+ All Categories
Home > Documents > Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking...

Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking...

Date post: 09-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
8
Journal of Biomedical Sciences ISSN 2254-609X 2016 Vol. 5 No. 3:18 iMedPub Journals ht tp://www.imedpub.com Research Article © Under License of Creative Commons Attribution 3.0 License | This Article is Available in: www.jbiomeds.com 1 DOI: 10.4172/2254-609X.100032 Parimal Chandra Bhomick 1 , Salam Pradeep Singh 2 *, Chitta Ranjan Deb 3 , Dipak Sinha 1 , Lakshmi Narayan Kakati 4 and Bolin Kumar Konwar 5 1 Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India 2 Bioinformacs Infrastructure Facility, Nagaland University, Lumami-798627, Nagaland, India 3 Department of Botany, Nagaland University, Lumami-798627, Nagaland, India 4 Department of Zoology, Nagaland University, Lumami-798627, Nagaland, India 5 Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam, India (On-lien Vice Chancellor, Nagaland University, Lumami-798627, Nagaland, India) Corresponding author: Salam Pradeep Singh [email protected] Tel: +918486268935 Bioinformacs Infrastructure Facility, Nagaland University, Lumami-798627, Nagaland, India. Citation: Bhomick PC, Singh SP, Deb CR, et al. Molecular Interacon Studies of Chitosan Cross-linked Compounds as Drug Delivery Substrate for Ancancer Agents. J Biomedical Sci. 2016, 5:3. Molecular Interacon Studies of Chitosan Cross-linked Compounds as Drug Delivery Substrate for Ancancer Agents Abstract Chitosan is known for its absorpon and adhesion property and it is a non-toxic biodegradable hetero polymer. It has a strong affinity for water and high degree of solubility in acidic medium. In addion, chitosan hydrogels showed low mechanical strength and minimum ability to control the delivery of encapsulated compounds. And hence, in this invesgaon a set of compounds cross linked with Chitosan was screened for ancancer agent using computaonal technique (molecular docking) against NOS enzyme (PDB ID: 4NOS). The result was interesng as majority of the compounds screened turned up with favorable molecular interacon and binding affinity as evidenced from the docking score. Furthermore the molecular interacon analysis represents the cross linked compounds possessed heavy molecular interacon at the acve site residue of the enzyme. Thus, Chitosan cross linked compounds target the specific acve site residue and hence can be used in future for drug delivery. Keywords: Chitosan; cross linked; NOS enzyme; ancancer Received: February 19, 2016; Accepted: May 05, 2016; Published: May 11, 2016 Introducon Hydrogels are cross-linked polymeric networks that trap water in the polymer matrices mainly by surface tension and are usually three dimensional while most of its properes can be altered by structural modificaon [1,2]. A kind of hydrogel called chitosan is finding wide applicaon in many areas such as fuel cells, oil encapsulaon, wound dressing and especially in drug delivery in recent years [3-6]. Chitosan [β-(1,4)-2-amino-2-deoxy-d- glucopyranose] is a non-toxic biodegradable hetero polymer, has a good absorpon and adhesion property. It is a weak base obtained by deacetylaon of chin [3]. Because of their affinity for water and high degree of solubility in acidic medium, chitosan hydrogels comparavely shows low mechanical strength and minimum ability to control the delivery of encapsulated compounds [7], thereby facilitang chemical modificaon by its amino and hydroxyl groups. For a hydrogel to be introduced in a biological systems, its compability should be taken into account while it is seen that the pharmacy world will benefit from hydrogels like chitosan because of its hydrophilicity, flexibility, versality, high water absorpvity, and greater compability with the biological system. It is also a choice for the pharmaceucal world because of its long life span in circulaon and possibility of being acvely or passively targeted to the known biophase like cancer cells [8]. Chitosan can be blended with different cross linking agent to produce a chemically acve hydrogels for bioapplicaons. Like the amino group of chitosan can lead to ionic interacon between and anionic groups. These interacons can produce hydrogels with different material properes which depend upon the size of the anionic agents and charge density, also on degree of deacetylaon and amount of chitosan polymer.
Transcript
Page 1: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

Journal of Biomedical SciencesISSN 2254-609X

2016Vol. 5 No. 3:18

iMedPub Journalshttp://www.imedpub.com

Research Article

© Under License of Creative Commons Attribution 3.0 License | This Article is Available in: www.jbiomeds.com 1

