+ All Categories
Home > Documents > Molecular analysis of the distribution and phylogeny of the soxB...

Molecular analysis of the distribution and phylogeny of the soxB...

Date post: 19-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
21
Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system Birte Meyer, 1 Johannes F. Imhoff 2 and Jan Kuever 1 * 1 Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. 2 Marine Microbiology, IFM-GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany. Summary The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be wide- spread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosul- fate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the compre- hensive genetic and genomic analyses presented in the present study identified the soxB gene in 121 phylogenetically and physiologically divergent SOB, including several species for which thiosulfate utili- zation has not been reported yet. In first support of the previously postulated general involvement of components of the Sox enzyme complex in the thio- sulfate oxidation process of sulfur-storing SOB, the soxB gene was detected in all investigated photo- and chemotrophic species that form sulfur glo- bules during thiosulfate oxidation (Chromatiaceae, Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix, Beggiatoa, Thiobacillus, invertebrate symbionts and free-living relatives). The SoxB phylogeny reflected the major 16S rRNA gene-based phylogenetic lin- eages of the investigated SOB, although topological discrepancies indicated several events of lateral soxB gene transfer among the SOB, e.g. its inde- pendent acquisition by the anaerobic anoxygenic phototrophic lineages from different chemotrophic donor lineages. A putative scenario for the proteo- bacterial origin and evolution of the Sox enzyme system in SOB is presented considering the phylo- genetic, genomic (sox gene cluster composition) and geochemical data. Introduction The sulfur compound thiosulfate has been suggested to fulfil a key role in the biological sulfur cycle in nature (Joergensen and Nelson, 2004; Zopfi et al., 2004). A variety of photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP) are able to use thiosulfate besides sulfide and sulfur as electron donor for their photosynthetic and respiratory energy-generating systems (Brune, 1995; Nelson and Fisher, 1995; Kelly et al., 1997; Imhoff, 1999; 2001a,b; 2003; Brüser et al., 2000; Robertson and Kuenen, 2002; Kletzin et al., 2004; Takai et al., 2005). In consequence of the phylogenetic and physiological diver- sity of SOP, several different enzymatic systems and path- ways appear to be involved in the dissimilatory oxidation of thiosulfate. While the thiosulfate-converting enzymes of the archaeal sulfur oxidizers, e.g. Acidianus ambivalens (Kletzin et al., 2004), represent a convergently evolved system, at least three thiosulfate oxidation pathways are postulated to exist in the sulfur-oxidizing bacteria (SOB) (Kelly et al., 1997; Brüser et al., 2000; Friedrich et al., 2001; 2005). (i) The thiosulfate degradation process via polythionate intermediates involves the enzymes thiosul- fate dehydrogenase and tetrathionate hydrolase and appears to be common in chemotrophic SOB living in extreme habitats, such as Acidithiobacillus, Thermothioba- cillus and Halothiobacillus (Pronk et al., 1990; Meulenberg et al., 1993; Kelly et al., 1997); in addition, some Pseudomonas and Halomonas species use the formation of tetrathionate from thiosulfate as supplemental energy source (Sorokin, 2003). However, no conclusive model for the formerly termed ‘tetrathionate pathway’ exists and the central role of tetrathionate has recently been disputed (Brüser et al., 2000; and references therein). In addition, a different model not involving tetrathionate has been devel- oped for the oxidation of elemental sulfur in acidophilic SOB (Rohwerder and Sand, 2003). (ii) The multienzyme complex system (Sox)-mediated pathway has been demonstrated to operate in photo- and chemotrophic Alphaproteobacteria that convert thiosulfate to sulfate without sulfur globule formation as free intermediate Received 13 February, 2007; accepted 27 June, 2007. *For correspondence. E-mail [email protected]; Tel. (+49) 0421 5370870; Fax (+49) 0421 5370810. Present address: Bremen Insti- tute for Materials Testing, Paul-Feller-Strasse 1, D-28199 Bremen, Germany. Environmental Microbiology (2007) 9(12), 2957–2977 doi:10.1111/j.1462-2920.2007.01407.x © 2007 The Authors Journal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd
Transcript
Page 1: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Molecular analysis of the distribution and phylogeny ofthe soxB gene among sulfur-oxidizing bacteria –evolution of the Sox sulfur oxidation enzyme system

Birte Meyer,1 Johannes F. Imhoff2 and Jan Kuever1*†

1Max-Planck-Institute for Marine Microbiology,Celsiusstrasse 1, D-28359 Bremen, Germany.2Marine Microbiology, IFM-GEOMAR, DüsternbrookerWeg 20, D-24105 Kiel, Germany.

Summary

The soxB gene encodes the SoxB component ofthe periplasmic thiosulfate-oxidizing Sox enzymecomplex, which has been proposed to be wide-spread among the various phylogenetic groups ofsulfur-oxidizing bacteria (SOB) that convert thiosul-fate to sulfate with and without the formation ofsulfur globules as intermediate. Indeed, the compre-hensive genetic and genomic analyses presented inthe present study identified the soxB gene in 121phylogenetically and physiologically divergent SOB,including several species for which thiosulfate utili-zation has not been reported yet. In first support ofthe previously postulated general involvement ofcomponents of the Sox enzyme complex in the thio-sulfate oxidation process of sulfur-storing SOB, thesoxB gene was detected in all investigated photo-and chemotrophic species that form sulfur glo-bules during thiosulfate oxidation (Chromatiaceae,Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix,Beggiatoa, Thiobacillus, invertebrate symbionts andfree-living relatives). The SoxB phylogeny reflectedthe major 16S rRNA gene-based phylogenetic lin-eages of the investigated SOB, although topologicaldiscrepancies indicated several events of lateralsoxB gene transfer among the SOB, e.g. its inde-pendent acquisition by the anaerobic anoxygenicphototrophic lineages from different chemotrophicdonor lineages. A putative scenario for the proteo-bacterial origin and evolution of the Sox enzymesystem in SOB is presented considering the phylo-

genetic, genomic (sox gene cluster composition)and geochemical data.

Introduction

The sulfur compound thiosulfate has been suggested tofulfil a key role in the biological sulfur cycle in nature(Joergensen and Nelson, 2004; Zopfi et al., 2004). Avariety of photo- and chemotrophic sulfur-oxidizingprokaryotes (SOP) are able to use thiosulfate besidessulfide and sulfur as electron donor for their photosyntheticand respiratory energy-generating systems (Brune, 1995;Nelson and Fisher, 1995; Kelly et al., 1997; Imhoff, 1999;2001a,b; 2003; Brüser et al., 2000; Robertson andKuenen, 2002; Kletzin et al., 2004; Takai et al., 2005). Inconsequence of the phylogenetic and physiological diver-sity of SOP, several different enzymatic systems and path-ways appear to be involved in the dissimilatory oxidation ofthiosulfate. While the thiosulfate-converting enzymes ofthe archaeal sulfur oxidizers, e.g. Acidianus ambivalens(Kletzin et al., 2004), represent a convergently evolvedsystem, at least three thiosulfate oxidation pathways arepostulated to exist in the sulfur-oxidizing bacteria (SOB)(Kelly et al., 1997; Brüser et al., 2000; Friedrich et al.,2001; 2005). (i) The thiosulfate degradation process viapolythionate intermediates involves the enzymes thiosul-fate dehydrogenase and tetrathionate hydrolase andappears to be common in chemotrophic SOB living inextreme habitats, such as Acidithiobacillus, Thermothioba-cillus and Halothiobacillus (Pronk et al., 1990; Meulenberget al., 1993; Kelly et al., 1997); in addition, somePseudomonas and Halomonas species use the formationof tetrathionate from thiosulfate as supplemental energysource (Sorokin, 2003). However, no conclusive model forthe formerly termed ‘tetrathionate pathway’ exists and thecentral role of tetrathionate has recently been disputed(Brüser et al., 2000; and references therein). In addition, adifferent model not involving tetrathionate has been devel-oped for the oxidation of elemental sulfur in acidophilicSOB (Rohwerder and Sand, 2003). (ii) The multienzymecomplex system (Sox)-mediated pathway has beendemonstrated to operate in photo- and chemotrophicAlphaproteobacteria that convert thiosulfate to sulfatewithout sulfur globule formation as free intermediate

Received 13 February, 2007; accepted 27 June, 2007. *Forcorrespondence. E-mail [email protected]; Tel. (+49) 04215370870; Fax (+49) 0421 5370810. †Present address: Bremen Insti-tute for Materials Testing, Paul-Feller-Strasse 1, D-28199 Bremen,Germany.

Environmental Microbiology (2007) 9(12), 2957–2977 doi:10.1111/j.1462-2920.2007.01407.x

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd

Page 2: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

(Mukhopadhyaya et al., 2000; Appia-Ayme et al., 2001;Friedrich et al., 2001; Kappler et al., 2001). The currentmodel of the Sox enzyme system comprises the fourperiplasmic complexes SoxXA, SoxYZ, SoxB andSox(CD)2 that catalyse the thiosulfate oxidation accordingto the following mechanism. First, the SoxXA complexoxidatively couples the sulfane sulfur of thiosulfate to aSoxY-cysteine-sulfhydryl group of the SoxYZ complexfrom which the terminal sulfone group is subsequentlyreleased by the activity of the SoxB component. Subse-quently, the sulfane sulfur of the residual SoxY-cysteinepersulfide is further oxidized to cysteine-S-sulfate by theSox(CD)2 sulfur dehydrogenase complex from which thesulfonate moiety is again hydrolysed off by SoxB, therebyrestoring SoxYZ; each of the previous proteins alone iscatalytically inactive (Friedrich et al., 2001; 2005). Theprimary structure of the SoxB is about 30% identical tozinc-containing 5′-nucleotidases; however, besides itsessential enzymatic activity as sulfate thioesterase com-ponent in the Sox enzyme system, no other in vivo functionhas been reported for this monomeric, dimanganese-containing protein (Epel et al., 2005). (iii) The branchedthiosulfate oxidation pathway was postulated to operate inthose bacteria that form sulfur globules during thiosulfateoxidation. This pathway proceeds via the interaction of twospatially separated enzyme systems; the sulfone sulfur israpidly converted to sulfate in the periplasm, whereas thesulfane sulfur accumulates as intracellularly or periplasmi-cally deposited sulfur [S0] before further oxidation by cyto-plasmic enzymes. Previously, the thiosulfate oxidation wassuggested to be initiated by the activity of periplasmicthiosulfate reductases or rhodaneses via a reductive cleav-age of the molecule (Brune, 1995; Brüser et al., 2000).Increasing experimental data indicate that components ofthe Sox enzyme system are instead involved in the initialstep of the branched thiosulfate oxidation pathway ofsome sulfur-storing bacteria (Hanson and Tabita, 2003;Friedrich et al., 2005; Hensen et al., 2006). In conse-quence, the oxidation of reduced inorganic sulfur com-pounds via components of the Sox enzyme system waspostulated to be a widespread mechanism among the SOB(Friedrich et al., 2001; 2005; Hensen et al., 2006).However, a comprehensive investigation of the phylogen-tically diverse SOB had not been performed to confirm thisproposal. In first support, Petri and coworkers (2001)proved the presence of SoxB encoding genes in eightthiosulfate-utilizing reference strains from the Alpha-,Beta- and Gammaproteobacteria as well as Chlorobialineage. Their presented SoxB phylogenetic tree wasbased on a limited dataset not including representativesof several major SOB lineages, e.g. Chromatiaceae,Ectothiorhodospiraceae, Thiotrichaceae, invertebratesymbionts and their free-living relatives, as well as Sulfu-rimonas denitrificans (Takai et al., 2006).

To evaluate the former postulation by Friedrich andcoworkers, the previously published polymerase chainreaction (PCR) assays (Petri et al., 2001) were used toinvestigate the soxB distribution among 116 differentphoto- and chemotrophically SOB strains consideringespecially the thiosulfate-oxidizing, sulfur-storing species.The comparison of the SoxB- and 16S rRNA gene-basedtree topologies indicated the occurrence of several puta-tive lateral gene transfer (LGT) events of the soxB geneamong the SOB. A potential scenario for the origin andevolution of the microbial thiosulfate oxidation processesis presented in context with the gene composition of thesox gene loci in SOB genomes and the geochemical data.

Results

Amplification of soxB genes by PCR from SOB

The PCR-based analysis confirmed the presence of thesoxB gene for 50 different photo- and chemotrophic sulfur-oxidizing species from 116 investigated reference strains(see Table 1 for details of PCR results; potential contami-nation of the examined reference strains could beexcluded by 16S rRNA gene-based analyses). In general,the amplification with soxB693F/soxB1446R andsoxB693F/soxB1164B (Table 2) resulted in single, correct-sized PCR products (~750 bp and ~470 bp, respectively),whereas the primer pair soxB432F/soxB1446R (Table 2)frequently generated two amplicons of nearly identicallength (~1000 bp) with the consequence of ambiguousdirect sequencing results. Analysis of genome datarevealed that the highly degenerated primers are comple-mentary to the target sites of Chlorobiaceae, Betaproteo-bacteria and most Gamma- and Alphaproteobacteria soxBsequences. Therefore, the negative amplification resultsobtained from several proven SOB species of, e.g. Chro-matiaceae and Chlorobiaceae with the three differentprimer sets were most probably not caused by inhibitedprimer annealing but are indicative for the absence of thisgene in the respective strain (see Table 1). The results ofthe PCR-based analysis are supported by: (i) the Southernblot assays resulting in no hybridization signal for theexamined Chlorobiaceae species of the subclusters 2aand 3b (except Chlorobium limicola DSM 1855) irrespec-tive of soxB probes used (see Table 3; probe specificitiesand stringency of hybridization conditions verified by thenegative hybridization results obtained with genomic DNAfrom non-thiosulfate-oxidizing Desulfomicrobium bacula-tum); and (ii) genome data (Table 4). In contrast, the targetsites of Hyphomicrobiaceae and Rhodopseudomonasspp. (Alphaproteobacteria), Thiomicrospira crunogenaand ‘Candidatus Ruthia magnifica’ (Gammaproteobacte-ria), as well as S. denitrificans (Epsilonproteobacteria),harboured two or more mismatches at the 3′-end

2958 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 3: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Table 1. Polymerase chain reaction (PCR) amplification results of soxB gene fragments from genomic DNA of sulfur-oxidizing reference strains.

