+ All Categories
Home > Documents > Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Date post: 19-Jan-2016
Category:
Upload: dortha-jones
View: 261 times
Download: 5 times
Share this document with a friend
Popular Tags:
26
Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles
Transcript
Page 1: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Molecular dynamics (2)

Langevin dynamicsNVT and NPT ensembles

Page 2: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

randi

ii

i

ii f

dt

dx

x

V

dt

xdm

2

2

wwii rr )(6

tRTttWtW

Nt

RTttWtf

ijiji

i

ti

t

randi

2

)1,0(2

limlim00

Langevin (stochastic) dynamics

Stokes’ law

Wiener process

gi – the friction coefficient of the ith atomri, rw – the radii of the ith atom and of water, respectivelyhw – the viscosity of water.

Page 3: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

The average kinetic energy of Langevin MD simulation corresponds to absolute temperature T and the velocities obey the proper Gaussian distribution with zero mean and RT/m variance.

RTN

mEN

iiik 2

3

2

1 3

1

2

v

We can also define the momentary temperature T(t)

N

iiik tm

NRtE

NRtT

3

1

2

3

1

3

2v

Page 4: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Integration of the stochastic equations of motion(velocity-Verlet integrator)

i

i

i

i

i

i

i

i

i

i

m

t

i

im

t

iii

m

t

ii

m

t

iii

m

t

iii

etm

etttm

tettt

etttm

tettttt

22

4

2

2

)(

2

)()(

WrFrF

vv

WrF

vrr

Ricci and Ciccotti, Mol. Rhys., 2003, 101, 1927-1931.Ciccotti and Kalibaeva, Phil. Trans. R. Soc. Lond. A, 2004, 362, 1583-1594.

Page 5: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

When Dt and the friction coefficient are small, the exponential terms can be expanded into the Taylor series and the integrator becomes velocity-Verlet integrator with friction and stochastic forces

i

iiiii

i

ii

iiiii

iii

m

ttttt

m

tttt

tttttm

tttttt

2)(2

2

)(

)(2

)()(

WvrFrF

vv

WvrF

vrr

Page 6: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Brownian dynamics

randi

i

ii f

x

E

dt

dx

Ignore the inertia term; assume that the motion results from the equilibrium between the potential and fritction+stochastic forces.

Advantage: first-order instead of second-order ODE.

Disadvantages: constraints must be imposed on bonds; energy often grows uncontrollably.

Page 7: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Andersen thermostat

1.Perform a regular integration step in microcanonical mode.

2.Select a number of particles, n, to undergo collision with the thermal bath.

3.Replace the velocities of these particles with those drawn from the Maxwell-Boltzmann distribution corresponding to the bath temperature T0.

Page 8: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Berendsen thermostat: derivation from Langevin equations

N

iii

N

iii

t

k tmttmtdt

dE

1

2

1

2

0 2

1lim vv

TTNRt

ERTN

t

dt

dtm

dt

dE

N

iii

k

N

iii

N

i

iii

k

01

01

1

3

2

32

Fv

Fv

vv

Therefore:

Page 9: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

11

2...12

1

1

0

10

0

T

TtT

Tt

T

Tmm

T

TT

ii

iiiii

vv

vFv

Page 10: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Berendsen thermostat

n

iii

k

ii

tmNRNR

tEtT

tT

Tt

1

2

0

3

1

3

2

11

v

vv

t – coupling parameter

Dt – time step

Ek – kinetic energy

: velocities reset to maintain the desired temperature

: microcanonical run

1

Berendsen et al., J. Chern. Phys., 1984, 81(8) 3684-3690

Page 11: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Pressure control (Berendsen barostat)

n

iii

n

ijijij tmtt

Vtp

tppt

LL

1

2

1

3

1

0

2

1

3

1

1

vrF

L – the length of the system (e.g., box sizes)

b – isothermal compressibility coefficient

t – coupling parameter

Dt – time step

p0 – external pressure

Page 12: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Extended Lagrangian method to control temperature and pressure

Lagrange formulation of molecular dynamics

N

iNii qqqVqmVTL

3

1321

2 ,,,2

1

A physical trajectory minimizes L (minimum action principle). This leads to Euler equations known from functional analysis:

iqi

iiii

Fq

Vqm

q

L

q

L

dt

d

Page 13: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Nose Hamiltonian and Nose Lagrangian