DOI: 10.4172/2254-609X.100032

Parimal Chandra Bhomick1, Salam Pradeep Singh2*, Chitta Ranjan Deb3, Dipak Sinha1, Lakshmi Narayan Kakati4 and Bolin Kumar Konwar5

1 Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India

2 BioinformaticsInfrastructureFacility,Nagaland University, Lumami-798627, Nagaland, India

3 Department of Botany, Nagaland University, Lumami-798627, Nagaland, India

4 Department of Zoology, Nagaland University, Lumami-798627, Nagaland, India

5 DepartmentofMolecularBiologyandBiotechnology,TezpurUniversity,Tezpur-784028,Assam,India(On-lienViceChancellor,NagalandUniversity,Lumami-798627, Nagaland, India)

Corresponding author: Salam Pradeep Singh

[email protected]

Tel: +918486268935

BioinformaticsInfrastructureFacility,Nagaland University, Lumami-798627, Nagaland, India.

Citation:BhomickPC,SinghSP,DebCR, et al.MolecularInteractionStudiesofChitosanCross-linkedCompoundsasDrugDeliverySubstrateforAnticancerAgents. JBiomedicalSci.2016,5:3.

Molecular Interaction Studies of Chitosan Cross-linked Compounds as Drug Delivery

Substrate for Anticancer Agents

AbstractChitosanisknownforitsabsorptionandadhesionpropertyanditisanon-toxicbiodegradableheteropolymer.Ithasastrongaffinityforwaterandhighdegreeofsolubilityinacidicmedium.Inaddition,chitosanhydrogelsshowedlowmechanicalstrengthandminimumabilitytocontrolthedeliveryofencapsulatedcompounds.Andhence,inthisinvestigationasetofcompoundscrosslinkedwithChitosanwasscreenedforanticanceragentusingcomputationaltechnique(moleculardocking)againstNOSenzyme (PDB ID: 4NOS). The resultwas interesting asmajority ofthe compounds screened turned up with favorable molecular interaction andbindingaffinityasevidencedfromthedockingscore.Furthermorethemolecularinteraction analysis represents the cross linked compounds possessed heavymolecular interaction at the active site residue of the enzyme. Thus, Chitosancrosslinkedcompoundstargetthespecificactivesiteresidueandhencecanbeused in future for drug delivery.

Keywords: Chitosan;crosslinked;NOSenzyme;anticancer

Received: February19,2016; Accepted: May05,2016; Published: May11,2016

IntroductionHydrogelsarecross-linkedpolymericnetworksthattrapwaterinthepolymermatricesmainlybysurfacetensionandareusuallythreedimensionalwhilemostofitspropertiescanbealteredbystructuralmodification[1,2].Akindofhydrogelcalledchitosanis findingwideapplication inmanyareas suchas fuel cells, oilencapsulation, wound dressing and especially in drug deliveryin recent years [3-6]. Chitosan [β-(1,4)-2-amino-2-deoxy-d-glucopyranose] is a non-toxic biodegradable hetero polymer,hasagoodabsorptionandadhesionproperty.Itisaweakbaseobtainedbydeacetylationofchitin[3].Becauseoftheiraffinityforwaterandhighdegreeofsolubilityinacidicmedium,chitosanhydrogels comparatively shows low mechanical strengthand minimum ability to control the delivery of encapsulatedcompounds[7],therebyfacilitatingchemicalmodificationbyitsaminoandhydroxylgroups.Forahydrogeltobeintroducedinabiologicalsystems,itscompatibilityshouldbetakenintoaccountwhile it is seen that the pharmacy world will benefit fromhydrogels likechitosanbecauseof itshydrophilicity,flexibility,versatility,highwaterabsorptivity,andgreatercompatibilitywiththebiologicalsystem.It isalsoachoiceforthepharmaceuticalworldbecauseof its long lifespan incirculationandpossibilityof being actively or passively targeted to the known biophase

like cancer cells [8]. Chitosan can be blended with differentcrosslinkingagenttoproduceachemicallyactivehydrogelsforbioapplications. Like the amino group of chitosan can lead toionicinteractionbetweenandanionicgroups.Theseinteractionscanproducehydrogelswithdifferentmaterialpropertieswhichdependuponthesizeoftheanionicagentsandchargedensity,alsoondegreeofdeacetylationandamountofchitosanpolymer.

