+ All Categories
Home > Documents > Moving to 3G faster and higher quality networks started supporting better services like video...

Moving to 3G faster and higher quality networks started supporting better services like video...

Date post: 18-Dec-2015
Category:
Upload: alberta-greer
View: 214 times
Download: 2 times
Share this document with a friend
33
Moving to 3G • faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet browsing, it resulted in the introduction of the 3rd generation mobile telecommunication standard (UMTS). • 3G network were developed to offer high speed data and multimedia connectivity to subscribers
Transcript
Page 1: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Moving to 3G

• faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet browsing, it resulted in the introduction of the 3rd generation mobile telecommunication standard (UMTS).

• 3G network were developed to offer high speed data and multimedia connectivity to subscribers

Page 2: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Evolution of cellular technologies

Page 3: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

3G Overview• 3G is created by ITU-T and is called IMT-2000

IMT-2000, “International Mobile Telecommunications”

• Wideband Code Division Multiple Access• CDMA 2000 - Code Division Multiple Access 2000• UMTS - Universal Mobile Telecommunications System• time division duplex- code division multiple access• Time Division Synchronous Code Division Multiple Access• Universal Wireless Communications • Digital Enhanced Cordless Telecommunications

Page 4: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Service RoadmapImproved performance, decreasing cost of delivery

Typical average bit rates (peak rates higher)

WEB browsingCorporate data accessStreaming audio/video

Voice & SMS Presence/location

xHTML browsingApplication downloadingE-mail

MMS picture / video

Multitasking

3G-specific services take advantage of higher bandwidth

and/or real-time QoS

3G-specific services take advantage of higher bandwidth

and/or real-time QoS

A number of mobile services are bearer

independent in nature

A number of mobile services are bearer

independent in nature

HSDPA1-10Mbps

WCDMA2

Mbps

EGPRS473kbps

GPRS171kbps

GSM9.6

kbps

Push-to-talk

Broadbandin wide area

Video sharing Video telephonyReal-time IPmultimedia and gamesMulticasting

Page 5: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

GSM Evolution to 3G

GSM9.6kbps (one timeslot)GSM DataAlso called CSD

GSM

General Packet Radio ServicesData rates up to ~ 115 kbpsMax: 8 timeslots used as any one timePacket switched; resources not tied up all the timeContention based. Efficient, but variable delaysGSM / GPRS core network re-used by WCDMA (3G)

GPRS

HSCSD

High Speed Circuit Switched DataDedicate up to 4 timeslots for data connection ~ 50 kbpsGood for real-time applications c.w. GPRSInefficient -> ties up resources, even when nothing sentNot as popular as GPRS (many skipping HSCSD)

EDGE

Enhanced Data Rates for Global Evolutionmprovement in data rate on short distancesCan fall back to GMSK for greater distancesCombine with GPRS (EGPRS) ~ 384 kbpsCan also be combined with HSCSDWCDMA

Page 6: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

UMTS• Universal Mobile Telecommunications System

(UMTS)• UMTS is an upgrade from GSM via GPRS or EDGE• The standardization work for UMTS is carried out

by Third Generation Partnership Project (3GPP)• Data rates of UMTS are:

– 144 kbps for rural– 384 kbps for urban outdoor– 2048 kbps for indoor and low range outdoor

Page 7: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

UMTS Frequency Spectrum

• UMTS Band – 1900-2025 MHz and 2110-2200 MHz for 3G transmission– In the US, 1710–1755 MHz and 2110–2155 MHz will be

used instead, as the 1900 MHz band was already used.

Page 8: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

UMTS Architecture

SD

Mobile Station

MSC/VLR

Base StationSubsystem

GMSC

Network Subsystem

AUCEIR HLR

Other Networks

Note: Interfaces have been omitted for clarity purposes.

GGSNSGSN

BTS BSC

NodeB

RNC

RNS

UTRAN

SIM ME

USIMME

+

PSTN

PLMN

Internet

Page 9: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Gateway GPRS support node (GGSN)[

• Gateway GPRS support node (GGSN)• The gateway GPRS support node (GGSN) is a main

component of the GPRS network. The GGSN is responsible for the internetworking between the GPRS network and external packet switched networks, like the Internet

• From an external network's point of view, the GGSN is a router to a "sub-network", because the GGSN ‘hides’ the GPRS infrastructure from the external network.

Page 10: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Gateway GPRS support node (GGSN)[

• When the GGSN receives data addressed to a specific user, it checks if the user is active. If it is, the GGSN forwards the data to the SGSN serving the mobile user, but if the mobile user is inactive, the data is discarded. On the other hand, mobile-originated packets are routed to the right network by the GGSN.

• The GGSN is the anchor point that enables the mobility of the user terminal in the GPRS/UMTS networks

Page 11: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Gateway GPRS support node (GGSN)[

• The GGSN converts the GPRS packets coming from the SGSN into the appropriate packet data protocol (PDP) format (e.g., IP or X.25) and sends them out on the corresponding packet data network

Page 12: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Serving GPRS support node (SGSN)

• A serving GPRS support node (SGSN) is responsible for the delivery of data packets from and to the mobile stations within its geographical service area.

