symp. on Nondestructive Characterization of Materials (NDCM 2015) - www.ndt.net/app.NDCM2015

Background/Mo-va-on 

Motivation: 2D Arrays

3

2D arrays can be used to produce volumetric, 3D images 

 Fetal imaging, echocardiography 

Large number of small individual elements (1,000‐10,000) used 

 Rou-ng boGleneck due to fine pitch (λ pitch at 5MHz is 300 μm) 

 Cable size prohibi-ve (~512 coax max) 

 System channel limita-on (256 system ch. vs. 2500 2D array ch.) 

 Small 2D elements have significant aGenua-on due to cable loading 

http://www3.gehealthcare.com/

Solutions for 2D Arrays

4

Sparse arrays to reduce channel count (Holm, 1995) 

Local electronics integrated at the probe 

 Sub Array Processors (SAPs) for local beamforming  (Savord, 2003) 

 Switching matrix (Reconfigurable Arrays) to group elements (Erikson, 1996) 

 Improved sensi-vity for small elements 

 Reduced channel count (256 channels instead of 2500, or 10000 channels) 

Savord et al, IUS, 2003 Thomenius et al, UFFC 2014

Modular 2D Arrays 

Modular 2D Arrays

6

Large Area array: 100 x 100 elements, from 3cm x 3cm up to 20 cm x 20 cm 

Transducer arrays integrated directly with Applica-on Specific ICs (ASICs) 

Area coverage achieved by -ling mul-ple acous-c/ASIC modules with organic interposer 

“cMUTs” used as transducer technology  

Poten-al advantages 

 Improved sensi-vity for small elements (reduced loading, reduced crosstalk) 

 Reduced interconnect complexity  (10,000 chs       256 chs) 

Challenges 

 Very dense electronics needed (unit cell must match transducer array pitch) 

 High voltage CMOS required (100Vpp transmit voltage) 

Trenched cMUT Transducers

7

Trenched capaci-ve Micromachined Ultrasound Transducer (MEMs fabrica-on)  

Can be assembled using standard electronic packaging processes (flip‐chip) 

Electrical impedance higher than PZT (sensi-vity issue) 

Elements can have wide bandwidth (>90%) 

“Trench/Frame” cMUTs used due to “Bulk” processing (equivalent to TSV) 

“Trench” Signal Electrode 

Suppor-ng 

Frame 

Suppor-ng 

Frame 

Substrate 

Cavity 

Metal 

Via 

Metal Assembly Pad 

Membrane 150 nm 

Zhuang, UFFC 2009

22 μm 

250 μm 90 μm 

2D Array Integration Methods

8

Direct integra-on is ideal but very challenging (Daf et al, 2004 ) 

 Yield issues, Fab compliance, cap-ve fab needed 

Flip‐chip integra-on is a good highly integrated alterna-ve (Wygant et al, 2008 )  

 Large array requires way to escape ASIC I/Os (e.g. TSVs) 

Interposer (flex, ceramic, organic build‐up) also used (Wodnicki et al, 2014 ) 

 Constraints: ASIC size, CTE mismatch, rou-ng  

Flip‐Chip  Direct Integra2on http://www-kyg.stanford.edu/ Lemmerhirt et al, UFFC 2012

Large Area 2D Array Prototype Implementa-on 

Tiled Large Area Array Prototype

10

Interposers used to create assembly mockup for -leable module 

Interposer allows seamless -ling by covering gaps due to ASIC I/O pads 

Prototype module dimensions: 2.4 cm x 4 cm, with 8x14 -led array of cMUT chips 

Total transducer channel count: 28,672 

Double‐sided flip assembly was used 

Smaller and modular chips have higher yield and can select Known Good Die 

Wodnicki et al, NIMA-A 2011

Acoustic Gap

Interposer Assembly Process

11

Modular assembly was used with standard electronic packaging processes 

Micro‐BGAs (70 μm, Eutec-c SnPb) aGached to cMUTs by solder‐jet process (PacTech) 