Page 2: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com2

Chitosancrosslinkedwithpolyelectrolyteshavebeenproducedbywater-solublenegativelychargedmoleculeslikeDNA,alginate,hyaluronicacid,proteinslikegelatinpolyacrylicacidandmostlythe stability of these compounds depends on solvent, chargedensity,temperature,ionicstrength,andpH[9-12].

TheNOSenzymesconsistofoxygenasedomainthatbindsarginine,tetrahydrobiopterinandhemeandreductasedomainwithFADand FMN prosthetic groups. They are complex, homodimerichemeenzymewhichproducesfreeradicalnitricoxidethatleadstovarietyofage-relateddiseases[13-15].Nitricoxidesynthase(NOS)incellsareofthreeisoforms.Neuronal/brainNOS(nNOS),endothelial NOS (eNOS) and inducible NOS (iNOS). nNOS andeNOSbelongstoconstitutiveNOS(cNOS)andNOproducedfromthistypehelpsinmaintainingnormalvasoactivitythroughaCa2+ -dependent pathway and also as a neurotransmitter for signaltransmission.WhileNOproducedfromiNOScantriggerseveraldisadvantage cellular responses and can cause some diseasesincludingsepsis,strokeandinflammation,[13-19].

Inthepresentinvestigationchitosancrosslinkedcompoundswere screened as inhibitors of iNOS revealing chitosan as agoodcarrierfordeliveringandunloadingthedrugatspecifictarget.

Materials and MethodChemical dataset The 2D structure of Diethylsquarate, Glutaraldehyde,Formaldehyde, Ethyleneglycol diglycildylether, BlockedDiisocyanate,PhloreticandActivatedQuinonecross-linkedwithChitosan was generatedwith Chemoffice 2010. The energy ofthesecross-linkedcompoundswerefurtheroptimizedusingMM2forcefieldmethodandsaveas sybylmol2 (threedimensional)fileformatusingChemOffice2010.

Protein preparation The 3D structure of human inducible nitric oxide synthase(PDB ID:4NOS)wasdownloaded from theProteinDatabankBank(http://www.rcsb.org/).Thecoordinatesofthisenzymeis complexedwithwatermolecules and ironprotoporphyrinIX (heme) along with the Cofactors such as BH4, Zn+2 atom. Moreoverthe3Dstructurehasaresolutionof2.25Å.makingit anexcellent choice formoleculardocking studies. All thewater molecules were removed for the molecular dockingsimulation purpose since they are not taken into accountduringthescoringfunction[20].

Docking computationThe3Dstructureofhumaninduciblenitricoxidesynthase(PDBID:4NOS)wasthenimportedinMolegroVirtualDocker(MVD).Thesidechainsconformationsof4NOSwere furtherminimizedusingPLP-potentialsforstericandhydrogenbondinginteractions,andtheCoulombpotentialfortheelectrostaticforces.Andonlythetorsionanglesaremodifiedduringtheminimizationwhichincludesbondlengthsandbackboneatompositionsareheldfixed[20].

Further, the potential ligand binding site of the enzyme waspredictedusingMVD.Thebindingsitehaveavolumeof470.02A3and1158.84A2.Thebindingsitewassetinsidearestrictionsphereofradius15A°(X0.65,Y99.58,Z11.19)usingMVD.

ThentheChitosancrosslinkedcompoundswerethenimportedinMVD.TheBondflexibilityofthecrossliknedcompoundswassetaswellasthesidechainflexibilityofresiduesnearthepotentialligandbindingsitewassetwithatoleranceof1.10andstrengthof0.90fordockingsimulations.TheRMSDthresholdwassetat2.00Åformultipleclusterposes.Thedockingalgorithmwassetat 1,500maximum iterationwith simplex evolution size of 50andaminimumof20runswereperformedforeachofthecrosslinkedcompound.Thebestposewasconsideredforsubsequentprotein-ligandinteractionanalysis.