Speciesa Strainb

PCR product obtained with primer setc Length ofobtainedsoxBsequence

GenBankaccession no.soxBsoxB432F

soxB1446BsoxB693FsoxB1446B

soxB693FsoxB1164B

ArchaeaCrenarchaeota phylum, Thermoprotei

SulfolobaceaeAcidianus ambivalens 3772 - - n.d. - -Metallosphaera sedulaed 5348T - - n.d. - -Metallosphaera prunaed 10039 - - n.d. - -Sulfolobus metallicusd 6482 - - n.d. - -

BacteriaChloroflexi phylum, Chloroflexi

ChloroflexaceaeChloroflexus aggregansd 9485 - - n.d. - -

Chlorobi phylum, ChlorobiaChlorobiaceae1 Prosthecochloris aestuarii e,d 271T - - n.d. - -

Prosthecochloris sp.e,d 2K - - n.d. - -Prosthecochloris vibrioformee,d 260 - - n.d. - -Prosthecochloris vibrioformee,d 1678 - - n.d. - -

2a Chlorobium luteolume,d 273T - - n.d. - -Chlorobium luteolume,d 262 - - n.d. - -

2b Chlorobium phaeovibrioidese,d 269T - - n.d. - -Chlorobium phaeovibrioidese,f 265 + + n.d. database AJ294321Chlorobium phaeovibrioidese,d 261 - - n.d. - -Chlorobium phaeovibrioidese,d 270 - - n.d. - -

3a Chlorobium phaeobacteroidese,d 266T - - n.d. - -Chlorobium clathratiformee 5477T + + n.d. database AJ294323‘Chlorobium ferrooxidans’ d 13031T - - n.d. - -

3b Chlorobium limicolae,d 245T - - n.d. - -Chlorobium limicolae 246 - - n.d. - -Chlorobium limicolae 2323 + + + 1002 EF618588Chlorobium limicolae,f 1855 + + n.d. 1026 EF618591Chlorobium limicolae 257 + + + 1026 EF618579Chlorobium limicolae,d 247 - - n.d. - -Chlorobium limicolae,d 248 - - n.d. - -

4a Chlorobaculum parvume 263T + + n.d. database AJ294320Chlorobaculum parvume 2352 + + n.d. 1026 EF618589

4b Chlorobaculum limnaeume,f 1677 + + n.d. 1026 EF618590Chlorobaculum thiosulfatiphilume 249T n.d. n.d. n.d. database AAL68888Chlorobaculum thiosulfatiphilume 2322 + + + 959 EF618587

Proteobacteria phylum, AlphaproteobacteriaRhodospirillaceae

Rhodospirillum photometricum 122T + - n.d. 918 EF618569Rhodobacteraceae

Rhodothalassium salexigens 2132T � � n.d. 679 EF618585Rhodovulum adriaticum 2781 � + n.d. 972 EF618592Rhodovulum sulfidophilum 1374T + + n.d. database AAF99435

BradyrhizobiaceaeRhodoblastus acidophilus 137T - - n.d. - -

HyphomicrobiaceaeBlastochloris viridisd 133T - - n.d. - -

RhodobiaceaeRhodobium marinumd 2698T - - n.d. - -

Proteobacteria phylum, BetaproteobacteriaHydrogenophilaceae

Thiobacillus aquaesulis 4255T + + n.d. 999 EF618597Thiobacillus denitrificans 12475T + + n.d. 981 EF618607Thiobacillus denitrificans 739 n.d. n.d. n.d. - -Thiobacillus denitrificans 807 n.d. n.d. + 501 EF618581Thiobacillus plumbophilus 6690T + + n.d. 765 EF618604Thiobacillus thioparus 505T + n.d. n.d. database AJ294326

NeisseriaceaeAquaspirillum sp. strain D-412d - - - n.d. - -Aquaspirillum sp. strain D-415d - - - n.d. - -

Distribution and phylogeny of SoxB in SOB 2959

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 4: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Table 1. cont.

Speciesa Strainb

PCR product obtained with primer setc Length ofobtainedsoxBsequence

GenBankaccession no.soxBsoxB432F

soxB1446BsoxB693FsoxB1446B

soxB693FsoxB1164B

Proteobacteria phylum, GammaproteobacteriaChromatiaceae

Allochromatium minutissimum 1376T + + n.d. 1008 EF618582Allochromatium vinosum 180T � + n.d. 1017 EF618570Allochromatium warmingii d 173T - - n.d. - -Chromatium okenii e 6010 � + n.d. 729 EF618602Halochromatium glycolicum 11080T + + n.d. 966 EF618605Halochromatium salexigens 4395T + + n.d. 1018 EF618598Isochromatium buderi d 176T - - n.d. - -Lamprocystis purpureae 4197T + � n.d. 919 EF618595Marichromatium gracile 203T � + n.d. 1017 EF618572Marichromatium purpuratum 1591T + + n.d. 1017 EF618584Rhabdochomatium marinum 5261T � - + 713 EF618601Thermochromatium tepidumd 3771T - - - - -Thiocapsa pendens 236T + + - 990 EF618577Thiocapsa roseae 235T � n.d. - - -Thiocapsa roseopersicina 217T + + n.d. 1023 EF618576Thiocapsa roseopersicinae 4210 + + n.d. 1023 EF618596Thiococcus pfennigii e,d 226T - - n.d. - -Thiococcus pfennigii d 227 - - - - -Thiococcus pfennigii d 228 - - - - -Thiocystis gelatinosaf 215T + n.d. - 950 EF618575Thiocystis violacea 207T + n.d. + 984 EF618573Thiocystis violacea 214 + + n.d. 1008 EF618574Thiocystis violascens 198T + + + 987 EF618571Thiodictyon bacillosume,d 234T - n.d. n.d. - -Thiodictyon sp. strain F4d - - - - - -Thiohalocapsa halophila 6210T + n.d. + 981 EF618603Thiolamprovum pedioforme 3802T + n.d. + 993 EF618593Thiorhodococcus minor 11518T + n.d. + 1029 EF618606Thiorhodovibrio winogradskyi d 6702T - - - - -

EctothiorhodospiraceaeEctothiorhodospira mobilisg 4180 + + n.d. 1011 EF618594Ectothiorhodospira shaposhnikovii f 243T + + n.d. 1011 EF618578

HalothiobacillaceaeHalothiobacillus hydrothermalis 7121T - + n.d. database AJ294325Halothiobacillus kellyi 13162T + + n.d. 954 EF618609Halothiobacillus neapolitanus 581T + + n.d. database AJ294332Thiovirga sulfuroxydans sp. strain A7 - + + n.d. 735 EF618610

ThiotrichaceaeBeggiatoa alba 1416T + + n.d. 858 EF618583Beggiatoa leptomitiformis strain D-401d - n.d. n.d. n.d. - -Beggiatoa leptomitiformis strain D-402 - n.d. n.d. n.d. - -Leucothrix mucor 2157T - + + 465 EF618586Leucothrix mucorf 621 - + + 669 EF618580Macromonas bipunctata strain D-408d - � - n.d. - -Thiothrix nivea 5205T n.d. + n.d. 738 EF618600Thiothrix sp. 12730 n.d. + n.d. 765 EF618608

PiscirickettsiaceaeThiomicrospira frisia 12351T - - - - -Thiomicrospira kuenenii 12350T - - - - -Thiomicrospira sp. 13163 - n.d. - - -Thiomicrospira sp. 13164 - n.d. - - -Thiomicrospira sp. 13189 - n.d. - - -Thiomicrospira sp. 13190 - n.d. - - -

Uncertain affiliation‘Thiobacillus prosperus’ 5130T + n.d. - 447 EF618599

Invertebrate symbionts and free-living relativesBathymodiolus azoricus symbiont - - - - - -Bathymodiolus brevior symbiont - - - - - -Bathymodiolus thermophilus symbiont - - - n.d. - -Calyptogena magnifica symbiont - - - n.d. - -Ifremeria nautilei symbiontf - + + n.d. 766 EF618614

2960 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 5: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

sequence position of one or both primers of the appliedprimer sets. While internally or at the 5′-end located, singlemismatches have only a limited effect on the primerannealing efficiency (Kwok et al., 1990; Simsek andAdnan, 2000), their position at the 3′-end of the primersequence severely affects the PCR efficiency. In conse-quence, the soxB PCR primer combinations used will havefailed to amplify gene fragments from certain examinedgenera, e.g. Thiomicrospira spp. and related symbionts ofthe Vesicomyid mussels and Mytilid clam, S. denitrificansand putatively Rhodoblastus acidophilus.

Phylogeny of sulfate thioesterase (SoxB) of SOB

The SoxB consensus tree presented in this work (Fig. 1)is based on 124 sequences obtained from genetic andgenomic analyses (Tables 1 and 4). The integration of50 novel SoxB partial sequences from sulfur-storingphoto- and chemotrophic bacteria, e.g. Chromatiaceae,Ectothiorhodospiraceae, Thiotrichaceae, thiotrophic sym-biont of invertebrates and their free-living relatives(Table 1) which were previously not considered (Petriet al., 2001), allowed new insights into the evolutionary

Table 1. cont.

Speciesa Strainb

PCR product obtained with primer setc Length ofobtainedsoxBsequence

GenBankaccession no.soxBsoxB432F

soxB1446BsoxB693FsoxB1446B

soxB693FsoxB1164B

Inanidrilus exumae symbiontd - - - n.d. - -Inanidrilus leukodermatus symbiontd - - - n.d. - -Inanidrilus makropetalos symbiontd - - - n.d. - -Oasisia sp. symbiontd - - - n.d. - -Riftia pachyptila symbiont - + + n.d. 756 EF618617sulfur-oxidizing bacterium OAII2 - + n.d. n.d. 993 EF618611sulfur-oxidizing bacterium OBII5 - + + n.d. 975 EF618612sulfur-oxidizing bacterium ODIII5 - - - n.d. - -sulfur-oxidizing bacterium ODI4 - + n.d. + 936 EF618613sulfur-oxidizing bacterium NDII1.2 - - n.d. + 501 EF618616sulfur-oxidizing bacterium ‘manganese crust’ - + n.d. n.d. 972 EF618615

Proteobacteria phylum, EpsilonproteobacteriaHelicobacteraceae

Sulfurimonas denitrificans 1251T - - - database YP_392780Spirochaeta phylum, Spirochaetes

SpirochaetaceaeSpirochaeta sp. strain Pd - � � n.d. - -Spirochaeta sp. strain BMd - � � n.d. - -Spirochaeta sp. strain M-6f - � � n.d. 927 EF618568

a. Taxonomic classification of investigated SRP species according to the taxonomic outline of the prokaryotes, Bergey’s Manual of SystematicBacteriology, 2nd edition, release 5.0 May 2004 (http://dx.doi.org/10.1007/bergeysoutline); genomic DNA of sulfur-oxidizing reference strainssigned with e were received from the culture collection of J. Imhoff, University of Kiel.b. DSM identification numbers of investigated species (laboratory-internal numbers of culture collection from J. Imhoff in italic type); (-) notdeposited in a culture collection; T, type strain.c. soxB gene PCR results obtained from genomic DNA of sulfur-oxidizing reference strains are summarized with the following abbreviations: (-)no amplicon; (+) correct-sized amplicon; (�) correct-sized amplicon with byproducts; (n.d.) PCR amplification not determined.d. Thiosulfate-oxidizing ability not experimentally proven for respective species (Brune, 1995; Nelson and Fisher, 1995; Brinkhoff et al., 1999;Howarth et al., 1999; Imhoff, 1999; 2001a,b,c; 2003; Kelly and Wood, 2000; Kuever et al., 2002; Cavanaugh et al., 2004; Dubinina et al., 2004;Kletzin et al., 2004; Teske and Nelson, 2004; Takai et al., 2006).f. Thiosulfate-oxidizing ability of soxB gene-harbouring SOB species not experimentally proven (Nelson and Fisher, 1995; Imhoff, 1999, 2001a;2003; Kuever et al., 2002; Cavanaugh et al., 2004; Dubinina et al., 2004; Teske and Nelson, 2004).g. Uncertain taxonomic classification (synonym Ectothiorhodospira marismortui ).

Table 2. Polymerase chain reaction (PCR) primers used for amplification of soxB gene fragments.

Primera Sequence (in 5′→3′ direction)b Primer binding sitec

soxB432F GAY GGN GGN GAY ACN TGG 432–450soxB693F ATC GGN CAR GCN TTY CCN TA 693–713soxB1164B AAR TTN CCN CGN CGR TA 1181–1166soxB1446B CAT GTC NCC NCC RTG YTG 1446–1428

a. Source: Petri et al. (2001).b. Degenerate positions are in boldface.c. soxB primer binding sites are enumerated according to the nucleotide sequence of Paracoccus denitrificans str. GB 17 (GenBank accessionno. CAA55824).

Distribution and phylogeny of SoxB in SOB 2961

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 6: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

path of soxB genes among SOB. The overall tree topologywas congruent with the previous one based on a limiteddataset of 13 validated SOB species (Petri et al., 2001).However, with respect to the improved species coverage,the enlarged database refined the resolution of the inter-and intrafamily relationships in the major SoxB lineages.Comparative analysis of the SoxB- and the 16S rRNA-based phylogenetic tree (Fig. 2; see also referencesImhoff, 1999; 2001a,b,c; 2003; Kelly and Wood, 2000;Kuever et al., 2002; Cavanaugh et al., 2004; Buchanet al., 2005; Takai et al., 2006) revealed several topologi-cal discrepancies indicative for incorrect taxonomical clas-sifications and even lateral soxB gene transfers amongSOB (marked by letters in the trees). According to theSoxB phylogeny, the alphaproteobacterial Rhodobacte-raceae and Bradyrhizobiaceae (Imhoff, 2001b) are notmonophyletic (see distinct branching position of Rhodo-bacteraceae representatives Stappia aggregata andRhodothalassium salexigens and the cluster formationof Bradyrhizobiaceae members), and Rhodospirillumphotometricum (Rhodospirillaceae) is affiliated withRhodopseudomonas spp. (Bradyrhizobiaceae). Indeed,the current taxonomical classification of R. salexigensand S. aggregata is also not well supported by the 16SrRNA gene-based phylogeny. Potential LGT eventsinvolving Alphaproteobacteria are indicated by the 16SrRNA gene-incongruent close relationships of (i) Spiro-chaeta sp. strain M-6 (Dubinina et al., 2004) to Sulfito-bacter spp. (LGT a), and (ii) Acidiphilium cryptum,Nitrobacter hamburgensis and Bradyrhizobium spp.(Alphaproteobacteria II) to the Gammaproteobacteria(LGTs b and c). Interestingly, the latter xenologous clustercomprises species which harbour a second, non-LGT-affected soxB gene in their genomes (Bradyrhizobium

spp.). The 16S rRNA gene-discordant affiliation of Anae-romyxobacter dehalogenans (Deltaproteobacteria) andThiovirga sulfuroxydans strain A7 (Gammaproteobacte-ria) with the Betaproteobacteria points to further lateraltransfers of soxB genes with the previous species asrecipients (LGTs d and e). According to the SoxB tree, theGammaproteobacteria were not monophyletic but formedat least four distinct SOB groups consisting of the Thio-trichaceae, ‘Thiobacillus prosperus’, Halothiobacillaceae,free-living relatives of invertebrate symbionts andEctothiorhodospira spp. (cluster I), the Piscirickett-siaceae, Oceanospirillum sp., Beggiatoa alba, inverte-brate symbionts and Chromatiaceae (cluster II), the newlydescribed Congregibacter litoralis (cluster III), and Halor-hodospira halophila (cluster IV). The SoxB-proposedseparate branching positions of Thiothrix/Leucothrix andBeggiatoa members are supported by the 16S rRNAgene-based phylogeny (Fig. 2) and point to their incorrectclassification at the family level (Thiotrichaceae). Accord-ing to the SoxB phylogeny, the Chromatiaceae and affili-ated invertebrate symbionts are closest related tomembers of the Piscirickettsiaceae and Oceanospirillum(cluster II). The affiliation of the Ectothiorhodospira spp.with the Halothiobacillaceae (cluster I) while H. halophilaformed a distinct lineage (cluster IV) is discordant to theirclose relationship based on the 16S rRNA phylogeny(Ectothiorhodospiraceae) and indicates independentlateral transfers of soxB genes to the anaerobic anoxy-genic phototrophic lineages (including the symbionts)(LGTs f to h). The 16S rRNA gene-incongruent affiliationof the Chlorobiaceae with the Gammaproteobacteriacluster II points also to a lateral soxB acquisition of thegreen sulphur bacteria (LGT i). The detailed comparisonof the relative branching order within the Chlorobiaceae

Table 3. Results of Southern blot assays with radioactively labelled soxB-specific probes and genomic DNA of sulfur-oxidizing and sulfate-reducing bacteria.

