Date post: | 03-Apr-2018 |
Category: |
Documents |
Author: | gokaran-shukla |
View: | 217 times |
Download: | 1 times |
of 53
7/28/2019 MRAM processing NOZIERES.pdf
1/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MRAM
PROCESSING
7/28/2019 MRAM processing NOZIERES.pdf
2/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
- MTJ used as a variable resistance
- Resistance compatible with CMOS (~ k)
- End-of-back-end process- No trade-off with logic process
-Easy / cheap to embedd
- 0 to 3 add-masks
- No HV required
- Front-end contamination ?
- Low-T BE process (T
7/28/2019 MRAM processing NOZIERES.pdf
3/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Microcontamination procedure
Table values are for blanket film.
Etch reduces values by 30-80% onpatterned wafer
SEZ backside clean post deposition
and etch steps Monitoring of tools pre/post MRAM
wafers using TXRF
ElementElement ConcentrationConcentration
((g/cm2)g/cm2)BB
7/28/2019 MRAM processing NOZIERES.pdf
4/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
90nmCMOS
MRAM
0.29m2BitCell
90nm front end CMOS.
Cladded Cu M5 / M6 lines
MRAM DEMO CHIPS
Freescale / Everspin
4Mb Toggle MRAM
7/28/2019 MRAM processing NOZIERES.pdf
5/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MRAM DEMO CHIPS
Hynix 32 Mb planar STT
14F
7/28/2019 MRAM processing NOZIERES.pdf
6/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
PROCESS SCHEMATIC - STT MRAM
6
Low-T
Back end MTJ
M0
Bit line
Cell
Strap
Pads
Regular
Front end
Non-standard
Process
Standard
Process
7/28/2019 MRAM processing NOZIERES.pdf
7/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Low-TBack end
V1
M0
M4 Bit-Line
V3
M2 Bit-Line
VM2
MM1
MM2 - Strap
V4
V2
M1
STI
Pads
Regular
Front end
7
MTJNon-standard
Process
Standard
Process
Shallow via
Cladded line
PROCESS SCHEMATIC FIELD MRAM
7/28/2019 MRAM processing NOZIERES.pdf
8/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Decreases write current by ~2x
(improved power, electromigration)
Lower cladded line easy to process
Simple replacement of liner material
with ferromagnetic material (e.g. NiFe)
Upper cladded line more complex multi-step process to preserve film
continuity and prevent ferromagnetic
material at the bottom of the bit line.
Beware of changes in wire resistivity
and inductance !
FIELD MRAM - CLADDED LINES
NiFe
7/28/2019 MRAM processing NOZIERES.pdf
9/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
FRONT END BUILD-UP
M2M2
oxide
SiNx
V2
Process Cu CMP
Target Oxide surface roughness
7/28/2019 MRAM processing NOZIERES.pdf
10/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Orange peel coupling
Smooth(5x5
m)
Rough(1x
1m
Hotspots / Orange peel coupling
FRONT END BUILD-UP
7/28/2019 MRAM processing NOZIERES.pdf
11/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
No porous dielectrics
No large-grain-boundary metals
Extra smoothing polish on dielectricor metal layer before mag dep
Beware of hillocks and voids in Cu
Beware of dishing Self-aligned Cu cap (etch back +
backfill + smoothing CMP)
Beware of residual slurry particles In situ megasonic cleaning or use of
abrasive-free slurries
FRONT END BUILD-UP
Cu CMP issues
7/28/2019 MRAM processing NOZIERES.pdf
12/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
edge right side
center edge
0,17 0,24 nm rms
FRONT END BUILD-UP
ILD surface roughness
7/28/2019 MRAM processing NOZIERES.pdf
13/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MAGNETIC STACK
DEPOSITION / ANNEAL
M2M2
oxide
SiNx
V3 Strap / etch stop
Reference layer
Storage layer
Hard mask
13
M4 Bit-Line
VM2
MM1
MM2 - Strap
Pads
V2
Process Magnetic PVD / Anneal
Target RA / TMR uniformity < few %
Key issues MgO integrity (pinholes, hot spots, ), layers roughness, proper magnetics
Materials contamination
Impact Cells resistance distribution, switching current distribution
7/28/2019 MRAM processing NOZIERES.pdf
14/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Base electrode
Seed layer
Pinning layer
Tunnel barrier
Capping layer
Spin injectionlayer
Thermal barrier
Etch stop layer
Contact to select transistor + diffusion barrier
Ta(5) or NiFeCr(10) : Promotes texture of crit ical layers
PtMn(20) : AF layer sets direct ion of reference layer
CoFeB(2) / Ru(0.8)/CoFe(2) : SAF, immune to external fields
MgO (1.1) : Defines cell R & TMR
Reference layer
NiFe(3) / CoFe(2) : Stores data (2 stable states)
Storage layer
Protects MTJ during process
Top Electrode
MAGNETIC STACK
DEPOSITION / ANNEAL
7/28/2019 MRAM processing NOZIERES.pdf
15/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Magnetic film stack grown entirely without breaking vacuum asinterface properties are of high importance in magnetics.