MoleculardockingwascarriedoutusingMVDwhichisbasedonadifferentialevolutionalgorithm.ThealgorithmofMVDconsidersthe sumof the intermolecular interactionenergybetween theligandandtheproteinandtheintramolecularinteractionenergyof the ligand. Thedockingenergy scoring function isbasedonthemodifiedpiecewiselinearpotential(PLP)withnewhydrogenbondingandelectrostatictermsincluded.Fulldescriptionofthealgorithm anditsreliabilitycomparedtoothercommondockingalgorithmisdescribedbyThomsenetal.[20].

Results and DiscussionThe molecular docking simulation revealed the cross linkedcompoundsbindattheactivesiteoftheNOS.Fromthedockingscore, it is revealed that the MolDock score holds favorableinteractionfortheChitosanCrosslinkedcompoundsviz.DiethylSquarate (-181.13 kJmol-1), Formaldehyde (-179.522 kJmol-1), Glutaraldehyde (-145.48 kJmol-1), Blocked Diisocynate (-105.27kJmol-1),ActivatedQuinone(-104.72kJmol-1)intermsofnegativeenergy (Table 1).WhileEthyleneglycoldiglycildylether,PhloreticacidandGenepindonotpossessedafavourableinteraction.

Chitosan Cross Linked Ligands MolDock Score Interaction HBond LE1 LE3DiethylSquarate -181.13 -313.47 -7.75 -1.46 0.17Formaldehyde -179.52 -259.00 -14.09 -1.51 2.25Glutaraldehyde -145.48 -245.14 -12.19 -1.22 2.12

BlockedDiisocyanate -105.27 -210.05 -10.23 -0.81 1.82ActivatedQuinone -104.73 -207.40 -8.29 -0.84 3.18

Ethyleneglycoldiglycildylether -35.45 -105.79 -8.16 -0.27 2.94Phloreticacid 24.85 -124.02 -10.23 0.19 2.25

Genepin 90.39 20.50 -3.59 0.61 9.12

Table 1 Molecular docking score of the Chitosan cross linked compounds

Page 3: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

3© Under License of Creative Commons Attribution 3.0 License

Chitosan Cross Linked Ligands Ligand---ProteinInteraction Interactionenergy InteractionDistance

Diethylsquarate

O

O

O

O

O

O

O

OOH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

HN

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

OO

N(54)---Glu494(OE1) -2.5 2.87ÅO(97)---Arg388(NH2) -0.28 2.73ÅO(65)---Gln263(NE2) -2.5 2.90ÅO(101)---Asn283(OD1) -2.44 2.90ÅO(106)---Ala282(O) -1.82 3.23ÅO(28)---Val386(N) -1.88 2.85Å

O(26)---Thr121(OG1) -0.59 3.48ÅO(36)---Asp385(OD2) -2.02 3.20ÅO(95)---Tyr373(OH) -0.67 3.47Å

O(101)---Agr266(NH1) -2.5 2.93ÅO(77)---Agr266(NH1) -0.38 3.52ÅN(112)---Ala282(O) -0.65 2.82ÅO(70)---Gln263(NE2) -0.19 3.56ÅO(68)---Gln263(NE2) -0.01 3.60ÅO(97)---Asp383(OD1) -1.78 2.51ÅO(93)---Trp372(O) -0.96 2.42Å

O(93)---Glu377(OE2) -0.92 2.41ÅO(103)---Glu377(OE1) -1.46 3.31ÅO(93)---Met374(N) -0.60 3.40Å

O(102)---N(16)HEMCofactor -1.26 3.35ÅO(102)---N(24)HEMCofactor -2.19 3.16ÅN(107)---N(24)HEMCofactor -1.60 3.28ÅN(107)---N(32)HEMCofactor -2.5 3.01ÅN(108)---O(14)HEMCofactor -1.16 3.37ÅO(103)---O(14)HEMCofactor -0.93 3.41Å

Table 2a MolecularinteractionanalysisofChitosancrosslinkedDiethylsquarate

Formaldehyde

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

NH

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O(93)---Lys497(NZ) -2.5 3.06ÅO(93)---Glu494(OE1) -2.5 2.98ÅO(51)---Gln492(N) -1.35 3.33Å