Genomic DNA of SOB and SRBspecies (EcoRI/HindIII digestion)

Straina Southern blot hybridization results with soxB-specific probeb

Chlorobiumlimicola 1855

Chlorobiumlimicola 257

Chlorobiumclathrathiforme 5477

Thiocapsaroseopersicina 4210

GammaproteobacteriaThiocapsa roseopersicina 217 � � � + +Thiocapsa roseopersicina 4210 c � � � + +

ChlorobiaChlorobium limicola 245c - - - -Chlorobium limicola 248c - - - -Chlorobium limicola 1855c + + + + + �Chlorobium luteolum 262c - - - -Chlorobium luteolum 273c - - - -

DeltaproteobacteriaDesulfomicrobium baculatum 4028 - - - -

a. DSM identification numbers of investigated species (J. Imhoff laboratory-internal numbers are in italic type); cultures received from the culturecollection of J. Imhoff are marked with c.b. Quality of hybridization results summarized with the following abbreviations: (–) no hybridization (+) hybridization signal (++) strong hybridizationsignal.

2962 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 7: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Tab

le4.

Pre

senc

eof

sox,

sor,

apra

ndds

rhom

olog

ues

codi

ngfo

rthe

Sox

enzy

me

syst

em(S

oxX

AY

ZB

CD

),su

lfite

dehy

drog

enas

e(S

orA

B,S

tark

eya

nove

lla),

diss

imila

tory

AP

Sre

duct

ase

(Apr

BA

)an

dsu

lfite

redu

ctas

e(D

srA

B)

incl

udin

gits

func

tiona

llyas

soci

ated

tran

smem

bran

eco

mpl

ex(D

srM

KJO

P)

inge

nom

ese

quen

ces

ofB

acte

ria(t

hege

nom

icar

rang

emen

tis

indi

cate

dby

the

Gen

Ban

kac

cess

ion

num

bers

ofth

een

code

dpr

otei

ns).

Spe

cies

a

Hom

olog

ues

pres

ent

inge

nom

ese

quen

ces

ofB

acte

riab

Sox

Sor

Apr

Dsr

Sox

XA

Sox

YZ

Sox

BS

oxC

DS

orA

BA

prB

AD

srA

BD

srM

KJO

P

Bac

teria

Aqu

ifica

eph

ylum

,Aqu

ifica

eA

quifi

cace

aeA

quife

xae

olic

usst

r.V

F5c

NP

_214

238;

NP

_214

239

NP

_214

241;

NP

_214

240

NP

_214

237

--

--

-

Dei

noco

ccus

–The

rmus

phyl

um,

Dei

noco

cci

The

rmac

eae

The

rmus

ther

mop

hilu

sst

r.H

B8c

YP

_144

682/

YP

_144

684;

YP

_144

681/

YP

_144

685

YP

_144

687;

YP

_144

686

YP

_144

683

YP

_144

677;

YP

_144

676

--

--

The

rmus

ther

mop

hilu

sst

r.H

B27

cY

P_0

0502

0/Y

P_0

0502

2;Y

P_0

0501

9/Y

P_0

0502

3

YP

_005

025;

YP

_005

024

YP

_005

021

YP

_005

015;

YP

_005

014

--

--

Chl

orofl

exip

hylu

m,

Chl

orofl

exi

Chl

orofl

exac

eae

Chl

orofl

exus

aggr

egan

sD

SM

9485

--

--

--

--

Chl

orofl

exus

aura

ntia

cus

str.

J-10

-fl-

--

--

--

-C

hlor

obip

hylu

m,

Chl

orob

iaC

hlor

obia

ceae

1aP

rost

heco

chlo

risae

stua

riist

r.D

SM

271

--

--

--

++

2aC

hlor

obiu

mlu

teol

umst

r.D

SM

273

--

--

--

++

2bC

hlor

obiu

mph

aeov

ibrio

ides

str.

DS

M26

5Z

P_0

0661

606;

ZP

_006

6160

4Z

P_0

0661

605;

ZP

_006

6160

3Z

P_0

0661

601

--

-+

+

3aC

hlor

obiu

mph

aeob

acte

roid

esst

r.D

SM

266

--

--

--

++

Chl

orob

ium

phae

obac

tero

ides

str.

BS

1-

--

--

++

+C

hlor

obiu

mcl

athr

atifo

rme

str.

DS

M54

77Z

P_0

0588

637;

ZP

_005

8864

0Z

P_0

0588

638;

ZP

_005

8863

9Z

P_0

0588

642

--

++

+

Chl

orob

ium

chlo

roch

rom

atii

str.

CaD

3Y

P_3

8021

3;Z

P_3

8021

6Y

P_3

8021

4;Z

P_3

8021

5Y

P_3

8021

8-

-+

++

3bC

hlor

obiu

mlim

icol

ast

rain

DS

M24

5-

--

--

-+

+4b

Chl

orob

acul

umte

pidu

mst

r.A

TC

C49

652

NP

_661

908;

NP

_661

911

NP

_661

909;

NP

_661

910

NP

_661

913

--

++

+

Chl

orob

acul

umth

iosu

lfato

philu

mst

r.D

SM

249

AA

L688

83;

AA

L688

86d

AA

L688

84;

AA

L688

85d

AA

L688

88d

-dn.

a.d

n.a.

dn.

a.d

n.a.

d

Pro

teob

acte

riaph

ylum

,Alp

hapr

oteo

bact

eria

SA

R11

-clu

ster

Pel

agib

acte

rub

ique

str.

HT

CC

1002

--

--

-+

--

Pel

agib

acte

rub

ique

str.

HT

CC

1062

--

--

-+

--

Distribution and phylogeny of SoxB in SOB 2963

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 8: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Tab

le4.

cont

.

Spe

cies

a

Hom

olog

ues

pres

ent

inge

nom

ese

quen

ces

ofB

acte

riab

Sox

Sor

Apr

Dsr

Sox

XA

Sox

YZ

Sox

BS

oxC

DS

orA

BA

prB

AD

srA

BD

srM

KJO

P

SA

R11

6-cl

uste

rU

ncul

ture

dA

lpha

prot

eoba

cter

ium

EB

AC

2C11

n.a.

n.a.

n.a.

n.a.

n.a.

+n.

a.n.

a.R

hodo

spiri

llace

aeM

agne

tosp

irillu

mm

agne

ticum

str.

AM

B-1

--

--

--

++

Mag

neto

spiri

llum

mag

neto

tact

icum

str.

MS

-1c

-; ZP

_000

5129

8Z

P_0

0048

026;

ZP

_000

5609

0Z

P_0

0051

299

ZP

_000

5050

5;–

ZP

_000

5109

8;Z

P_0

0051

120

-+

+

Ace

toba

cter

acea

eA

cidi

phili

umcr

yptu

mst

r.JF

-5c

ZP

_011

4491

0;Z

P_0

1144

907

ZP

_011

4490

9;Z

P_0

1144

908

ZP

_011

4490

5Z

P_0

1144

912;

ZP

_011

4491

1Z

P_0

1144

296;

ZP

_011

4429

5-

--

Rho

doba

cter

acea

e-

--

Din

oros

eoba

cter

shib

aest

r.D

FL

12c

ZP

_015

8327

1;Z

P_0

1583

268

ZP

_015

8327

0;Z

P_0

1583

269

ZP

_015

8326

7Z

P_0

1583

266;

ZP

_015

8326

5-

--

-

Par

acoc

cus

deni

trifi

cans

str.

GB

17C

AB

9437

9;C

AA

5582

7dC

AB

9438

0;C

AB

9438

1dC

AA

5582

4dC

AA

5582

9;C

AA

5582

5dn.

a.d

n.a.

dn.

a.d

n.a.

d

Par

acoc

cus

deni

trifi

cans

str.

PD

1222

ZP

_006

2873

4;Z

P_0

0628

737

ZP

_006

2873

5;Z

P_0

0628

736

ZP

_006

2873

8Z

P_0

0628

739;

ZP

_006

2874

0-

--

-

Rho

doba

cter

spha

eroi

des

str.

2.4.

1-

--

--

--

-R

hodo

bact

ersp

haer

oide

sst

r.A

TC

C17

025

ZP

_009

1286

7;Z

P_0

0912

864

ZP

_009

1286

6;Z

P_0

0912

865

ZP

_009

1286

3Z

P_0

0912

862;

ZP

_009

1286

1-

--

-

Rho

doba

cter

spha

eroi

des

str.

AT

CC

1702

9-

--

--

--

-R

oseo

bact

ersp

.st

r.M

ED

193c

ZP

_010

5591

6;Z

P_0

1055

913

ZP

_010

5591

5;Z

P_0

1055

914

ZP

_010

5591

2Z

P_0

1055

911;

ZP

_010

5591

0-

--

-

Ros

eoba

cter

deni

trifi

cans

str.

Och

114c

YP

_681

830;

YP

_681

833

YP

_681

831;

YP

_681

832

YP

_681

834

YP

_681

835;

YP

_681

836

--

--

Ros

eova

rius

nubi

nhib

ens

str.

ISM

ZP

_009

6129

8;Z

P_0

0961

295

ZP

_009

6129

7;Z

P_0

0961

296

ZP

_009

6129

4Z

P_0

0961

293;

ZP

_009

6129

2-

--

-

Ros

eova

rius

sp.

str.

217c

ZP

_010

3712

0;Z

P_0

1037

117

ZP

_010

3711

9;Z

P_0

1037

118

ZP

_010

3711

6Z

P_0

1037

115;

ZP

_010

3711

4-

--

-

Rho

dovu

lum

sulfi

doph

ilum

str.

DS

M13

74A

AF

9943

1;A

AF

9943

4A

AF

9943

2;A

AF

9943

3A

AF

9943

5A

AF

9943

6;A

AF

9943

7-

--

-

Sag

ittul

ast

ella

tast

r.E

-37

ZP

_017

4836

3;Z

P_0

1748

360

ZP

_017

4836

2;Z

P_0

1748

361

ZP

_017

4835

9Z

P_0

1748

358;

ZP

_017

4835

7-

--

-

Sili

ciba

cter

pom

eroy

istr.

DS

S-3

YP

_166

245;

YP

_166

248

YP

_166

246;

YP

_166

247

YP

_166

249

YP

_166

250;

YP

_166

251

--

--

Sili

ciba

cter

sp.

str.

TM

1040

--

--

--

--

Sta

ppia

aggr

egat

ast

r.IA

M12

614c

ZP

_015

4905

1;Z

P_0

1549

054

ZP

_015

4905

2;Z

P_0

1549

053

ZP

_015

4905

5Z

P_0

1549

056;

ZP

_015

4905

7-

--

-

Sul

fitob

acte

rsp

.st

r.N

AS

-14.

1Z

P_0

0963

533;

ZP

_009

6353

0/Z

P_0

0963

374

ZP

_009

6353

2/Z

P_0

0963

372;

ZP

_009

6353

1/Z

P_0

0963

373

ZP

_009

6352

9/Z

P_0

0963

375

-/ ZP

_009

6337

7;Z

P_0

0963

526/

ZP

_009

6337

8

--

--

Sul

fitob

acte

rsp

.st

r.E

E-3

6Z

P_0

0956

135;

ZP

_009

5613

8Z

P_0

0956

136;

ZP

_009

5613

7Z

P_0

0956

139

ZP

_009

5614

0;Z

P_0

0956

141

--

--

2964 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 9: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Unc

erta

inph

ylog

enet

icaf

filia

tion

Rho

doba

cter

ales

bact

eriu

mst

r.H

TC

C26

54c

ZP

_010

1485

5;Z

P_0

1014

858

ZP

_010

1485

6;Z

P_0

1014

857

ZP

_010

1485

9Z

P_0

1014

860;

ZP

_010

1486

1-

--

-

Rho

doba

cter

ales

bact

eriu

mst

r.H

TC

C21

50c

ZP

_017

4324

9;Z

P_0

1743

246

ZP

_017

4324

8;Z

P_0

1743

247

ZP

_017

4324

5Z

P_0

1743

243;

ZP

_017

4324

2-

--

-

Aur

antim

onad

acea

eA

uran

timon

assp

.st

r.S

I85-

9A1c

ZP

_012

2576

9;Z

P_0

1225

766

ZP

_012

2576

8;Z

P_0

1225

767

ZP

_012

2576

5Z

P_0

1225

764;

ZP

_012

2576

3-

--

-

Flu

vim

arin

ape

lagi

str.

HT

CC

2506

cZ

P_0

1439

477;

ZP

_014

3948

0Z

P_0

1439

479;

ZP

_014

3947

8Z

P_0

1439

476

ZP

_014

3947

6;Z

P_0

1439

474

--

--

Phy

lloba

cter

iace

aeP

seud

oam

inob

acte

rsa

licyl

atox

idan

sst

r.K

TC

001

CA

H59

732;

CA

B94

219d

CA

H59

733;

CA

C39

169d

CA

C39

170d

CA

H59

734;

CA

H59

735d

n.a.

dn.

a.d

n.a.

dn.

a.d

Bra

dyrh

izob

iace

aeB

rady

rhiz

obiu

mja

poni

cum

str.