Conventional PVD tools poorly suited to MTJ film deposition, as they
lack the necessary control of film thickness, film uniformity, and
surface roughness. Additional chamber required for finely-controlled oxidation of tunnel
barriers
Specialized deposition tools derived from HDD industry
TMR read
head
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
16/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
17/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
10 targets, rotating drum
Deposition chamber
Oxidation module :Plasma oxidation
Natural oxidation
RF reactive deposition
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
18/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
19/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
20/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
21/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MAGNETIC STACK DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
22/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Sputter Ta in chamber (used as H2O getter) during MgO deposition.With Ta getter
w/o Ta getter
MAGNETIC STACK DEPOSITION
Influence of water partial pressure
7/28/2019 MRAM processing NOZIERES.pdf
23/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Anneal (Magnetic)
Set pinning layer(s) with desired magnetization direction.
T~250-300C (depends upon AF material)
In-plane MTJ requires magnetic field, H~1T, low skew
Perpendicular MTJ may not require magnetic field anneal
Anneal (Structural)
MgO / CoFeB crystallization
Perpendicular layers crystallization
Beware, magnetic films can change stoichiometry dramatically
MAGNETIC STACK ANNEAL
7/28/2019 MRAM processing NOZIERES.pdf
24/53
7/28/2019 MRAM processing NOZIERES.pdf
25/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Amorphous CoFeB
Polycrystalline (001)
textured MgO
Amorphous CoFeB
Ru spacer
Cap layer (Ta or Ru)
As-deposited Annealing
bcc CoFe
crystalline (001)
textured MgO
Ru spacer
Cap layer (Ta or Ru)
After annealing
Improvement of MgO
crystallization
Crystallization of bcc
CoFe from the MgO
interface and expulsion
of the B out-of the CoFeB
alloy
Crystallization of bcc
CoFe from the MgO
interface and expulsionof the B out-of the CoFeB
alloy
B rich CoFeB
bcc CoFe
B rich CoFeB
Important to attract B away from the tunnel barrier during the crystallization process
Insert B getters nearby free and reference layer (Ta, Ru, Ti, Nb, Zr, Hf)
MAGNETIC STACK ANNEAL
Growth of Tunnel Barrier
7/28/2019 MRAM processing NOZIERES.pdf
26/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Ru-based SAF reference layer important for anneal at T>300C
Mn diffusion l imits anneal T at ~400C
Ultrafast (flash) anneals also allow to get good recrystallization while preventing interdiffusion
Higher Tanneal better (MgO) but issues with interdiffusion in the metallic layers
MAGNETIC STACK ANNEALInfluence of annealing T
7/28/2019 MRAM processing NOZIERES.pdf
27/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013MTJ ETCH
M2M2
oxide
SiNx
V3
27
Process Hard mask Cl-RIE Ash / Clean + MTJ etch (IBE or RIE) / Clean
Target >85-deg sidewall (e.g. CD gain), limited O/E
Key issues Prevent sidewalls redeposit ion, magnetic layers damage/corrosion, CD cont rol
Insert proper etch stop layers / post etch clean
Impact Cell Resistance distribution, R/W performances, reliability
M4 Bit-LineVM2
MM1
MM2 - Strap
Pads
V2
7/28/2019 MRAM processing NOZIERES.pdf
28/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
CD variation
Parasitic resistances
parallel (shunts)
serial (contact R)
Edge tapering / defects
Influences switching process
Materials damage
Influences witching process
Decreased TMR (read margin)
Corrosion (reliability)
Parallel R shunt
CD variation
Contact R
Etch remains the major process challenge
MTJ ETCH ISSUES
7/28/2019 MRAM processing NOZIERES.pdf
29/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MTJ ETCHDistribution Considerations (Read)
7/28/2019 MRAM processing NOZIERES.pdf
30/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
MTJ ETCHDistribution Considerations (STT Write)
7/28/2019 MRAM processing NOZIERES.pdf
31/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Low reactivity with etched films
Control of incident angle
(sidewalls clean)
Similar etch rates across a wide range
of different materials
HM HM
MTJ MTJ
Low-density MRAM Cell High-density MRAM Cell
Etch
Clean
Non volatile species
(conductive sidewall redeposits)
Poor selectivity (wrt. mask)
Shadowing (limits density / AR)
Low throughput
No 300mm history (uniformity ?)