O(34)---Glu285(OE1) -2.02 3.20ÅO(95)---Thr121(OG1) -2.5 2.92ÅO(87)---Thr121(OG1) -0.56 3.49ÅN(54)---Pro350(O) -2.5 2.96ÅO(47)---Phe369(O) -0.82 3.44ÅO(40)---Ala262(O) -2.5 2.73ÅO(38)---Ala262(O) -1.24 3.35Å

O(38)---Asn354(ND2) -2.5 2.73ÅO(97)---Asp385(OD2) -1.74 3.25ÅO(70)---Arg381(NH2) -0.96 3.39ÅO(72)---Arg381(NH2) -0.57 3.45ÅO(72)---Arg381(NH1) -1.24 3.35ÅO(105)---Arg381(NH1) -0.67 2.56ÅO(42)---Glu377(OE1) -2.5 3.08ÅO(101)---IIe119(O) -2.38 3.00ÅO(56)---Tyr373(OH) -0.69 2.78Å

O(101)---Arg199(NH2) -0.17 3.36ÅO(45)---O(41)HEMCofactor -0.48 3.50ÅN(52)---O(14)HEMCofactor -1.08 3.38ÅN(111)---O(14)HEMCofactor -1.45 3.31Å

Table 2b MolecularinteractionanalysisofChitosancrosslinkedFormaldehyde

Page 4: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com4

TheMolDockscoringfunction(MolDockScore)whichdeterminedthebindingaffinityinthepresentinvestigationisderivedfromthePiecewiseLeastPotential (PLP)scoring functions.TheMolDockscoring function further improves the PLP scoring functionswithnewhydrogenbondingtermandnewchargeschemes.Thedockingscoringfunction,EScore,isdefinedbythefollowingenergyterms:

EScore=Einter+Eintra

Where,

Einteristheligand-proteininteractionenergy

Eintra is the internal energy of the ligand

Further, the ligand-protein interaction calculation using ligandenergy inspector for the Chitosan cross linked compounds isshowninTable 2whichindicatestheligand-proteininteractionenergy and its molecular interaction distances along with the

interactingatoms.Itisobservedthatthecompoundsalsoexhibitmolecular interaction with the Cofactor HEM molecule. Thus,indicating a strong binding affinity towards the active site ofNOS. The snap shots illustrating the protein-ligand interactionof Chitosan cross linkedwith Diethyl Squarate, Formaldehyde,Glutaraldehyde,BlockedDiisocyanateandActivatedQuinoneisshown inFigures 1-5 respectively.Hence, from thefigures theplausibilityofChitosancrosslinkedcompoundsdeliveringligandsatagivenspecifictargetisviable.

ConclusionToconclude,moleculardockingsimulationwascarriedoutagainstNOSenzymewithasetofChitosancrosslinkedcompounds.ThemoleculardockingresultsshowedfavourablebindingaffinityanddockingscoreofthemajorityofthecompoundsattheactivesiteofNOSenzyme.Themolecularinteractionanalysisalsorevealedheavymolecularinteractionwiththeactivesiteresidues.Thus,

Glutaraldehyde

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

NH

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O(46)---Arg381(NH1) -2.5 2.92ÅO(46)---Arg381(NH2) -1.61 2.61ÅO(110)---Tyr347(OH) -2.5 2.68ÅO(65)---Gln263(NE2) -2.5 2.74ÅO(101)---Glu494(OE1) -0.63 3.47ÅH(180)---Gln492(O) -2.5 1.76ÅN(113)---Asn354(O) -2.5 2.75Å

O(106)---Asn354(OD1) -2.5 2.94ÅO(99)---Tyr491(OH) -1.95 3.21ÅO(56)---Trp463(NE1) -0.38 2.94ÅO(42)---Met120(N) -0.52 3.05ÅO(102)---Trp372(O) -2.5 2.92Å

N(107)---Glu377(OE1) -0.07 2.31ÅO(95)---O(41)HEMCofactor -2.5 2.82ÅO(102)---N(16)HEMCofactor -2.5 3.09ÅO(99)---O(42)HEMCofactor -0.20 3.56ÅH(177)---O(41)HEMCofactor -2.5 1.82Å