US

DA

110c

NP

_770

151/

NP

_767

654;

NP

_770

154/

NP

_767

651/

NP

_769

372

NP

_770

152/

NP

_769

374;

NP

_770

153/

NP

_769

373

NP

_770

155/

NP

_767

649

NP

_770

156/

NP

_772

761;

NP

_770

157/

NP

_772

760

NP

_773

897;

NP

_773

898

--

-

Bra

dyriz

obiu

msp

.st

r.B

TAi1

cZ

P_0

0857

396/

ZP

_008

5756

9;Z

P_0

0857

393/

ZP

_008

6313

1

ZP

_008

5739

5/Z

P_0

0857

570;

ZP

_008

5739

4/Z

P_0

0857

571

ZP

_008

5739

2/Z

P_0

0863

133

ZP

_008

5739

1/Z

P_0

0862

549;

ZP

_008

5739

0/Z

P_0

0862

550

--

--

Nitr

obac

ter

ham

burg

ensi

sst

r.X

14c

YP

_578

864;

YP

_578

861

YP

_578

863;

YP

_578

862

YP

_578

859

YP

_576

401;

YP

_576

402

YP

_578

584;

YP

_578

585

--

-

Nitr

obac

ter

sp.

stra

inN

b-31

1A-

--

-Z

P_0

1044

876;

ZP

_010

4487

7-

--

Nitr

obac

ter

win

ogra

dsky

istr.

Nb-

255

--

--

YP

_319

624;

YP

_319

625

--

-

Rho

dops

eudo

mon

aspa

lust

risst

r.B

isA

53Z

P_0

0810

280;

ZP

_008

1027

9Z

P_0

0810

278;

ZP

_008

1027

7Z

P_0

0810

276

ZP

_008

1027

5;Z

P_0

0810

274

--

--

Rho

dops

eudo

mon

aspa

lust

risst

r.B

isB

5Y

P_5

7137

5;Y

P_5

7137

4Y

P_5

7137

3;Y

P_5

7137

2Y

P_5

7137

1Y

P_5

7137

0;Y

P_5

7136

9-

--

-

Rho

dops

eudo

mon

aspa

lust

risst

r.B

isB

18-

--

--

--

-R

hodo

pseu

dom

onas

palu

stris

str.

HaA

2Y

P_4

8797

1;Y

P_4

8797

0Y

P_4

8796

9;Y

P_4

8796

8Y

P_4

8796

7Y

P_4

8796

6;Y

P_4

8796

5-

--

-

Rho

dops

eudo

mon

aspa

lust

risst

r.C

GA

009

NP

_949

805;

NP

_949

804

NP

_949

803;

NP

_949

802

NP

_949

801

NP

_949

800;

NP

_949

799

--

--

Hyp

hom

icro

biac

eae

Sta

rkey

ano

vella

AA

R98

728;

AA

R98

727d

AA

R98

726;

AA

R98

725d

AA

F61

448d

AA

F61

449;

AA

F61

450d

AA

F64

400;

AA

F64

401d

n.a.

dn.

a.d

n.a.

d

Xan

thob

acte

rau

totr

ophi

cus

str.

Py2

ZP

_011

9626

9;Z

P_0

1196

270

ZP

_011

9627

1;Z

P_0

1196

272

ZP

_011

9627

3Z

P_0

1196

274;

ZP

_011

9627

5Z

P_0

1199

037/

ZP

_011

9633

5;Z

P_0

1199

083/

ZP

_011

9633

6

--

-

Distribution and phylogeny of SoxB in SOB 2965

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 10: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Tab

le4.

cont

.

Spe

cies

a

Hom

olog

ues

pres

ent

inge

nom

ese

quen

ces

ofB

acte

riab

Sox

Sor

Apr

Dsr

Sox

XA

Sox

YZ

Sox

BS

oxC

DS

orA

BA

prB

AD

srA

BD

srM

KJO

P

Pro

teob

acte

riaph

ylum

,B

etap

rote

obac

teria

Bur

khol

deria

ceae

Cup

riavi

dus

met

allid

uran

sst

r.C

H34

cZ

P_0

0593

662;

-Z

P_0

0593

853;

ZP

_005

9385

2Z

P_0

0593

847

-Z

P_0

0595

461;

ZP

_005

9546

0-

--

Pol

ynuc

leob

acte

rsp

.st

r.Q

LW-P

1DM

WA

-1c

ZP

_014

9465

2;Z

P_0

1494

653

ZP

_014

9465

5;Z

P_0

1494

654

ZP

_014

9465

1Z

P_0

1493

496;

ZP

_014

9465

6Z

P_0

1493

045;

ZP

_014

9314

3-

--

Ral

ston

iaeu

trop

hica

str.

JMP

134c

YP

_297

454;

YP

_297

455

YP

_297

458;

YP

_297

457

YP

_297

452

YP

_297

461;

YP

_297

460

YP

_297

287;

YP

_297

286

--

-

Ral

ston

iapi

cket

tiist

r.12

JcZ

P_0

1661

485;

ZP

_016

6148

4Z

P_0

1661

481;

ZP

_016

6148

2Z

P_0

1661

487

-Y

P_2

9728

7;Y

P_2

9728

6-

--

Ral

ston

iaso

lana

cear

umst

r.G

MI1

000c

NP

_521

374;

NP

_521

375

NP

_521

378;

NP

_521

377

NP

_521

372

-N

P_5

1893

4–3;

NP

_518

932

--

-

Ral

ston

iaso

lana

cear

umst

r.U

W55

1cZ

P_0

0944

484;

ZP

_009

4448

3Z

P_0

0944

482;

ZP

_009

4448

1Z

P_0

0944

480

-Z

P_0

0944

736;

ZP

_009

4473

5C

omam

onad

acea

eC

omam

onas

test

oste

roni

str.

KF

-1c

ZP

_015

2117

7;Z

P_0

1521

176

ZP

_015

2117

4;Z

P_0

1521

175

ZP

_015

2117

8Z

P_0

1521

172;

ZP

_015

2117

3-

--

-

Pol

arom

onas

naph

tale

nivo

rans

str.

CJ2

c-

YP

_981

902;

YP

_981

903

--

YP

_982

913;

YP

_982

914

--

-

Pol

arom

onas

sp.

str.

JS66

6cY

P_5

4944

0;Y

P_5

4944

1Y

P_5

4944

3;Y

P_5

4944

2Y

P_5

4943

9Y

P_5

4944

5;Y

P_5

4944

4-

--

-

Oxa

loba

cter

acea

eH

erm

iniim

onas

arse

nico

xyda

nsst

r.K

F-1

cC

AL6

1371

;C

AL6

1370

CA

L613

68;

CA

L613

69C

AL6

1372

CA

L613

65;

CA

L613

76C

AL6

2480

;C

AL6

2479

--

-

Unc

erta

inph

ylog

enet

icaf

filia

tion

Met

hylib

ium

petr

olei

philu

mst

r.P

M1c

YP

_001

0216

23;

YP

_001

0216

24Y

P_0

0102

1626

;Y

P_0

0102

1625

YP

_001

0216

22Y

P_0

0102

1628

;Y

P_0

0102

1627

--

--

Hyd

roge

noph

ilace

aeH

ydro

geno

philu

sth

erm

olut

eolu

sst

r.T

H-1

BA

F34

124;

BA

F34

123d

BA

F34

121;

BA

F34

122d

BA

F34

125d

BA

F34

119;

BA

F34

120d

n.a.

dn.

a.d

n.a.

dn.

a.d

Thi

obac

illus

deni

trifi

cans

str.

AT

CC

2525

9Y

P_3

1432

5/Y

P_3

1467

5;Y

P_3

1432

2/Y

P_3

1467

6

YP

_314

324;

YP

_314

323

YP

_314

321

--

++

+

Rho

docy

clac

eae

Dec

hlor

omon

asar

omat

ica

str.

RC

Bc

YP

_286

329;

YP

_286

330

YP

_286

332;

YP

_286

331

YP

_286

328

YP

_286

334;

YP

_286

333

--

--

Pro

teob

acte

riaph

ylum

,G

amm

apro

teob

acte

riaC

hrom

atia

ceae

Allo

chro

mat

ium

vino

sum

str.

DS

M18

0A

BE

0136

0;A

BE

0136

1dA

BE

0136

9;n.

a.d

AB

E01

359d

n.a.

dn.

a.d

+d+d

+d

2966 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 11: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Ect

othi

orho

dosp

irace

aeA

lkal

imic

ola

ehrli

chei

str.

MH

LE-

YP

_742

517;

YP

_742

518

--

--

++

Hal

orho

dosp

iraha

loph

ilast

r.S

L1Y

P_0

0100

3514

;Y

P_0

0100

3514

YP

_001

0035

07;

YP

_001

0035

08Y

P_0

0100

3505

--

-+

+

Pis

ciric

ketts

iace

aeT

hiom

icro

spira

crun

ogen

ast

r.X

CL-

2Y

P_3

9087

4;Y

P_3

9087

1Y

P_3

9087

3;Y

P_3

9087

2Y

P_3

9181

5Y

P_3

9042

6;Y

P_3

9042

7-

--

-

Oce

anos

piril

lace

aeO

cean

ospi

rillu

msp

.st

r.M

ED

92c

ZP

_011

6715

4;Z

P_0

1167

150

ZP

_011

6715

3;Z

P_0

1167

151

ZP

_011

6714

8Z

P_0

1167

156;

ZP

_011

6715

5-

--

-

Unc

erta

inph

ylog

enet

icaf

filia

tion

‘Can

dida

tus

Rut

hia

mag

nific

a’st

r.C

Mc

YP

_904

000;

YP

_903

997

YP

_903

999;

YP

_903

998

YP

_903

419

--

++

+

End

orift

iape

rsep

hone

c+

+e-;

+e+e

-e-e

+e+e

+e

Ola

vius

alga

rven

sis

Gam

ma-

1sy

mbi

ontc

-;–e

++e

+e-e

-e+e

+e+e

Ola

vius

alga

rven

sis

Gam

ma-

3sy

mbi

ontc

-;–e

++e

+e-e

-e+e

+e+e

Con

greg

ibac

ter

litor

alis

str.

KT

71c

ZP

_011

0256

1;Z

P_0

1102

558

ZP

_011

0256

0;Z

P_0

1102

559

ZP

_011

0255

6Z

P_0

1102

563;

ZP

_011

0256

2-

--

-

Mar

ine

gam

map

rote

obac

teriu

mst

r.H

TC

C20

80c

ZP

_016

2709

6;Z

P_0

1627

097

ZP

_016

2709

9;Z

P_0

1627

098

ZP

_016

2709

5Z

P_0

1627

101;

ZP

_016

2710

0-

--

-

Pro

teob

acte

riaph

ylum

,D

elta

prot

eoba

cter

iaC

ysto

bact

erac

eae

Ana

erom

yxob

acte

rde

halo

gena

nsst

r.2C

P-C

cY

P_4

6548

7;Y

P_4

6548

8Y

P_4

6549

1;Y

P_4

6549

0Y

P_4

6548

6Y

P_4

6549

3;Y

P_4

6549

2-

--

-

Pro

teob

acte

riaph

ylum

,E

psilo

npro

teob

acte

riaH

elic

obac

tera

ceae

Sul

furim

onas

deni

trifi

cans

str.

AT

CC

3388

9Y

P_3

9277

6;Y

P_3

9277

9Y

P_3

9456

7/Y

P_3

9277

7;Y

P_3

9277

8

YP

_392

780

YP

_394

569/

YP

_394

568

--

--

Unc

lass

ified

Pro

teob

acte

riaM

agne

toco

ccus

sp.

str.

MC

-1c

YP

_867

608/

YP

_865

823;

YP

_867

605/

YP

_865

820

YP

_867

607/

YP

_865

822;

YP

_867

606/

YP

_866

895

YP

_865

819

--

--

-

a.Ta

xono

mic

clas

sific

atio

nac

cord

ing

toth

eta

xono

mic

outli

neof

the

prok

aryo

tes,

Ber

gey’

sM

anua

lof

Sys

tem

atic

Bac

terio

logy

,2n

ded

ition

,re

leas

e5.

0M

ay20

04(h

ttp://

dx.d

oi.o

rg/1

0.10

07/

berg

eyso

utlin

e).

b.

Abb

revi

atio

ns:

(n.a

.)se

quen

cein

form

atio

nfo

rre

spec

tive

prot

ein

enco

ding

gene

isno

tav

aila

ble

(no

geno

me

sequ

enci

ngpr

ojec

tof

resp

ectiv

esp

ecie

s);

(–)

nopr

otei

nen

codi

ngho

mol

ogue

iden

tified

byB

LAS

Tse

arch

inge

nom

e;(+

)pr

otei

nen

codi

ngho

mol

ogue

iden

tified

byB

LAS

Tse

arch

inge

nom

e.c.

Thi

osul

fate

-oxi

dizi

ngab

ility

ofre

spec

tive

spec

ies

not

expe

rimen

tally

prov

en.

d.

No

geno

me

sequ

enci

ngpr

ojec

t:se

quen

cein

form

atio

nof

Sox

,S

or,A

pror

Dsr

enco

ding

hom

olog

ues

retr

ieve

dfr

omcl

onin

gex

perim

ents

ofth

ere

spec

tive

spec

ies.

e.N

oge

nom

ese

quen

cing

proj

ect:

sequ

ence

info

rmat

ion

ofS

ox,

Sor

,Apr

orD

sren

codi

ngho

mol

ogue

sre

trie

ved

from

met

agen

omic

sequ

enci

ngpr

ojec

tof

the

resp

ectiv

esp

ecie

s.