ION BEAM ETCHING (IBE)
7/28/2019 MRAM processing NOZIERES.pdf
32/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Taper angle (~ 10) for physical removal of
sidewall redeposits.
Tradeoff between optimal cleanliness, damage
of upper layers and CD control
Option 1 : Single angle etch (e.g. 70-80)
Good CD control
Important redepositions
Option 2 : Dual angle etch
High angle etch for CD control Low angle sidewalls clean
Can etch down to bottom layer
MgOTa
TaPtMn
Metallic
Redeps
ION BEAM ETCHING (IBE)
7/28/2019 MRAM processing NOZIERES.pdf
33/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Applied MaterialsHot cathode DPS+ Etcher
2MHz
Tc=150-250C
High throughputs
Good CD control / Vertical sidewalls
Volatile etch by-productLimited sidewalls redepositions
No shadowing effectsPossibility to process dense (low pitch)devices
REACTIVE ION ETCHING (RIE)
Process of choice in
semiconductor industry
Poor volatility of magnetic materials by-
products at moderate T
Process is very materials (stack)dependent
7/28/2019 MRAM processing NOZIERES.pdf
34/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Chlorine, Bromine RIE Chlorine attack of magnetic films (corrosion, undercut)
Poor reactant volatility (sidewall redeposits)
Degraded magnetic properties (halogen exposure)
Carbonyl-based RIE (methanol or CO/NH3) more volatile byproducts
higher selectivity with metallic masks (Ti,Ta)
low propensity towards corrosion in these chemistries
Option 1 : Stop on MgO Prevents impact of sidewals redeps
Poor selectivity for MgO stop (footing / residues)
Additional masking/etch step required (cost, cell size)
Option 2 : Full MTJ etch High selectivity to underlayer possible
healthy overetch to scrub MTJ sidewalls
Sidewalls redeps critical Moderate taper angle
REACTIVE ION ETCHING (RIE)
7/28/2019 MRAM processing NOZIERES.pdf
35/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
1- Hard mask etch : TiN, Ta, TN
Cl2 / F based chemistries in DPS+
T>150CStop on Ru etch stop (capping) layer
3- Magnetic Tunneling Junction etching :
One step process in DPS+ reactorCO/NH3, NH3 or N2H2 chemistries
Tcat.=150-250C
Formation of volatile carbonyl based products
expected at elevated T
Three-step process in RIE process
2- Post Etch Treatment :
Importance ofin situ clean before MTJ etch
Avoid Chlorine diffusion within the magnetic stack NH3 clean to remove Cl and F from Ru surface
SiO2 HM
TA-MRAM Stack
Ta
Ta
Ru
FeMn
NiFe
RuCoFe
PtMn
MgO
CoFeB
CoFe
Hard mask
Storage
Reference
REACTIVE ION ETCHING (RIE)
REACTIVE ION ETCHING (RIE)
7/28/2019 MRAM processing NOZIERES.pdf
36/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Chlorine effect on MTJ stack :
NH3 (100 sccm) - 5mTorr - 800Ws / 0Wb 2min
To avoid metallic salt formation and corrosion,chlorine must be removed.
Dechlorination using NH3 plasma :
Evidence of chlorine contamination at the surface
Metallic Salts formation on Ru after air exposure
Efficiency of NH3 Clean
step to remove Cl and Ffrom Ru surface.
200 nm
REACTIVE ION ETCHING (RIE)Post etch treatment
( )
7/28/2019 MRAM processing NOZIERES.pdf
37/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
From IBE .
to Chlorine
to carbonyls
(methanol, CONH3)
to hydrogen
(NH3, N2H2)
to IBE !
Important physical damage to MTJ
Volatile by-products but
decomposed by plasma !