Table 2c MolecularinteractionanalysisofChitosancrosslinkedGlutaraldehyde

Blockeddiisocyanate

OO

OO

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

NH

NHO

H2N

NH

H2N

O

O

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

HN

HN

O

NH2

HN

NH2

O

NH

HN

O

O

N(113)---Thr121(O) -2.5 2.99ÅO(106)---Thr121(N) -1.99 3.20ÅO(36)---Glu494I(OE2) -2.32 2.58ÅH(152)---Ala282(O) -2.5 1.95ÅO(45)---Thr121(OG1) -0.74 3.45ÅN(52)---Thr121(OG1) -0.02 2.30ÅO(127)---Arg266(NH1) -2.01 2.83ÅN(48)---Ala282(O) -0.95 3.12Å

O(34)---Trp496(NE1) -0.68 2.64ÅO(44)---Asn354(ND2) -2.5 3.09ÅO(129)---Arg381(NH2) -1.97 2.66ÅO(87)---Arg381(NH1) -2.5 2.64ÅO(79)---Arg381(NH1) -2.28 3.14ÅO(79)---Arg381(NH2) -0.15 3.56Å

O(102)---O(15)HEMCofactor -2.5 2.61ÅO(102)---O(14)HEMCofactor -1.23 2.45ÅO(46)---O(41)HEMCofactor -1.28 3.35ÅN(53)---O(41)HEMCofactor -1.88 3.22Å

Table 2d MolecularinteractionanalysisofChitosancrosslinkedBlockeddiisocyanate

Page 5: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

5© Under License of Creative Commons Attribution 3.0 License

ActivatedQuinone

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

N

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O

N(107)---Ser118(O) -2.45 3.11ÅO(93)---Arg381(NH1) -2.5 2.91ÅO(65)---Arg381(NH1) -2.5 2.60ÅO(63)---Arg381(NH1) -0.08 3.58ÅO(65)---Arg381(NH2) -0.22 3.31ÅO(63)---Arg381(NH2) -0.03 3.59ÅO(43)---Arg388(NH2) -0.65 3.20ÅO(43)---Asp382(OD1) -1.84 3.23ÅO(43)---Gln263(NE2) -0.12 3.56ÅO(45)---Gln263(NE2) -2.37 3.13ÅO(26)---Asn354(ND2) -0.97 3.41ÅO(18)---Asn354(ND2) -1.57 3.29ÅO(42)---Asn354(ND2) -2.06 3.07ÅO(42)---Asn354(O) -1.48 2.48Å

O(40)---Asn354(OD1) -2.37 2.58ÅO(47)---Thr121(OG1) -2.5 2.90ÅN(54)---Glu494(OE1) -2.5 2.88ÅO(28)---Tyr373(OH) -1.14 3.37ÅO(20)---Tyr347(OH) -2.5 2.97ÅN(48)---Tyr347(OH) -2.5 2.84ÅO(36)---Tyr347(OH) -2.5 2.94ÅO(43)---Arg388(NH1) -2.5 2.96ÅO(79)---Trp463(NE1) -0.15 2.95ÅO(44)---Tyr373(OH) -0.35 3.32ÅO(44)---Glu377(OE1) -1.89 2.53ÅN(49)---Glu377(OE1) -1.27 3.16Å

O(34)---O(15)HEMCofactor -1.48 3.30ÅN(108)---O(15)HEMCofactor -1.86 2.52ÅN(108)---O(14)HEMCofactor -0.97 3.41ÅO(104)---O(14)HEMCofactor -1.77 3.25ÅO(34)---O(14)HEMCofactor -0.84 3.43ÅO(46)---O(41)HEMCofactor -0.07 3.59Å

Table 2e MolecularinteractionanalysisofChitosancrosslinkedActivatedQuinone

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedDiethylSquarateattheactivesiteofNOSenzyme

Figure 1

Page 6: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com6

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedFormaldehydeattheactivesiteofNOSenzyme

Figure 2

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedGlutaraldehydeattheactivesiteofNOSenzyme

Figure 3

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedBlockedDiisocyanateattheactivesiteofNOSenzyme

Figure 4

Page 7: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

7© Under License of Creative Commons Attribution 3.0 License

webring toacause thatChitosancross linkedcompounds isagood inhibitorofNOSenzymeasanticanceragents.Moreover,Chitosanissuccessfulindeliveringthecompoundsatthespecificactivesiteofthetargetenzyme.