Distribution and phylogeny of SoxB in SOB 2967

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 12: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

10%

Sagittula stellata strain E-37

Comamonas testosteroni strain KF-1Methylibium petroleiphilum strain PM1

Hydrogenophilus thermoluteolus strain TH-1Herminiimonas arsenicoxydans strain KF-1

Thiobacillus denitrificans DSM 807

Polynucleobacter sp. strain QLW-P1DMWA-1Ralstonia pickettii strain 12J

marine gammaproteobacterium strain HTCC 2080

Leucothrix mucor DSM 621

Cdt. Ruthia magnifica

Olavius algarvensis Gamma-1 symbiont

Endoriftia persephone

Sulfurimonas denitrificans ATCC 33889Aquifex aeolicus strain VF5

Thermus thermophilus strain HB27

Congregibacter litoralis strain KT 71Marinobacter sp. strain HY-106, AJ294329

Bradyrhizobium japonicum strain USDA 110

Chlorobaculum tepidum ATCC 49652Chlorobium phaeovibrioides DSM 265

Chlorobaculum parvum 2352Chlorobaculum parvum DSM 263, AJ294321

Chlorobium limicola DSM 1855Chlorobaculum limnaeum DSM 1677

Chlorobium limicola DSM 257

Chlorobaculum thiosulfatophilum 2322

Chlorobaculum thiosulfatophilum DSM 249 Chlorobaculum thiosulfatophilum DSM 249, AAL68888

Chlorobium clathratiforme DSM 5477Chlorobium chlorochromatii strain CaD3

Chlorobium limicola 2323

sulfur-oxidizing gammaproteobacterium OAII2

Riftia pachyptila symbiontIfremeria nautilei symbiont

Halochromatium glycolicumHalochromatium salexigens

Chromatium okenii

Thiohalocapsa halophilaThiocystis violascens

Thiocystis gelatinosaLamprocystis purpurea

Rhabdochromatium marinum

Marichromatium gracileMarichromatium purpuratum

Thiorhodococcus minor

Thiocystis violacea DSM 214

Allochromatium minutissimum

Thiocystis violacea DSM 207

Thiocapsa pendensThiocapsa roseopersicina DSM 217Thiocapsa roseopersicina 4210

Thiolamprovum pedioforme

Thiomcrospira crunogena strain XCL-2

Thiobacillus plumbophilus

Thiobacillus denitrificans ATCC 25259Thiobacillus denitrificans DSM 12475

Thiobacillus thioparusThiobacillus aquaesulis

Polaromonas sp. strain JS666

Dechloromonas aromatica strain RCB

Anaeromyxobacter dehalogenans strain 2CP-C

Ralstonia solanacearum strain GMI1000Ralstonia eutropha strain JMP134

Thiovirga sulfuroxydans strain A7Cupriavidus metallidurans strain CH34

Leucothrix mucor DSM 2157 Thiothrix sp.Thiothrix nivea

sulfur-oxidizing gammaproteobacterium strain "manganese crust"sulfur-oxidizing gammaproteobacterium strain NDII1.2

sulfur-oxidizing gammaproteobacterium strain OBII5sulfur-oxidizing gammaproteobacterium strain DI4

"Thiobacillus prosperus" DSM 5130

Ectothiorhodospira mobilisEctothiorhodospira shaposhnikovii

Halorhodospira halophila strain SL1

Halothiobacillus kellyiHalothiobacillus neopolitanus, AJ294332

Bradyrhizobium sp. strain BTAi1Bradyrhizobium japonicum strain USDA 110

Rhodothalassium salexigens

Aurantimonas sp. strain SI85-9A1

Rhodovulum sulfidophilum DSM 1374Rhodovulum adriaticum

Rhodobacter sphaeroides ATCC 17025

environmental clone HY-90, AJ294330 environmental clone HY-86/2, AJ294331

Paracoccus denitrificans strain PD1222Paracoccus denitrificans strain GB17

Paracoccus versutus, AJ294324thiosulfate-oxidizing alphaproteobacterium strain HY-103, AJ294328

Silicibacter pomeroyi strain DSS-3

Sulfitobacter sp. strain EE-36Sulfitobacter sp. strain NAS-14.1

Spirochaeta sp. strain M-6

Roseovarius nubinhibens strain ISMRoseovarius sp. strain 217

Sulfitobacter sp. strain NAS-14.1Roseobacter sp. strain MED193

contaminant of Thiomicrospira crunogena strain HY-62, AJ294327

Xanthobacter autotrophicus strain Py2Starkeya novella

Rhodospirillum photometricum Rhodopseudomonas palustris strain BisA53

Rhodopseudomonas palustris strain CGA009

Magnetococcus sp. strain MC-1

100%

100%

61%

97%

89%

100%

100%

51%

98%

Thermus thermophilus strain HB8

Rhodopseudomonas palustris strain BisB18

Rhodopseudomonas palustris strain HaA2

100%

100%54%

100%100%

100%

85%

100%

94%

96%

61%

Pseudoaminobacter salicylatoxidans strain KTC001

70%50%

75%93%

100%

98%

98%55%

62%

68%99%

95%

100%

100%

100%

71%

79%69%

100%

58%

64%

68%

62%

Halothiobacillus hydrothermalis, AJ294325

100%

63%

87%66%

97%

89%

85%

82%

100%

100%

100%

100%

100%

80%

71%

100%

Acidiphilium cryptum strain JF-5Nitrobacter hamburgensis strain X14

Bradyrhizobium sp. strain BTAi1

Oceanospirillum sp. strain MED92

Allochromatium vinosum

93%96%

98%

52%100%

69%

98%

100%

61%

100%

56%

100%

61%

100%

78%57%

100%

100%

64%100%

100%

100%

92%

72%

100%

Stappia aggregata strain IAM

Fluvimarina pelagi strain HTCC 2506Dinoroseobacter shibae strain DFL 12

Rhodobacterales bacterium strain HTCC 2150Roseobacter denitrificans strain Och 114

Beggiatoa alba

Acetobacteraceae

Thiotrichaceae

Ectothiorhodospiraceae

Rhodospirillaceae

Phyllobacteriaceae

Hyphomicrobiaceae

Bradyrhizobiaceae

Aurantimonadaceae

Rhodobacteraceae

Epsilonpr.

Gammapr. I+ IV

Gammapr. II

Betapr.

Alphapr. I

Alphapr. II

Gammapr. III

Chlorobia

Deltapr.

Comamonadaceae

Bradyrhizobiaceae

Thiotrichaceae

Free-living relatives of symbionts

Halothiobacillaceae

Ectothiorhodospiraceae

Bradyrhizobiaceae

Chlorobiaceae

Oceanospirillaceae

Piscirickettsiaceae

Chromatiaceae

Invertebrate symbionts and free-living relatives

Hydrogenophilaceae

Burkholderiaceae

Rhodocyclaceae

OxalobacteraceaeHydrogenophilaceae

Rhodobacteraceae

Rhodobacteraceae

AquificaeDeinococci

a

b c

d

e

f

g

h

i

j

k

2968 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 13: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

and Chromatiaceae revealed that the 16S rRNA gene-based species relationships are not reflected in the SoxBtree topology. Interestingly, the latter is consistent to theAprBA-based tree topology (B. Meyer and J. Kuever,2007b); both protein phylogenies point to an incorrectclassification of SOB strain DSM 214 as Thiocystis viola-cea subspecies (see also Fig. 2). The 16S rRNA gene-discordant affiliation of the epsilonproteobacterialS. denitrificans (Takai et al., 2006) with the hyperthermo-philic Aquifex aeolicus and Thermus thermophilus ssp.near the root of the SoxB tree indicates their involvementin LGT events (LGTs j and k).

Additional evidence for lateral transfer of soxB genes

Additional evidence for the inferred phylogenetic positionof the SOB taxa in the SoxB tree is given by the presenceof insertions and deletions (indels) at identical sequencepositions (see Table S1). The comparison of the alignedSoxB sequences supports the distinct branching positionfrom S. denitrificans and representatives of the Aquificaeand Thermaceae by the presence of several uniqueindels. The xenology of the SoxB from Spirochaeta sp.strain M-6, T. sulfuroxydans strain A7, A. dehalogenansand members of Alphaproteobacteria II is confirmedby the presence of Roseobacter-, Betaproteobacteria-and Gammaproteobacteria cluster III-specific indelsrespectively. In addition, the 16S rRNA gene-discordantaffiliations of the anaerobic anoxygenic phototrophic SOBlineages with the Gammaproteobacteria clusters I to IIIare supported by shared, distinctive indels, while theseparate branching position of H. halophila (cluster IV) isconfirmed by Beta- and Gammaproteobacteria clusterI-specific as well as two unique indels.

Atypical sequence characteristics, e.g. significantdeviations in G + C content and codon usage between theproposed LGT-derived soxB gene and the recipientgenome, are useful as signposts for recent events of LGT.In general, no indications for recent LGT events wereidentified among the presumed LGT-affected SOB withthe exception of the T. sulfuroxydans strain A7. This strainhas a genome G + C content of 47.1%, while its soxB G +C content (64.2%) and codon usage are nearly identical tothose of the putative donor strain Cupriavidus metallidu-rans strain CH34 (G + C content of soxB and genome,65.9% and 63.7%, respectively).

Correlation between the sox gene cluster compositionand the occurrence of dsr genes in genomes ofsulfur-storing SOB

Genome data concerning the sox gene cluster, soxX-AYZBCD, were available from 61 different Proteobacteriaand Chlorobiaceae species, A. aeolicus and two T. ther-mophilus strains. The comparison of the genomic genecontent revealed that the presence of the dsrAB/dsrMKJOP correlated with the absence of soxCD genes:all thiosulfate-oxidizing species that are known to interme-diately deposit elemental sulfur lack the sulfur dehydro-genase encoding genes of the periplasmic Sox enzymesystem but possess the genetic ability to oxidize thestored sulfur via the cytoplasmic dissimilatory sulfitereductase (DsrAB), e.g. (i) the Chlorobiaceae, (ii) Allo-chromatium vinosum and H. halophila (as representativesof the Chromatiaceae and Ectothiorhodospiraceae,respectively), (iii) Thiobacillus denitrificans, and (iv)‘Cdt. R. magnifica’. In contrast, the majority of sox gene-containing Alpha-, Beta- and Gammaproteobacteria,S. denitrificans and T. thermophilus ssp. harboureda complete, Paracoccus pantotrophus-/Rhodovulumsulfidophilum-homologous sox gene cluster (Appia-Aymeet al., 2001; Friedrich et al., 2001) in their genomes andlacked the dsrAB/dsrMKJOP genes. Notably, the pres-ence of the sox gene cluster differed at the species(Chlorobium, Silicibacter, Nitrobacter and Polaromonas)and subspecies (Rhodobacter sphaeroides and Rhodo-pseudomonas palustris) level.

Discussion

Distribution of soxB genes among photo- andchemotrophic SOB

The members of the anaerobic anoxygenic phototrophicChlorobiaceae, Chromatiaceae and Ectothiorhodospi-raceae and aerobic chemotrophic Beggiatoa, Thiothrix,Thiobacillus, Thiomicrospira and free-living relatives ofinvertebrate symbionts form intra- and extracellularlystored sulfur globules as obligate intermediate during thio-sulfate oxidation (Nelson and Fisher, 1995; Howarth et al.,1999; Imhoff, 1999; 2001a; 2003; Kuever et al., 2002;Robertson and Kuenen, 2002; Teske and Nelson, 2004).Based on recent experimental results on sulfur-storingChlorobaculum tepidum (Hanson and Tabita, 2003),

Fig. 1. SoxB consensus tree based on 124 SoxB sequences from the investigated SOB including the full-length SoxB sequences retrievedfrom the public databases. Polytomic nodes connect branches for which a relative order could not be determined unambiguously by applyingdistance matrix-based, maximum parsimony and maximum likelihood methods. Maximum likelihood bootstrap re-sampling values greater than50% (100 re-samplings) are indicated near the nodes. The SoxB sequences of Sulfurimonas denitrificans, Aquifex aeolicus and Thermusthermophilus ssp. were used as outgroup references. Sulfur-oxidizing bacteria (SOB) with putative laterally transferred soxB genes are inboldface; proposed LGT events are indicated by letters (a–k). The 16S rRNA gene-based taxonomical classification of SOB species isindicated. The scale bar corresponds to 10% estimated sequence divergence.

Distribution and phylogeny of SoxB in SOB 2969

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 14: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Aquifex aeolicus strain VF5, AJ309733

Thermus thermophilus strain HB27, L09659

Thermus thermophilus strain HB8, X07998

Chlorobaculum thiosulfatiphilum DSM 249, Y08102

Chlorobaculum thiosulfatiphilum 2322 , AJ290825

Chlorobaculum limnaeum DSM 1677, AJ290831

Chlorobaculum tepidum ATCC 49652, NC_002932

Chlorobaculum parvum DSM 263, Y10647

Chlorobaculum parvum 2352, AJ290830

Chlorobium phaeovibroides DSM 265, AJ290829

Chlorobium chlorochromatii strain CaD3, AJ578461

Chlorobium clathratiforme DSM 5477, Y08108

Chlorobium limicola 2323, AJ290826

Chlorobium limicola DSM 1855, AJ290832

Spirochaeta sp. strain M-6, AY337319

Sulfurimonas denitrificans ATCC 33889, L40808

Anaeromyxobacter dehalogenans strain 2CP-C, AF382399

Magnetococcus sp. strain MC-1, NC_008576

Acidiphilium cryptum strain JF-5, Y18446

Rhodospirillum photometricum, AJ222662

Stappia aggregata strain IAM 12614, D88520

Rhodothalassium salexigens, D14431

Starkeya novella, D32247Xanthobacter autotrophicus strain Py2, U62888

Rhodopseudomonas palustris strain CGA009, NC_008435Rhodopseudomonas palustris strain BisB18, NC_007958Rhodopseudomonas palustris strain HaA2, NC_007778

Nitrobacter hamburgensis strain X14, L11663Rhodopseudomonas palustris strain BisA53, NC_005296

Bradyrhizobium japonicum strain USDA 110, D13430

Bradyrhizobium sp. strain BTAi1, AB079633

Pseudaminobacter salicylatoxidans strain KTC001;, AJ294416Aurantimonas sp. strain SI85-9A1, AJ786360Fulvimarina pelagi strain HTCC 2506, AY178860

Paracoccus denitrificans strain PD1222, NC_008686Paracoccus denitrificans strain GB17, Y16933

Rhodobacter sphaeroides ATCC 17025, NC_009428Dinoroseobacter shibae strain DFL 12, AJ534211

Rhodobacterales bacterium HTCC 2150, NZ_AAXZ00000000Rhodovulum adriaticum, D16418Rhodovulum sulfidophilum DSM 1374, D16423Silicibacter pomeroyi strain DSS-3, AF098491

Roseovarius nubinhibens strain ISM, AF098495 thiosulfate-oxidizing alphaproteobacterium strain HY-103, AJ294335Roseobacter denitrificans strain Och 114, L01784

Sulfitobacter sp. strain EE-36, AF007254Sulfitobacter sp. strain NAS-14.1, NZ_AALZ00000000

Sagittula stellata strain E-37, U58356 Dechloromonas aromatica strain RCB, AY032610

Polaromonas sp. strain CJ2, AF408397Methylibium petroleiphilum strain PM1, AF176594

Hydrogenophilus thermoluteolus strain TH-1, AB009828Thiobacillus aquaesulis, U58019

Thiobacillus plumbophilus, AJ316618Thiobacillus denitrificans ATCC25259, NC_007404

Thiobacillus denitrificans DSM 12475, AJ243144 Thiobacillus thioparus, AF005628

Herminiimonas arsenicoxydans strain KF-1, NC_009138Polynucleobacter sp. strain QLW-P1DMWA-1, AJ879783