• Its tasks include packet routing and transfer, mobility management (attach/detach and location management), authentication and charging functions. The location register of the SGSN stores location information.

Page 13: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

UMTS Network Architecture

• UMTS network architecture consists of three domains– Core Network (CN): Provide switching, routing and

transit for user traffic– UMTS Terrestrial Radio Access Network (UTRAN):

Provides the air interface access method for user equipment.

– User Equipment (UE): Terminals work as air interface counterpart for base stations. The various identities are: IMSI, TMSI, P-TMSI, TLLI, MSISDN, IMEI, IMEISV

Page 14: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

UTRAN

• Wide band CDMA technology is selected for UTRAN air interface

• Base stations are referred to as Node-B and control equipment for Node-B is called as Radio Network Controller (RNC).– Functions of Node-B are

• Air Interface Tx/Rx• Modulation/Demodulation

– Functions of RNC are:• Radio Resource Control• Channel Allocation • Power Control Settings• Handover Control• Ciphering• Segmentation and reassembly

Page 15: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

3.5G (HSPA)High Speed Packet Access (HSPA) is an amalgamation of two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing WCDMA protocols3.5G introduces many new features that will enhance the UMTS technology in future.

Page 16: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

4G (LTE)

• LTE stands for Long Term Evolution• Next Generation mobile broadband

technology• Promises data transfer rates of 100 Mbps• Based on UMTS 3G technology• Optimized for All-IP traffic

Page 17: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE

Page 18: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Background of LTE

key requirements was defined for the new system • Packet-switched domain optimization • Roundtrip time between server and user equipment (UE) must be

bellow 30ms and access delay below 300 ms • Uplink peak rate 75 Mbps • Downlink peak rate 300Mbps • Improvements to mobility and security • Terminal power efficiency improvements • Capacity increase compared to 3GPP release 6 (HSDPA/HSUPA

Page 19: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Comparison of LTE Speed

Page 20: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

HSPA vs LTE

Page 21: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Advantages of LTE

Page 22: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Major LTE Radio Technogies

• Uses Orthogonal Frequency Division Multiplexing (OFDM) for downlink

• Uses Single Carrier Frequency Division Multiple Access (SC-FDMA) for uplink

• Uses Multi-input Multi-output(MIMO) for enhanced throughput

• Reduced power consumption

Page 23: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

OFDMA & SC-FDMA

• The LTE air interface uses Orthogonal Frequency Division Multiplexing (OFDM). Also to reach the agreed data levels multiple input / multiple output (MIMO)

• technologies, together with high rate modulation• OFDMA is used in the downlink of LTE but for the uplink

Single Carrier – Frequency Division Multiple Access (SC-FDMA)

• OFDM-based technology was chosen for the following reason – it can achieve the targeted high data rates with simpler

implementations involving relatively low cost and power-efficient hardware

Page 24: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

multiple input / multiple output (MIMO)

• To minimize the effects of noise and to increase the spectrum utilization and link reliability LTE uses MIMO technique to send the data. The basic idea of MIMO is to use multiple antennas at receiver end and use multiple transmitters when sending the data

Page 25: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE impact on network architecture

• The LTE network architecture is an overall flat architecture

• It consists of an e-Node B and SAE gateway. This network is based on a TCP/IP protocol with higher service levels like voice, video, messaging, etc. built on it.

• Based on this, feasibility studies related to All IP networks (AIPNs) were started in 2004 by the 3GPP

Page 26: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE Architecture

Page 27: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE vs UMTS• Functional changes compared to the current

UMTS architecture

Page 28: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE Release 8 Key Features (1/2)

• High spectral efficiency– OFDM in Downlink– Single Carrier FDMA in Uplink‐

• Very low latency– Short setup time & Short transfer delay– Short hand over latency and interruption time

• Support of variable bandwidth– 1.4, 3, 5, 10, 15 and 20 MHz

28

Page 29: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE Release 8 Key Features (2/2)

• Compatibility and interworking with earlier 3GPP Releases

• FDD and TDD within a single radio access technology

• Efficient Multicast/Broadcast

29

Page 30: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Evolution of LTE-Advanced (4G)

• Advanced Multi-cell Transmission/Reception Techniques

• Enhanced Multi-antenna Transmission Techniques

• Support of Larger Bandwidth in LTE-Advanced

30

Page 31: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE-Advanced (4G)

• Peak data rates up to 1Gbps are expected from bandwidths of 100MHz. OFDM adds additional sub-carrier to increase bandwidth

31

Page 32: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

LTE vs. LTE-Advanced

32

Page 33: Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.

Conclusion

• LTE-A helps in integrating the existing networks, new networks, services and terminals to suit the escalating user demands

• LTE-Advanced will be standardized in the 3GPP specification Release 10 (LTE-A) and will be designed to meet the 4G requirements as defined by ITU

33


Recommended