Pitch for assembly: 185 μm for cMUT devices, 150 μm for dummy ASICs 

Under Bump Metalliza-on (UBM) op-mized to achieve uniformity of solder volume  

Final thicknesses were: Ti/Ni/Au (0.015 μm/0.3 μm/0.1 μm) 

Substrate was dual‐sided organic laminate build‐up (EndicoG Interconnect) 

Substrate rou-ng: 9 layers, ~25um lines/spaces 

Co‐planarity: +/‐10 μm (λ/10) local, 150 μm global (due to CTE mismatch) 

Interposer Substrate  

185 um 185 um 

Woychik et al, SMTA 2009 Woychik et al, SMTA 2009

BGA 

Ball 

Unit Electronics Cell Circuitry

12

HV Switch Matrix  LV Switch + Pulser 

Unit cell needs to match the size of the individual 2D transducer element 

Low voltage switches 10‐20x smaller than HV switches (local pulser used) 

0.8 μm 2 metal, 50V CMOS/DMOS process 

Lower Ron beGer to mi-gate signal aGenua-on 

Thomenius et al, UFFC 2014

Thomenius et al, UFFC 2014

Results 

Effects of Tiling and Yield

14

Simula-ons were performed using Field II (Jensen, Med. Bio, 1996) 

Annular array with 18mm aperture, 20 equal width rings 

Element pitch was 185 μm for fc = 8MHz and the focus was set at 50mm 

Observed beamwidth: 0.69mm (both in eleva-on and azimuth) 

Average side lobe energy: ‐40dB (for one‐way simula-on with 300 μm gaps)  

Side lobes came up slightly (‐35dB) with 93% element coverage (due to yield) 

Thomenius et al, UFFC 2014

Side lobes 

Missing  

Elements Gaps 

Rings 

Acoustic Interposer Array Prototype

1.25D linear array, 3 x 192 ch. (32 x 192 cMUTs)  

Dimensions: 6mm x 36mm 

cMUT chip array (2 x 12) -led on front surface 

Dummy ASIC chips on backside (acous-c load) 

Sensi-vity decreased by shorted cMUT elements    

       Low Vbias and less ac-ve elements 

Spa-al resolu-on comparable to produc-on GE PZT probe 

Contrast resolu-on limited by poor sensi-vity 

Fc = 7.59MHz 

FBW = 61% 

~50V Bias 

Fluorinert FC‐84 

 

15

16x16 element  

cMUT chip 

Wodnicki et al, NIMA-A 2011

cMUT Probe GE PZT Probe

Lin et al, UFFC 2013

Lin et al, UFFC 2013

Conclusions

Volumetric imaging requires large channel count 2D arrays          

        Results in rou-ng boGleneck and loss of sensi-vity  

Closely integrated cMUTs and ASICs were used to reduce channel count 

Interposer‐based modular, -led architecture was used to improve yield 

Acous-c simula-ons predicted acceptable image performance with gaps 

between transducer chips and missing elements 

However, shor-ng of cMUT devices caused significant element loss resul-ng 

in reduced acous-c sensi-vity and poor contrast resolu-on 

Future work should address cMUT shor-ng directly in order to improve yield 

16

Acknowledgements

17

This work was performed at GE Global Research in Schenectady, NY.

Key personnel at GE: K. Thomenius, R. Fisher, C. Woychik, S. Cogan

Collaboration: Stanford (Prof. Pierre Khuri-Yakub, E. Lin, X. Zhuang),

Pac-Tech USA, Endicott Interconnect, Fraunhofer IZM

The project described was supported by Grant number 1R01CA1152677

from the National Cancer Institute. Its contents are solely the responsibility

of the authors and do not necessarily represent the official views of the

National Cancer Institute or NIH.

Some of the technology described was derived from work originally

supported by Grant number R01 EB002485 from NIBIB. Contents of this

publication are solely the responsibility of the authors and do not necessarily

represent the official views of NIH.


Recommended