Cupriavidus metallidurans strain CH34, Y10824Ralstonia eutropha strain JMP134, AF139729Ralstonia pickettii strain 12J, NZ_AAWK01000001

Ralstonia solanacearum strain GMI1000, NC_003295

Marinobacter sp. strain HY-106, AJ294336

Halorhodospira halophila strain SL1, M26630

"Thiobacillus prosperus" DSM 5130, AY034139

Leucothrix mucor DSM 2157, X87277

Cdt. Ruthia magnifica, M99446

Thiothrix nivea, L40993Thiothrix sp. DSM 12730, AF148516

Thiovirga sulfuroxydans strain A7, AB118236

Halothiobacillus neapolitanus, AF173169Halothiobacillus hydrothermalis, M90662

Halothiobacillus kellyi, AF170419

Ectothiorhodospira shaposhnikovii, M59151

Ectothiorhodospira mobilis, X93482

marine gammaproteobacterium HTCC 2080, AY386339Congregibacter litoralis strain KT 71, AY007676

Thiomicrospira crunogena strain XCL-2, AF064545 Thiomicrospira crunogena strain HY-62, AJ294334

Riftia pachyptila symbiont, AY129116

Beggiatoa alba, L40994

Oceanospirillum sp. strain MED92, AY136116

Ifremeria nautilei symbiont, AB189713

Olavius algarvensis Gamma-1 symbiont, AF328856

Rhabdochromatium marinum , X84316

Marichromatium purpuratum, AJ224439

Marichromatium gracile, X93473

Halochromatium salexigens, X98597

Halochromatium glycolicum, X93472

Lamprocystis purpurea, Y12366

Thiohalocapsa halophila, AJ002796

Thiorhodococcus minor, Y11316

Thiolamprovum pedioforme , Y12297

Thiocapsa pendens, AJ002797

Thiocapsa roseopersicina DSM 217/ 4210, AF113000

Thiocapsa rosea, AJ006062

Thiocystis violacea DSM 207, Y11315Chromatium okenii, Y12376

Thiocystis gelatinosa, Y11317

Thiocystis violascens, AJ224438

Thiocystis violacea strain DSM 214, EF675615

Allochromatium minutissimum , Y12369

Allochromatium vinosum, M26629

Paracoccus versutus, AY004210

Comomonas testosteroni strain KF-1, NZ_AAUJ00000000

sulfur-oxidizing gammaproteobacterium strain NDII1.2, AF181991 sulfur-oxidizing gammaproteobacterium strain "manganese crust", EF181383

sulfur-oxidizing gammaproteobacterium strain ODI4, AF170424sulfur-oxidizing gammaproteobacterium strain OAII2, AF170423

100%

100%

100%

100%92%

52%

100%

94%

100%

74%

71%

67%

84%

100%

95%

91%

100%

63%

69%

92%

99%

64%79%

100%

89%

70%

59% 72%

56%

75%

57%

56%

100%

100%

66%

100%

72%

69%

100%

88%

92%

58%

99%63%

90%

100%

57%

100%

100%

100%

50%

97%

64%

54%

86%

64%

100%

69%

100%

80% 100%

100%

97%

sulfur-oxidizing gammaproteobacterium strain OBII5, AF170421

50%

91%96%

71%

89%

50%

55%

98%

100%87%

10%

Acetobacteraceae

Thiotrichaceae

Rhodospirillaceae

Phyllobacteriaceae

Hyphomicrobiaceae

Aurantimonadaceae

Rhodobacteraceae

Epsilonpr.

Gammapr.

Betapr.

Alphapr.

Chlorobia

Deltapr.

Comamonadaceae

Bradyrhizobiaceae

Ectothiorhodospiraceae

Chlorobiaceae

Oceanospirillaceae

Piscirickettsiaceae

Chromatiaceae

Invertebrate symbionts

Hydrogenophilaceae

Burkholderiaceae

Thiotrichaceae

Free-living relatives of symbionts

Halothiobacillaceae

Rhodocyclaceae

Oxalobacteraceae

Rhodobacteraceae

Rhodobacteraceae

Aquificae

Deinococci

Spirochaetes

Invertebrate symbionts

h

gf

e

h

c

b

d

a

i

j

k

2970 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 15: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

A. vinosum (Hensen et al., 2006) and T. denitrificans(Beller et al. 2006), the truncated Sox enzyme system,SoxXAYZB, was postulated to be functionally linked to thereverse-acting enzymes of the cytoplasmic sulfate-reduction pathway (Friedrich et al., 2005; Hensen et al.,2006): in analogy to the P. pantotrophus-based mecha-nism (Friedrich et al., 2001), the SoxXA would oxidativelycouple thiosulfate to a cysteine-sulfhydryl group of theSoxYZ complex from which sulfate would be hydrolysed offby SoxB. Due to the lack of the sulfur dehydrogenaseSox(CD)2 component, the sulfane sulfur of thiosulfatewould be transferred to the sulfur globules and subse-quently oxidized to sulfate via the reverse dissimilatorysulfite reductase, APS reductase, ATP sulfurylase andsulfite:acceptor oxidoreductase. Indeed, the previous pro-teins have been identified in several members of theanaerobic anoxygenic phototrophic SOB lineages as wellas chemolithotrophic T. denitrificans, marine Beggiatoa,invertebrate symbionts and their free-living relatives(Brune, 1995; Nelson and Fisher, 1995; Pott and Dahl,1998; Dahl et al., 1999; 2005; Kappler and Dahl, 2001;Sanchez et al., 2001; Kuever et al., 2002; Teske andNelson, 2004), whereas the general presence of Sox pro-teins was unconfirmed for most sulfur-storing species. Thepresent study confirmed the ubiquitous presence of thesoxB gene in all known thiosulfate-oxidizing, sulfur-storingchemo- and phototrophic SOB species but also for speciesthat have not yet been reported to use this sulfur com-pounds as electron donor (e.g. C. limicola DSM 1855,Thiocystis gelatinosa, Ectothiorhodospira marismortui,Leucothrix mucor, Spirochaeta sp.) (see Table 1). As thesoxB is generally a part of the sox gene cluster (seeTable 4), its PCR-based detection in the respective SOBspecies might be used as a first indication for the puta-tive presence of components of the Sox enzyme system.In context with the absence of soxCD genes and thepresence of genes coding for the reverse dissimilatorysulfate-reduction pathway in the accessible genomes ofChlorobiaceae, A. vinosum, H. halophila, T. denitrificansand ‘Cdt. R. magnifica’ (Table 4), the recently postulatedmodel for a general involvement of the Sox enzyme systemin the thiosulfate oxidation in sulfur-storing bacteria istherefore supported by the results of our study (Friedrichet al., 2005; Hensen et al., 2006).

The PCR amplification results are most likely false-negative for the examined Thiomicrospira spp. and relatedsymbionts of Mytilid mussels as well as Vesicomyid clams

as T. crunogena and ‘Cdt. R. magnifica’ harbour soxBgenes with non-complementary primer target sites.Indeed, the investigated Thiomicrospira spp. have beendemonstrated to oxidize thiosulfate to sulfate (Brinkhoffet al., 1999) (note: T. crunogena deposits sulfur globulesdespite the presence of a P. pantotrophus-homologoussox gene cluster and the absence of dsr and apr genes). Incontrast, the thiosulfate-oxidizing abilities of the symbioticbacteria have not been investigated in detail (Nelson andFisher, 1995; Cavanaugh et al., 2004). The soxB targetsite of Endoriftia persephone and Olavius algarvensisGamma-1/-3 symbionts are complementary to the primersused in the PCR assays; thus, the absence of the soxBin certain symbiotic bacteria might be correct andreflect the preferred utilization of sulfide as energy source,as it is generally proposed for invertebrate symbionts(Cavanaugh et al., 2004). Direct supply of thiosulfate totheir symbionts has only been reported for Bathymodiolusthermophilus and Calyptogena magnifica that detoxifysulfide by conversion to this less reduced sulfur compound(Nelson and Fisher, 1995; Cavanaugh et al., 2004).

In support of the postulated wide distribution of the Soxenzyme system-mediated pathway as a common mecha-nism for bacterial thiosulfate oxidation (Friedrich et al.,2001; 2005), the collected genomic data demonstratedthe complete sox gene cluster to be present in variousphoto- and chemotrophic representatives of theProteobacteria as well as hyperthermophilic T. thermo-philus ssp.; however, for most of these species theability to utilize thiosulfate has not been experimentallyconfirmed (see Table 4), and thus the presence of anoperative, P. pantotrophus-/R. sulfidophilum-homologousSox enzyme system is speculative until experimentallyproven. Nevertheless, the abundance of sox genes inaerobic photo- and non-phototrophic species of themarine Roseobacter clade points to the energeticalbenefit of the Sox enzyme system-mediated oxidation ofinorganic sulfur compounds for members of the lattergroup that generally dominate the degradation of organicsulfur compounds in the bacterioplankton community(Buchan et al., 2005). In contrast, the capability to usereduced inorganic sulfur compounds as photosyntheticelectron donors is restricted among anaerobic anoxygenicphototrophic members of the Alphaproteobacteria tocertain genera (Brune, 1995; Imhoff, 2001b). This isreflected by the limited detection of the soxB genein Rhodothalassium, Rhodospirillum and Rhodovulum

Fig. 2. Consensus tree based on the 16S rRNA gene sequences of the soxB gene-containing SOB species as indicated by the genetic andgenomic analyses of this study. Polytomic nodes connect branches for which a relative order could not be determined unambiguously byapplying distance matrix-based, maximum parsimony and maximum likelihood methods. Maximum likelihood bootstrap re-sampling valuesgreater than 50% (100 re-samplings) are indicated near the nodes. The 16S rRNA gene sequence of Aquifex aeolicus was used as anoutgroup reference. Sulfur-oxidizing bacteria (SOB) with putative laterally transferred soxB genes are in boldface; proposed LGT events areindicated by letters (a–k, see Fig. 1). The scale bar corresponds to 10% estimated sequence divergence.

Distribution and phylogeny of SoxB in SOB 2971

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 16: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

species in the PCR assays of this study (Table 1),although false-negative amplification results cannot becompletely ruled out, e.g. for thiosulfate-oxidizing R. aci-dophilus as R. palustris-relative (Imhoff, 2001b).

In SOB living in extreme habitats, such as Acidithioba-cillus, Halothiobacillus and Thermothiobacillus, thecomplete oxidation of thiosulfate to sulfate has been sug-gested to be performed via polythionates (Pronk et al.,1990; Meulenberg et al., 1993; Kelly et al., 1997). Foracidophiles such a pathway makes perfect sense, allow-ing rapid conversion of thiosulfate, which is chemicallyunstable under acidic conditions, into an acid-stable inter-mediate (tetrathionate). Interestingly, the soxB gene wasidentified in the acidophilic ‘T. prosperus’ (Huber andStetter, 1989), which might be a first indication that theSox enzyme system is also present in some acidophilicSOB; however, further experimental investigation isneeded for verification (note: Acidithiobacillus ferrooxi-dans harbours no sox homologues in its genome). Theability to use more than one thiosulfate-oxidizing enzy-matic system/enzyme, e.g. the incomplete Sox systemplus Dsr and a thiosulfate dehydrogenase as reported forA. vinosum (Hensen et al., 2006), allows an adaptation ofthe energy conservation to the varying physico-chemicalconditions in environment.

Phylogeny of SoxB: evidence for LGT among SOB

Multiple events of lateral soxB gene transfer among theSOB are the most reasonable explanation for (i) theinferred close relationships of SoxB from SOB speciesthat are distantly related on the basis of the 16S rRNAgene phylogeny, e.g. S. denitrificans, A. aeolicus andT. thermophilus ssp., and (ii) the presence of two distantlyrelated soxB genes in the genome of the same organism,e.g. Bradyrhizobium species (Figs 1 and 2). The betapro-teobacterial and the gammaproteobacterial strains thatserved as donors for the LGT-affected Bradyrhizobi-aceae, Acetobacteraceae (Alphaproteobacteria lineage II)and A. dehalogenans respectively, are not apparent. TheBradyrhizobium spp. and related N. hamburgensis strainX14 might have acquired their soxB gene by independentLGT events. Alternatively, a single LGT might haveaffected their ancestor prior to the diversification ofBradyrhizobium and Nitrobacter, which was followed by areplacement of the authentic soxB gene by the xenolog inthe ancestor of Nitrobacter (the xenolog will have laterbeen lost by most Nitrobacter spp. except N. hamburgen-sis strain X14, see Table 4). The high sequence identityvalues of the partial SoxB sequences from Spirochaetasp. strain M-6 and T. sulfuroxydans strain A7 to those oftheir putative donor strains, Sulfitobacter and Ralstoniaspp. (98.3% and 99.5%, respectively), are indicative forrecent lateral transfers. However, genome data of Spiro-

chaeta sp. strain M-6 are needed for verification. Thecoexistence of recipient and potential donor strains havebeen reported, e.g. in ‘Thiodendron’ sulfur bacterial matsand sulfur-containing microaerobic wastewaters andsludge (Qureshi et al., 2003; Dubinina et al., 2004; Itoet al., 2004) that would have enabled interspecies geneexchange.

According to the SoxB tree, the Gammaproteobacteriaare not monophyletic. The anaerobic anoxygenic pho-totrophic lineages are 16S rRNA-discordantly affiliated tothe different chemotrophic SOB lineages (Gammaproteo-bacteria I or II). Therefore, the genera of the Ectothiorho-dospiraceae (Ectothio- and Halorhodospira) and theChromatiaceae (and affiliated invertebrate symbionts), aswell as the Chlorobiaceae, are proposed to have receivedtheir soxB genes by four independent LGT events withdifferent chemotrophic SOB of the Gammaproteobacteriahaving served as donors, e.g. moderate halophilicEctothiorhodospiraceae and habitat-sharing Halothioba-cilli (Imhoff, 1999; Kelly and Wood, 2000). These transfersmost likely occurred before their diversification, which wasfollowed by a sox gene loss in those genera that aredescribed as metabolically less versatile, e.g. Thiococcusand Prosthecochloris spp. (Imhoff, 1999; 2001a; 2003).All proteobacterial SoxB lineages comprise chemotrophicSOB with P. pantotrophus-/R. sulfidophilum-homologoussox gene clusters in their genomes, whereas the xenolo-gous anaerobic anoxygenic phototrophic SOB lineages(including invertebrate symbionts) harbour truncatedgene loci. This might indicate that initially the ancestors ofthe latter groups acquired the complete soxXAYZBCDgene cluster from their chemotrophic donors [note: thesox gene cluster is located on a endogenous plasmid incertain green sulfur bacteria, and its successful lateraltransfer to non-thiosulfate-utilizing strains was demon-strated (Mendez-Alvarez et al., 1994)]. In adaptation, theSox enzyme pathway could have been functionally linkedto the pre-existing cytoplasmic sulfide/elemental sulfuroxidation pathway (DsrAB/DsrMKJOP) and the soxCDgenes were subsequently lost, which resulted in the rec-ognized thiosulfate oxidation pathway via sulfur-globuleformation. Alternatively, this process could have hap-pened in the potential sulfur-storing chemotrophic donorsof Chromatiaceae and Chlorobiaceae prior to the LGTs.

