+ All Categories
Home > Documents > More on HgCdTe detectors for Astronomy M. Robberto.

More on HgCdTe detectors for Astronomy M. Robberto.

Date post: 17-Jan-2018
Category:
Upload: cecily-brooks
View: 231 times
Download: 1 times
Share this document with a friend
Description:
Metallurgy BASE LAYER In-doped CAP LAYER undoped IMPLANT As-doped Gold STOICHIOMETRY (Hg 1-x Cd x Te) vs. DOPING (In, As)
25
More on HgCdTe detectors for Astronomy M. Robberto
Transcript
Page 1: More on HgCdTe detectors for Astronomy M. Robberto.

More on HgCdTe detectors for Astronomy

M. Robberto

Page 2: More on HgCdTe detectors for Astronomy M. Robberto.

“P on N” design

Page 3: More on HgCdTe detectors for Astronomy M. Robberto.

Metallurgy

BASE LAYER

In-doped

CAP LAYER

undoped

IMPLANT

As-dopedGold

STOICHIOMETRY (Hg1-xCdxTe) vs. DOPING (In, As)

Page 4: More on HgCdTe detectors for Astronomy M. Robberto.
Page 5: More on HgCdTe detectors for Astronomy M. Robberto.

Geometry

~10 micron~1 micron

~1

mic

ron

REM

OV

ED

Page 6: More on HgCdTe detectors for Astronomy M. Robberto.

DLPH: Double Layer Planar

Heterostructure

DLPH: Double Layer Planar Heterostructure

- The CAP Layer has more Hg, wider band gap-Passivation is done with CdTe-Passivation needs protection (“overcoating”)

Page 7: More on HgCdTe detectors for Astronomy M. Robberto.

Heterostructure

REM

OV

ED

In concentration~1015 cm-3

As is “ion implanted”

Page 8: More on HgCdTe detectors for Astronomy M. Robberto.

Built-in field

REM

OV

ED

N-typeCathode

P-typeAnode

-0.05V +0.05V

( => direction of dark current)

Page 9: More on HgCdTe detectors for Astronomy M. Robberto.

Reverse bias

REM

OV

ED

N-typeP-type-0.250V

Vsub

Vreset

0.0V

Page 10: More on HgCdTe detectors for Astronomy M. Robberto.

Photogeneration

REM

OV

ED

N-typeP-type-0.250V

Vsub

Vreset

0.0V

Page 11: More on HgCdTe detectors for Astronomy M. Robberto.

Photogenation FORWARD biases the junction

REM

OV

ED

N-typeP-type-0.250V

Vsub

Vreset

0.0V

Page 12: More on HgCdTe detectors for Astronomy M. Robberto.
Page 13: More on HgCdTe detectors for Astronomy M. Robberto.
Page 14: More on HgCdTe detectors for Astronomy M. Robberto.

Reset

Page 15: More on HgCdTe detectors for Astronomy M. Robberto.

End of integration

Page 16: More on HgCdTe detectors for Astronomy M. Robberto.

The “unit cell equation”

Q C V

Differentiate:dQ CdV VdC

CCdV V dVV

CC V dVV

If :detdQ I dt

detIdVCdt C VV

Page 17: More on HgCdTe detectors for Astronomy M. Robberto.

Detector capacitance

And it is immediate to calculate also the derivative.

Page 18: More on HgCdTe detectors for Astronomy M. Robberto.

Detector currentdet dark photonI I I

, exp 1 + exp 12

b i bdark SAT diff

g

eE eWn eEI IKT KT

photI e

Iphot is negative because the convention is to assume Idark >0 under forward bias.

HEAT

HEAT HEAT

HEATHEAT

GR

DIFF

DIFF

Page 19: More on HgCdTe detectors for Astronomy M. Robberto.

Diffusion current

• Diffusion is a slow process;• Last only as long as the carrier lifetime.

Page 20: More on HgCdTe detectors for Astronomy M. Robberto.

Shockley Equation

2 exp forward biasexp 1

1 reverse bias

h ediff i

h d e

bb

a

eEeE

kTK

eD eDI n

TL N L N

,

, , , , ,

,

: detector biasD : minority carrier diffusion coefficient on the n,p side of the junction

L : diffusion lenght. It is L , with minority carrier lifetime

N : donor/acceptor concen

h e

h e h e h e h e h e

d a

V

D

trations

n : intrinsic carrier concentrationi

1/2 1/22

,

/ /h h e eSAT diff i

d a

I ekT nN N

(this is A/cm2)

• depends on mobility and recombination time scales (delicate to control)• depends on doping (easier to control)• proportional to ni

2

Page 21: More on HgCdTe detectors for Astronomy M. Robberto.

Generation-Recombination current

The Shockley equation neglects the current due to generation and recombination of charges in the depletion region. Both majority and minority charges are swept away by the electric field, become majority carrier in the neutral layer and generate a current that can be detected.

Page 22: More on HgCdTe detectors for Astronomy M. Robberto.

Generation-Recombination current

exp forward biasexp 1 2

21 reverse bias

iG R

g

bbeWn

eEeE

kTKT

I

20

0 0

: width of the depletion region: minority carrier lifetime in the depletion region

: built-in voltage = / ln /

: permittivity of the semiconductor material ( , = 8.854E

g

a d i

r

W

E kT e N N n

-12 F/m is the permittivity of the free space)

1

0

/22 1 1

(assumes abrupt junction)d a

bW E Ee N N

(this is A/cm2)

• similar to the expression for the diffusion current. G-R proportional to ni • Factor of 2 due to the detection of both majority and minority carriers• term E0 – Eb accounts for the size of the depletion region (in reverse bias Eb=-Erev)

Page 23: More on HgCdTe detectors for Astronomy M. Robberto.

Intrinsic Carrier ConcentrationFrom Hansen and Schmit (1983)

for T>50K.a)Calculate ni for the four cases of Eg (Ex.1).

Using ε=(20.5-15.5x+5.7x2) ε0, calculate

b) W (depletion width)c) Cjun (junction capacitance)

Assuming Vbuiltin =0, Vbias=-250mV, Nd=1E15cm-3, Na=1E19 cm-3, and 18micron pix.size.

Page 24: More on HgCdTe detectors for Astronomy M. Robberto.

Other dark current sources

• Band-to-band tunneling• Trap-assisted tunneling• Surface region tunneling• Surface leakage• Other leakages

a)Tunneling is independent on temperature.b)These phenomena dominate at low temperature.

Page 25: More on HgCdTe detectors for Astronomy M. Robberto.

Recommended