Conflict of interestTheauthorsdeclarenoconflictofinterestexist

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedActivatedQuinoneattheactivesiteofNOSenzyme

Figure 5

AcknowledgementThe authors would like to acknowledge the Department ofBiotechnology,MinistryofScienceandTechnology,GovernmentofIndia,NewDelhiforthenecessarysupport.PCBacknowledgedtheDepartmentofScienceandTechnology (DST),GovernmentofIndiaforDST-INSPIREfellowship(IF150297).

Page 8: Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking simulationrevealed the cross linked compounds bind at the activesite of the NOS. From the docking

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com8

References1 Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer

electrolytes for electrochemical capacitors: an overview. EnergyEnvironSci2:55-67.

2 GiriTK,ThakurA,AlexanderA(2012)Modifiedchitosanhydrogelsasdrugdeliveryandtissueengineeringsystems:presentstatusandapplications.ActaPharmaceuticaSinicaB2:439-449.

3 Ma J, Choudhury NA, Sahai (2011) A high performance directborohydride fuel cell employing cross-linked chitosan membrane.PowerSources196:8257-8264.

4 BhattaraiN,GunnJ,ZhangM(2010)Chitosan-basedhydrogels forcontrolled,localizeddrugdelivery.AdvDrugDelivRev62:83-99.

5 AbreuFO,OliveiraEF,PaulaHC,dePaulaRC(2012)Chitosan/cashewgumnanogelsforessentialoilencapsulation.CarbohydrPolym89:1277-1282.

6 Mogoşanu GD, Grumezescu AM (2014) Natural and syntheticpolymersforwoundsandburnsdressing.IntJPharm463:127-136.

7 Crinia G, Badot PM (2008) Application of chitosan, a naturalaminopolysaccharide, for dye removal from aqueous solutionsby adsorption processes using batch studies: A review of recentliterature. Prog PolymSci33:399-447.

8 HamidiM,AzadiA,RafieiP (2008)Hydrogelnanoparticles indrugdelivery.AdvDrugDelivRev60:1638-1649.

9 BrackHP,TirmiziSA,RisenWM(1997)Aspectroscopicandviscometricstudyofthemetalion-inducedgelationofthebiopolymerchitosan.Polymer 38: 2351-2362.

10 Dambies L, Vincent T, Domard A, Guibal E (2001) Preparation ofchitosangelbeadsbyionotropicmolybdategelation.Biomacromolecules2:1198-1205.

11 SinghSP,KonwarBK(2012)Moleculardockingstudiesofquercetinand its analogues against human inducible nitric oxide synthase.Springerplus 1: 69.

12 TsuchidaE,AbeK (1982) InteractionsbetweenMacromolecules inSolution and Intermacromolecular Complexes. Adv Polym Sci 45:1-119.

13 GarthwaiteJ,BoultonCL(1995)Nitricoxidesignalinginthecentralnervoussystem.AnnuRevPhysiol57:683-706.

14 Stuehr DJ (1997) Structure-function aspects in the nitric oxidesynthases.AnnuRevPharmacolToxicol37:339-359.

15 ChungHY,CesariM,AntonS,MarzettiE,GiovanniniS,etal.(2009)Molecular inflammation: underpinnings of aging and age-relateddiseases.AgeingResRev8:18-30.

16 Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988)MacrophageoxidationofL-argininetonitriteandnitrate:nitricoxideisanintermediate.Biochemistry27:8706-8711.

17 NathanC(1992)Nitricoxideasasecretoryproductofmammaliancells.FASEBJ6:3051-3064.

18 Yen-ChouC,Shing-ChuanS,Woan-RuohL,Wen-ChiH,etal.(2001)Inhibitionofnitricoxidesynthaseinhibitorsandlipopolysaccharideinduced inducible NOS and cyclooxygenase-2 gene expressionsby rutin, quercetin, and quercetin pentaacetate in RAW 264.7macrophages.JCellBiochem82:537-548.

19 FischmannTO,HruzaA,NiuXD,FossettaJD,LunnCA,etal.(1999)Structuralcharacterizationofnitricoxidesynthaseisoformsrevealsstrikingactive-siteconservation.NatStructBiol6:233-242.

20 ThomsenR,ChristensenMH(2006)MolDock:anewtechniqueforhigh-accuracymoleculardocking.JMedChem49:3315-3321.


Recommended