With regard to the 16S rRNA gene-discordant relation-ship of S. denitrificans, A. aeolicus and T. thermophilusssp. at the root of the SoxB tree, there are two pos-sible scenarios for the direction of LGT and the originof the SoxB protein. First, if the soxB of the hyperther-mophilic species is assumed to be xenologous, a(epsilon-)proteobacterial origin of the SoxB protein wouldbe consistent with the tree topology. In support, all cur-rently available sequences of other non-proteobacterialSOB species (Chlorobiaceae, Spirochaeta sp. strain M-6)

2972 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 17: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

seem to be laterally acquired from Proteobacteria.Indeed, recent phylogenomic studies disputed the 16SrRNA gene-based basal branching of Aquifex but placedit next to the Epsilon-/Deltaproteobacteria (Dutilh et al.2004). Second, if the SoxB of S. denitrificans is assumedto be xenologous, the tree topology would indicate a soxBorigin within the Aquificales or the Thermus lineage fol-lowed by a LGT to the evolving proteobacterial lineages.Irrespective of scenario, exchange of genetic materialbetween these phylogenetic groups would have beenpossible, as various molecular studies confirmed theircoexistence and dominance at hydrothermal vents (Rey-senbach et al., 2000; Takai et al., 2005; Campbell et al.,2006).

Potential evolutionary scenario for the Sox enzymepathway in SOB

During the Proterozoic era, the ocean was proposed tohave been globally anoxic and sulfidic (Shen et al., 2003;Canfield, 2005) with a widespread occurrence and pre-dominance of planktonic ancestors of the Chromatiaceaeand Chlorobiaceae lineages as demonstrated by molecu-lar fossils (Brocks et al., 2005). The anoxic formation ofthiosulfate via (i) chemical FeS2 oxidation with MnO2 and(ii) biogenic FeS oxidation by denitrifying bacteria (Schip-pers, 2004) would have been absent. As the dissimilatorysulfite and APS reductase phylogenies point to an ancientorigin of the sulfate reduction/sulfide oxidation pathway inSRP and SOB (Boucher et al., 2003; Meyer and Kuever,2007a) as early as 3.47 giga annum (Ga) (Shen andBuick, 2004), the anaerobic anoxygenic phototrophs mostlikely converted the abundant compounds sulfide/sulfurby the reverse-operating enzymes of the sulfate reductionpathway. During the Neoproterozoic, the atmosphericoxygen increased to > 10% of the present levels until1.05 Ga that resulted in (i) the deepening of the oxic/anoxic interface in the ocean, (ii) the oxygenation ofcoastal marine sediments, and (iii) decreased levels ofsulfide while less reduced inorganic sulfur compounds likethiosulfate became more abundant (Canfield and Teske,1996; Canfield, 2005). This change in the oxidation stateof Earth promoted the evolution and diversification of non-photosynthetic, facultative aerobic or even strict aerobicSOB with a wide-scale initiation of the oxidative sulfurcycle postulated to have occurred lately in the Proterozoicat 0.75–0.62 Ga (Canfield and Teske, 1996). Novel path-ways that allowed the usage of the less reduced inorganicsulfur compounds as respiratory electron donor evolvedsimultaneously in the non-photosynthetic SOB. Withregard to the SoxB phylogeny, the Sox enzyme systemmight have originated in an aerobic, chemotrophic proteo-bacterial SOB that lacked the reverse sulfate reductionpathway and became widespread among the thiosulfate-

utilizing Proteobacteria. The reverse sulfate reductionpathway persisted in some facultative anaerobic, chem-olithoautotrophic SOB groups (e.g. in Thiobacillus, Thio-thrix, invertebrate symbionts and their free-living relatives)that employed the branched oxidation pathway forthiosulfate oxidation. In adaptation to the changingenvironmental conditions, the members of the anaerobicanoxygenic phototrophic SOB lineages acquired novelpathways that allowed thiosulfate utilization, e.g. the soxgene cluster by lateral transfer from chemotrophic SOB.

Experimental procedures

Microorganisms

The investigated reference strains of photo- andchemotrophic SOB (listed in Table 1) were obtained from theDSMZ (Braunschweig, Germany) as actively growingcultures. Genomic DNA of green sulfur bacteria and severalpurple sulfur bacteria were received from the culture collec-tion of J. Imhoff, University of Kiel. Extracted genomic DNA oftissue material was provided by N. Dubilier (Inanidrilus spp.,B. azoricus, B. brevior), A. D. Nussbauer (R. pachyptila,B. thermophilus, C. magnifica, Oasisia sp.) and C. Borowski(I. nautilei). Harvested cells of Beggiatoa spp., Aquaspirillumspp., Macromonas bipunctata strain D-408 and Spirochaetaspp. were received from G. Dubinina. The SOB strain ‘man-ganese crust’ was isolated from enrichment cultures of sedi-ment and seawater samples of the Caribbean Sea (Caribfluxproject, SO-154).

DNA isolation

Genomic DNA from the investigated reference strains wasobtained by applying the DNAeasy Kit (Qiagen, Hilden,Germany) or the NUCLEOBOND® Kit (MACHEREY-NAGEL,Düren, Germany) according to the manufacturer’s in-structions. The DNA concentration and quality was estimatedspectrophotometrically, while its integrity was examined visu-ally by gel electrophoresis on 0.8% (w/v) agarose gels run in1¥ Tris-borate-EDTA (TBE) buffer and followed by ethidiumbromide staining (0.5 mg ml-1).

Polymerase chain reaction (PCR) amplification of soxBand 16S rRNA genes

Amplification of the soxB gene fragments was performedusing the primer sets (Table 2) and PCR protocols accordingto Petri et al. (2001). Reaction mixtures (total volume of 50 ml)contained 5 ml 10¥ REDTaq PCR reaction buffer, 5 ml 10¥BSA solution (3 mg ml-1), 200 mM (dNTPs) mixture, 1 mM ofeach primer, 2.5 U REDTaq DNA polymerase and 10–100 nggenomic DNA from the reference strains as template. 16SrRNA gene fragments were amplified using the primer setsGM3F/GM4R and GM5F-GC clamp/907R [for subsequentdenaturing gradient gel electrophoresis (DGGE) analysis]with the PCR conditions as described elsewhere (Muyzeret al., 1995).

Distribution and phylogeny of SoxB in SOB 2973

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 18: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Cloning of PCR products

Cloning assays of 16S rDNA amplicons and subsequentARDRA analyses of the recombinant plasmids were per-formed as described elsewhere (Meyer and Kuever, 2007a).

Double gradient (DG)-DGGE analysis of PCR-amplified16S rRNA gene fragments

For DG-DGGE analysis, an acrylamide gradient from 6% to8% acrylamide/bis-acrylamide stock solution, 37.5:1 (v/v)(Bio-Rad), was superimposed over a co-linear denaturantgradient from 20% to 70% of denaturant [100% denaturantcorresponds to 7 M urea and 40% formamide (v/v), deionizedwith AG501-X8 mixed bed resin (Bio-Rad)]. Gradients wereformed using a Bio-Rad Gradient Former Model 385. poly-merase chain reaction (PCR) samples were applied to thegels in aliquots of 20 ml per lane. Further analysis was per-formed using the D-CODETM and D-GENETM systems (Bio-Rad) for electrophoresis runs in 1¥ Tris-acetate-EDTA (TAE)buffer at 60°C for 3.5 h at 200 V as previously described byMuyzer et al. (1995). After staining with ethidium bromide(0.5 mg ml-1), DNA bands were visualized on a UV transillu-mination table (Biometra, Göttingen, Germany), excised fromthe polyacrylamide gel, eluted in 50 ml Tris-HCl, pH 8.0, andre-amplified using the original PCR conditions and primer pairwithout GC-clamp.

Nucleotide sequencing

The soxB and 16S rDNA amplicons of expected size werepurified using either the QIAquick PCR purification, theQIAquick gel extraction kit (Qiagen, Hilden, Germany) or thePerfectprep gel cleanup sample kit (Eppendorf, Hamburg,Germany) following the supplier’s recommendations. ThePCR products were directly sequenced in both directionsusing the respective amplification primers and the ABIBigDye terminator cycle sequencing kit (Applied Biosystems,Foster City, USA). Sequencing reactions were run on an ABIPRISM® 3100 Genetic Analyzer (Applied Biosystems).

Sequence analysis tools and phylogeny inference

The DNA sequence data of the soxB amplicons from eachSOB reference strain were assembled with subsequentmanual correction using the sequence alignment editorprogram Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). BLAST searches for homologous sequences of SoxB inthe public databases were performed at the NCBI website(http://www.ncbi.nlm.nih.gov/BLAST/). Searches on the pre-liminary sequence data of accessible SOB genomeswere performed at The Institute for Genomic Re-search website (http://www.tigr.org) and at the DOE JointGenome Institute website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). The SoxB partial sequences obtained in this studyand the complete sequences of the public databases wereautomatically aligned using the web server Tcoffee@igs(http://igs-server.cnrs-mrs.fr/Tcoffee/). The correspondingnucleic acid sequences of the soxB gene fragments were

aligned based on the manually corrected amino acidsalignment.

The phylogenetic analyses were based on a dataset of (i)67 full-length SoxB sequences from publicly availablegenome data of SOB (Table 4), (ii) 7 partial sequences ofchemotrophic SOB retrieved from the study of Petri andcoworkers (2001), and (iii) 50 novel partial sequencesobtained in this study (Table 1). Alignment regions of ambigu-ous homology as well as indels not present in all investigatedsequences were omitted. Unrooted phylogenetic trees wereconstructed using the tree inference methods included in theARB software package (http://www.arb-home.de) (distancematrix, neighbour-joining, Fitch; maximum parsimony,ProPars; maximum likelihood, ProML) on the basis of 118SoxB sequences with 203 compared amino acid positionsrespectively. The trees were calculated using the global rear-rangement, randomized species input order options and JTTmatrix as amino-acid replacement model. The robustness ofphylogenetic trees was tested by bootstrap analysis with 100re-samplings. Short partial sequences were individuallyadded to the initial trees using the QUICK_ADD parsimonytool of ARB without allowing changes in the overall treetopology. Finally, a SoxB-based consensus tree was con-structed after comparing the topologies of the phylogenetictrees calculated by distance matrix, maximum parsimony andmaximum likelihood analyses. The 16S rRNA gene-basedconsensus tree was generated as described for the SoxBphylogeny inference (16S rRNA gene sequences wereobtained from the public databases).

Southern blot analysis

Identical amounts of genomic DNA (5 mg) from sulfur-oxidizing and sulfate-reducing bacteria (Table 3) weredigested at 37°C with HindIII and EcoRI overnight, precipi-tated by ethanol, electrophoresed on 0.8% 1¥ TAE buffer at100 V for 3 h, transferred to positively charged nylon mem-branes (Hybond N + filter, Amersham) by capillary neutraltransfer and immobilized by UV cross-linking (Transillumina-tor, Biometra). The DNA probes for soxB genes (0.7 kb inlength) were radioactively labelled with [a-32P]dCTP by therandom priming method using the HexaLabelTM DNA LabelingKit (MBI Fermentas) according to the manufacturer’sdirections. The membranes were placed into glass hybridiza-tion bottles and prehybridized in 5¥ SSC (1¥ SSC is 0.15 MNaCl, 0.015 M Na-citrate, pH 8.0), 50% formamide, 0.1%sarcosyl, 7% SDS, 50 mM phosphate buffer, pH 7.0 and 2%casein (‘Church’ hybridization solution) at 50°C for 1 h in ahybridization oven (Biometra). Subsequently, a freshly dena-turated, labelled DNA probe was added to the prehybridiza-tion solution followed by incubation for 12–16 h at 50°C underslow-speed rotation. The membranes were washed twice at50°C for 30 min in 0.1¥ SSC-0.1% SDS, exposed to Phos-phorImaging screen cassettes (Molecular Dynamics, Krefeld,Germany), scanned with a Typhoon Variable Mode Imagerand processed with Image Quant software (Amersham). Themembranes were stripped by two incubations for 15 min inprobe-stripping solution (consisting of 0.4 M NaOH and 0.1%SDS) at 37°C under permanent agitation and re-probed,starting from the prehybridization step of the hybridizationprocedure.

2974 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 19: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

GenBank accession numbers

The nucleotide sequence data reported in this study havebeen submitted to GenBank and are available under acces-sion number EF618568-EF618617.

Acknowledgements

This study was supported by grants of the BMBF (project‘Caribflux’ under contract number 03G0154C), the DFG(under contract number KU 916/8–1) and the Max-Planck-Society, Munich.

References

Appia-Ayme, C., Little, P.J., Matsumoto, Y., Leech, A.P., andBerks, B.C. (2001) Cytochrome complex essential for pho-tosynthetic oxidation of both thiosulfate and sulfide inRhodovulum sulfidophilum. J Bacteriol 183: 6107–6118.

Beller, H.R., Letain, T.E., Chakicherla, A., Kane, S.R., Legler,T.C., and Coleman, M.A. (2006) Whole-genome transcrip-tional analysis of chemolithoautotrophic thiosulfate oxida-tion by Thiobacillus denitrificans under aerobic versusdenitrifying conditions. J Bacteriol 188: 7005–7015.

Boucher, Y., Douady, C.J., Papke, R.T., Walsh, D.A., Bou-dreau, M.E.R., Nesbo, C.L., et al. (2003) Lateral genetransfer and the origins of prokaryotic groups. Annu RevGenet 37: 283–328.

Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J. (1999)Thiomicrospira kuenenii sp. nov. & Thiomicrospira frisiasp. nov., two mesophilic obligately chemolithoautotrophicsulfur-oxidizing bacteria isolated from an intertidal mud flat.Int J Syst Bacteriol 49: 385–392.

Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan,G.A., and Bowden, S.A. (2005) Biomarker evidence forgreen and purple sulphur bacteria in a stratified Palaeopro-terozoic sea. Nature 437: 866–870.

Brune, D.C. (1995) Sulfur compounds as photosyntheticelectron donors. In Anoxygenic Photosynthetic Bacteria.Blankenship, R.E., Madigan, M.T., and Bauer, C.E. (eds).Dordrecht, The Netherlands: Kluwer Academic Publishers,pp. 847–870.