Qss

Lp

smL

sgRTsQ

VsmL

sgRTQ

pV

smH

s

iii

N

i

NiiNose

N

i

sN

i

iNose

i

rp

rr

rp

r2

2

1

22

1

2

2

2

ln22

1

ln22

s – the coordinate that corresponds to the coupling with the thermostatQ – the „mass” of the thermostatg – the number of the degrees of freedom (=3N)

Page 14: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Equations of motion (Nose-Hoover scheme)

dt

sd

s

s

gRTmQ

Vm

N

i i

i

iN

i

i

ii

i

ln2

1

1

2

p

prp

pr

r

Page 15: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Velocity-Verlet algorithm

Q

t

gTtvm

gTttvmttt

Q

tgTtvmtttstts

t

tvtm

tf

ttvttm

tf

tvttv

ttvt

m

tfttvtrttr

N

iii

N

iii

N

iii

ii

i

ii

i

ii

ii

iii

2

2lnln

2

2

3

1

2

3

1

2

23

1

2

Page 16: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

The NH thermostat has ergodicity problem

position

velo

city

Microcanonical Andersen thermostat Nose-Hoover thermostat

position position

Test of the NH thermostat with a one-dimensional harmonic oscillator

Page 17: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Nose-Hoover chains

M

j

M

jj

jjN

i i

iNNHC

MjM

M

jjjjj

j

N

i i

i

iN

i

i

ii

RTsgRTsQ

mVH

RTQQ

RTQQ

g

mQ

Vm

i

1 21

2

1

2

211

12

11

211

2

11

1

22

1

1

2

1

pr

p

prp

pr

r

Page 18: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Improvement of ergodicity for the NH chains thermostat

Test with a one-dimensional harmonic oscillator

Page 19: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Relative extended energy errors for the 108-particle LJ fluid

Kleinerman et al., J. Chem. Phys., 2008, 128, 245103

Page 20: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Performance of Nose-Hoover thermostat for the Lennard-Jones fluid

Kleinerman et al., J. Chem. Phys., 2008, 128, 245103

Page 21: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Performance various termostat on decaalanine chain

Kleinerman et al., J. Chem. Phys., 2008, 128, 245103

Page 22: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Extended system for pressure control (Andersen barostat)

0

13

13

1

PtPW

V

V

VV

V

m

iii

ii

ii

pFp

rp

r

W the „mass” corresponding to the barostat (can be interpreted as the mass of the „piston”)V is the volume of the system

Page 23: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Isothermal-isobaric ensemble

N

i i

i

N

i i

i

iiiiii

ii

RTgW

p

mp

Q

p

pQ

p

mg

dPtPdVp

W

dVpV

W

p

W

p

g

d

W

p

m

1

221

2

0

1,

,

1,

p

p

ppFprp

r

d is the dimension of the system (usually 3)g is the number of degrees of freedomW the „mass” corresponding to the barostatQ is the”mass” corresponding to the thermostat

Martyna, Tobias, and Klein, J. Chem. Phys., 1994, 101(5), 4177-4189

Page 24: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Martyna-Tobias-Klein NPT algorithm: tests with model systems

Model 1-dimensional system: position distribution

Model 3-dimensional system: volume distribution

Martyna, Tobias, and Klein, J. Chem. Phys., 1994, 101(5), 4177-4189

Page 25: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

The Langevin piston method (stochastic)

tW

RTttftf

tfVptpW

V

V

VV

V

m

randrand

rand

iii

ii

ii

2

13

13

1

0

pFp

rp

r

Feller, Zhang, Pastor, and Brooks, J. Chem. Phys., 1994, 103(11), 4613-4621

Page 26: Molecular dynamics (2) Langevin dynamics NVT and NPT ensembles.

Extended Hamiltonian method

Langevin piston method (W=25)

Berendsen barostat

W=5

W=25

W=225

g=20 ps-1

g=0 ps-1

g=50 s-1

tp=1 ps

tp=5 ps

Feller, Zhang, Pastor, and Brooks, J. Chem. Phys., 1994, 103(11), 4613-4621


Recommended