Brüser, T., Lens, P.N.L., and Trüper, H.G. (2000) The bio-logical sulfur cycle. In Environmental Technologies to TreatSulfur Pollution. Lens, P.N.L., and Pol, L.H. (eds). London,UK: IWA Publishing, pp. 47–86.

Buchan, A., Gonzalez, J.M., and Moran, M.A. (2005) Over-view of the marine Roseobacter lineage. Appl EnvironMicrobiol 71: 5665–5677.

Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K.(2006) The versatile epsilon-proteobacteria: key players insulphidic habitats. Nat Rev Genet 4: 458–468.

Canfield, D.E. (2005) The early history of atmosphericoxygen: Homage to Robert A. Garrels. Annu Rev EarthPlanet Sci 33: 1–36.

Canfield, D.E., and Teske, A. (1996) Late Proterozoic rise inatmospheric oxygen concentration inferred from phyloge-netic and sulphur-isotope studies. Nature 382: 127–132.

Cavanaugh, C.M., McKiness, Z.P., Newton, I.L.G., andStewart, F.J. (2004) Marine chemosynthetic symbioses. In

The Prokaryotes: An Evolving Electronic Resource for theMicrobial Community. Dworkin, M., Falkow, E., Rosenberg,E., Schleifer, K.-H., and Stackebrandt, E. (eds). [WWWdocument]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Dahl, C., Rakhely, G., Pott-Sperling, A.S., Fodor, B., Takacs,M., Toth, A., et al. (1999) Genes involved in hydrogen andsulfur metabolism in phototrophic sulfur bacteria. FEMSMicrobiol Lett 180: 317–324.

Dahl, C., Engels, S., Pott-Sperling, A.S., Schulte, A., Sander,J., Lubbe, Y., et al. (2005) Novel genes of the dsr genecluster and evidence for close interaction of Dsr proteinsduring sulfur oxidation in the phototrophic sulfur bacteriumAllochromatium vinosum. J Bacteriol 187: 1392–1404.

Dubinina, G.A., Grabovich, M.Y., and Chernyshova, Y.Y.(2004) The role of oxygen in the regulation of the metabo-lism of aerotolerant Spirochetes, a major component of‘Thiodendron’ bacterial sulfur mats. Microbiology 73: 725–733.

Dutilh, B.E., Huynen, M.A., Bruno, W.J., and Snel, B. (2004)The consistent phylogenetic signal in genome treesrevealed by reducing the impact of noise. J Mol Evol 58:527–539.

Epel, B., Schafer, K.O., Quentmeier, A., Friedrich, C., andLubitz, W. (2005) Multifrequency EPR analysis of thedimanganese cluster of the putative sulfate thiohydrolaseSoxB of Paracoccus pantotrophus. J Biol Inorg Chem 10:636–642.

Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier,A., and Fischer, J. (2001) Oxidation of reduced inorganicsulfur compounds by bacteria: emergence of a commonmechanism? Appl Environ Microbiol 67: 2873–2882.

Friedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier,A., and Fischer, J. (2005) Prokaryotic sulfur oxidation. CurrOpin Microbiol 8: 253–259.

Hanson, T.E., and Tabita, F.R. (2003) Insights into the stressresponse and sulfur metabolism revealed by proteomeanalysis of a Chlorobium tepidum mutant lacking theRubisco-like protein. Photosynthesis Res 78: 231–248.

Hensen, D., Sperling, D., Trüper, H.G., Brune, D.C., andDahl, C. (2006) Thiosulphate oxidation in the phototrophicsulphur bacterium Allochromatium vinosum. Mol Microbiol62: 794–810.

Howarth, R., Unz, R.F., Seviour, E.M., Seviour, R.J., Blackall,L.L., Pickup, R.W., et al. (1999) Phylogenetic relationshipsof filamentous sulfur bacteria (Thiothrix spp. & Eikelboomtype 021N bacteria) isolated from wastewater-treatmentplants and description of Thiothrix eikelboomii sp. nov.,Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov.and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 49: 1817–1827.

Huber, H., and Stetter, K.O. (1989) Thiobacillus prosperussp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field.Arch Microbiol 151: 479–485.

Imhoff, J.F. (1999) The family Ectothiorhodospiraceae. InThe Prokaryotes: An Evolving Electronic Resource for theMicrobial Community. Dworkin, M., Falkow, E., Rosenberg,E., Schleifer, K.-H., and Stackebrandt, E. (eds). [WWWdocument]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Distribution and phylogeny of SoxB in SOB 2975

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 20: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

Imhoff, J.F. (2001a) The Chromatiaceae. In The Prokaryotes:An Evolving Electronic Resource for the MicrobialCommunity. Dworkin, M., Falkow, E., Rosenberg, E.,Schleifer, K.-H., and Stackebrandt, E. (eds). [WWWdocument]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Imhoff, J.F. (2001b) The phototrophic alpha-Proteobacteria.In The Prokaryotes: An Evolving Electronic Resource forthe Microbial Community. Dworkin, M., Falkow, E., Rosen-berg, E., Schleifer, K.-H., and Stackebrandt, E. (eds).[WWW document]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Imhoff, J.F. (2001c) The phototrophic beta-Proteobacteria. InThe Prokaryotes: An Evolving Electronic Resource for theMicrobial Community. Dworkin, M., Falkow, E., Rosenberg,E., Schleifer, K.-H., and Stackebrandt, E. (eds). [WWWdocument]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Imhoff, J.F. (2003) Phylogenetic taxonomy of the family Chlo-robiaceae on the basis of 16S rRNA and fmo (FennaMatthews-Olson protein) gene sequences. Int J Syst EvolMicrobiol 53: 941–951.

Ito, T., Sugita, K., and Okabe, S. (2004) Isolation, character-ization, and in situ detection of a novel chemolithoau-totrophic sulfur-oxidizing bacterium in wastewater biofilmsgrowing under microaerophilic conditions. Appl EnvironMicrobiol 70: 3122–3129.

Joergensen, B.B., and Nelson, D.C. (2004) Sulfide oxidationin marine sediments: geochemistry meets microbiology. InSulfur Biogeochemistry – Past and Present. Amend, J.P.,Edwards, K.J., and Lyons, T.W. (eds). Boulder, Colorado,USA: Geological Society of America, pp. 63–81.

Kappler, U., and Dahl, C. (2001) Enzymology and molecularbiology of prokaryotic sulfite oxidation. FEMS Microbiol Lett203: 1–9.

Kappler, U., Friedrich, C.G., Truper, H.G., and Dahl, C.(2001) Evidence for two pathways of thiosulfate oxidationin Starkeya novella (formerly Thiobacillus novellus). ArchMicrobiol 175: 102–111.

Kelly, D.P., and Wood, A.P. (2000) Reclassification of somespecies of Thiobacillus to the newly designated generaAcidithiobacillus gen. nov., Halothiobacillus gen. nov. andThermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516.

Kelly, D.P., Shergill, J.K., Lu, W.P., and Wood, A.P. (1997)Oxidative metabolism of inorganic sulfur compounds bybacteria. Antonie Van Leeuwenhoek 71: 95–107.

Kletzin, A., Urich, T., Muller, F., Bandeiras, T.M., and Gomes,C.M. (2004) Dissimilatory oxidation and reduction ofelemental sulfur in thermophilic archaea. J BioenergBiomembr 36: 77–91.

Kuever, J., Sievert, S.M., Stevens, H., Brinkhoff, T., andMuyzer, G. (2002) Microorganisms of the oxidative andreductive part of the sulfur cycle at a shallow-water hydro-thermal vent in the Aegean Sea (Milos, Greece). Cah BiolMar 43: 413–416.

Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L.,Levenson, C., and Sninsky, J.J. (1990) Effects of primer-template mismatches on the polymerase chain reaction.Nucleic Acids Res 18: 999–1005.

Mendez-Alvarez, S., Pavon, V., Esteve, I., Guerrero, R., and

Gaju, N. (1994) Transformation of Chlorobium limicola by aplasmid that confers the ability to utilize thiosulfate.J Bacteriol 176: 7395–7397.

Meulenberg, R., Scheer, E.J., Pronk, J.T., Hazeu, W., Bos,P., and Kuenen, J.G. (1993) Metabolism of tetrathionate inThiobacillus acidophilus. FEMS Microbiol Lett 112: 167–172.

Meyer, B., and Kuever, J. (2007a) Phylogeny of the alphaand beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducingprokaryotes – origin and evolution of the dissimilatorysulfate-reduction pathway. Microbiology 153: 2026–2044.

Meyer, B., and Kuever, J. (2007b) Molecular analysis of thedistribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase encoding genes (aprBA) amongsulfur-oxidizing prokaryotes. Microbiology: in press.

Mukhopadhyaya, P.N., Deb, C., Lahiri, C., and Roy, P. (2000)A soxA gene, encoding a diheme cytochrome c, and a soxlocus, essential for sulfur oxidation in a new sulfurlithotrophic bacterium. J Bacteriol 182: 4278–4287.

Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W.(1995) Phylogenetic relationships of Thiomicrospiraspecies and their identification in deep-sea hydrothermalvent samples by denaturing gradient gel electrophoresis of16S rDNA fragments. Arch Microbiol 164: 165–172.

Nelson, D.C., and Fisher, C.R. (1995) Chemoautotrophic andmethanoautotrophic endosymbiontic bacteria at deep-seavents and seeps. In Deep Sea Hydrothermal Vents. Karl,D.M. (ed.). Boca Raton, Florida, USA: CRC Press, pp.125–167.

Petri, R., Podgorsek, L., and Imhoff, J.F. (2001) Phylogenyand distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171–178.

Pott, A.S., and Dahl, C. (1998) Sirohaem sulfite reductaseand other proteins encoded by genes at the dsr locus ofChromatium vinosum are involved in the oxidation of intra-cellular sulfur. Microbiol 144: 1881–1894.

Pronk, J.T., Meulenberg, R., Hazeu, W., Bos, P., andKuenen, J.G. (1990) Oxidation of reduced anorganicsulphur compounds by acidophilic thiobacilli. FEMS Micro-biol Rev 75: 293–306.

Qureshi, S., Richards, B.K., Hay, A.G., Tsai, C.C., McBride,M.B., Baveye, P., and Steenhuis, T.S. (2003) Effect ofmicrobial activity on trace element release from sewagesludge. Environ Sci Technol 37: 3361–3366.

Reysenbach, A.L., Banta, A.B., Boone, D.R., Cary, S.C., andLuther, G.W. (2000) Biogeochemistry – microbial essen-tials at hydrothermal vents. Nature 404: 835–835.

Robertson, L.A., and Kuenen, G.J. (2002) The genusThiobacillus. In The Prokaryotes: An Evolving ElectronicResource for the Microbial Community. Dworkin, M.,Falkow, E., Rosenberg, E., Schleifer, K.-H., and Stack-ebrandt, E. (eds). [WWW document]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Rohwerder, T., and Sand, W. (2003) The sulfane sulfur ofpersulfides is the actual substrate of the sulfur-oxidizingenzymes from Acidithiobacillus and Acidiphilium spp.Microbiology 149: 1688–1709.

Sanchez, O., Ferrera, I., Dahl, C., and Mas, J. (2001) In vivorole of adenosine-5′-phosphosulfate reductase in the

2976 B. Meyer, J. F. Imhoff and J. Kuever

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977

Page 21: Molecular analysis of the distribution and phylogeny of the soxB …oceanrep.geomar.de/2771/3/Meyer_Imhoff.pdf · Molecular analysis of the distribution and phylogeny of the soxB

purple sulfur bacterium Allochromatium vinosum. ArchMicrobiol 176: 301–305.

Schippers, A. (2004) Biogeochemistry of metal sulfide oxida-tion in mining environments, sediments and soils. In SulfurBiogeochemistry – Past and Present. Amend, J.P.,Edwards, K.J., and Lyons, T.W. (eds). Boulder, Colorado,USA: Geological Society of America, pp. 49–62.

Shen, Y., Knoll, A.H., and Walter, M.R. (2003) Evidence forlow sulphate and anoxia in a mid-Proterozoic marine basin.Nature 423: 632–635.

Shen, Y.N., and Buick, R. (2004) The antiquity of microbialsulfate reduction. Earth Sci Rev 64: 243–272.

Simsek, M., and Adnan, H. (2000) Effect of single mis-matches at 3′-end of primers on polymerase chainreaction. Med Sci 2: 11–14.

Sorokin, D.Y. (2003) Oxidation of inorganic sulfur compoundsby obligately organotrophic bacteria. Microbiology 72:641–653.

Takai, K., Campbell, B.J., Cary, S.C., Suzuki, M., Oida, H.,Nunoura, T., et al. (2005) Enzymatic and genetic cha-racterization of carbon and energy metabolisms bydeep-sea hydrothermal chemolithoautotrophic isolates ofEpsilonproteobacteria. Appl Environ Microbiol 71: 7310–7320.

Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y.,Inagaki, F., and Horikoshi, K. (2006) Sulfurimonasparavinellae sp. nov., a novel mesophilic, hydrogen- andsulfur-oxidizing chemolithoautotroph within the Epsilonpro-teobacteria isolated from a deep-sea hydrothermal ventpolychaete nest, reclassification of Thiomicrospira denitri-

ficans as Sulfurimonas denitrificans comb. nov. andemended description of the genus Sulfurimonas. Int J SystEvol Microbiol 56: 1725–1733.

Teske, A., and Nelson, D.C. (2004) The genera Beggiatoaand Thioploca. In The Prokaryotes: An Evolving ElectronicResource for the Microbial Community. Dworkin, M.,Falkow, E., Rosenberg, E., Schleifer, K.-H., and Stack-ebrandt, E. (eds). [WWW document]. URL http://link.springer-ny.com/link/service/books/10125/index.htm.

Zopfi, J., Ferdelman, T.G., and Fossing, H. (2004) Distribu-tion and fate of sulfur intermediates– sulfite, tetrathionate,thiosulfate, and elemental sulfur – in marine sediments. InSulfur Biogeochemistry – Past and Present. Amend, J.P.,Edwards, K.J., and Lyons, T.W. (eds). Boulder, Colorado,USA: Geological Society of America, pp. 97–116.

Supplementary material

The following supplementary material is available for thisarticle online:Table S1. SoxB alignment showing indels among selectedrepresentatives of the major phylogenetic SOB lineages, sup-porting the inferred relationships including the postulatedLGTs of soxB among the investigated SOB species. Aminoacid positions according to the enumeration of Paracoccusdenitrificans str. GB17 proteins. Identical indel positions inSoxB sequences are indicated by boxes.

This material is available as part of the online article fromhttp://www.blackwell-synergy.com

Distribution and phylogeny of SoxB in SOB 2977

© 2007 The AuthorsJournal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 2957–2977


Recommended