Nice morphology
Degraded magnetics
Mixed RIE/IBE process
(IBE for critical layers
and/or sidewalls clean)
IBE-
like
IBE-
like
REACTIVE ION ETCHING (RIE)
7/28/2019 MRAM processing NOZIERES.pdf
38/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013LINER DEPOSITION
M2M2
oxide
SiNxV3
38
Process Nitride PECVD
Target stress: -50 to -150 MPa; mean thickness: 300 30A, < 2% 1s unif,, > 70% conformality
Key issues Conformal coverage, Queue time (corrosion)
Impact Reliability
M4 Bit-LineVM2
MM1
MM2 - Strap
Pads
V2
i MRAMi MRAMLINER DEPOSITION
7/28/2019 MRAM processing NOZIERES.pdf
39/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
In-situ MTJ encapsulation after etch better but notmandatory
Silicon oxide (TEOS precursor) void-free / conformal films at T
7/28/2019 MRAM processing NOZIERES.pdf
40/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
STRAP ETCH
40
M4 Bit-LineVM2
MM1
MM2 - Strap
Pads
V2
M2M2
oxide
SiNxV3
RIE (mostly Cl-based) of metal strap (usually Ta)
Option 1 : After cell etch Photo on topology
Option 2 : Before cell etch Photo alignment (inflated cell size)
Option 3 : Before MTJ deposition Front-end build up (roughness) must be adjusted
i MRAMinMRAM
TOP CONTACT TO MTJ
7/28/2019 MRAM processing NOZIERES.pdf
41/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
41
M4 Bit-LineVM2
MM1
MM2 - Strap
Pads
V2
M2M2
oxide
SiNxV3
M4
Two strategies
M2M2
Oxide or SoG
SiNxV3
Direct contact (CMP-open)
Contact via (damascene process)
TOP CONTACT TO MTJ
inMRAMinMRAMTOP CONTACT TO MTJ
7/28/2019 MRAM processing NOZIERES.pdf
42/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Fewest processing steps (cost)
Need good control of CMP
Shadowing during MTJ etch.
Standard process
Overlay implies large cell size
Beware of punch-through (contamination)
CMP open
Use (conducting) hard mask
as self-aligned contact
Contact via
Additional via in
damascene process
TOP CONTACT TO MTJ
7/28/2019 MRAM processing NOZIERES.pdf
43/53
inMRAMinMRAMTOOLING
7/28/2019 MRAM processing NOZIERES.pdf
44/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
ContactCell
CMP open / Damascene fill Process
Cu CMP
Mag deposition
Mag anneal
Cell Photo
Cell Etch / Clean
Encapsulation
Strap Etch
ILD
Oxide CMP
Trench Photo
Trench Etch/Clean
Cu seed
Backside clean
Cu fill
Cu CMP
Backside clean
Strap Photo
Backside clean
Etch stop layer Dep
Via Photo
Via Etch/Clean
Surface polish
/
/
inMRAMinMRAMTOOLING
7/28/2019 MRAM processing NOZIERES.pdf
45/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013TOOLING
Specific tools
Standard / Dedicated tools
Standard / Generic tools
FURNACE DEPOSITION PHOTO ETCH / STRIP WET / Clean CMP
MAGNETIC SOLUTIONS
MRT2000
SINGULUS TIMARIS
(for MTJ + stap + HM dep)
NIKON /ASML DUV (193 nm)
+ track TEL ACT 8
AMAT Centu ra DPS+ RIE
(for TMR +HM + Metal)
LAM SEZ
(for back side cleaning)
EBARA FREX -200
orAMAT mirra mesa (for
Cu CMP)
AMAT CENTURA or
NOVELLUS C2 SEQUEL
(for low-T oxyde / nitride)
NIKON /ASML UV (248 nm
or i-line) + MUV track
VEECO IBE TOOL FOR TMR
STACK
SEZ orSEMITOOL RAIDER
(for wet)
EBARA FREX -200
orAMAT mirra mesa (for
Oxide CMP)
AMAT ENDURA orLAM EXL
(for seed & Pads deposition)
APPLIED CENTURA MxP+or TEL UNITY
(for oxide/nitride etch)
SEMITOOL EPA
(for Cu fill)
TEL SCCM or LAM EXL
(for slug etch back)
inMRAMinMRAMMAGNETIC METROLOGY EQUIPMENT
7/28/2019 MRAM processing NOZIERES.pdf
46/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Need for rapid in-line (magnetic) process monitoring
Measurement of process yield Standard serpentine-comb and via chain structures
Probes MTJ cell / contacts / lines resistances
Measurements of the MRAM-specific layers
Requires magnetic fields sweep (slow) Must be non destructive
Probes magnetics and magneto-transport properties
(Hc, Hexch, RA, TMR, )
On-chip testing of arrays Standard e-test without magnetic fields
Probes cell functionality (read/write, reliability, )
MAGNETIC METROLOGY EQUIPMENT
inMRAMinMRAMM t O ti l K Eff t (MOKE)
7/28/2019 MRAM processing NOZIERES.pdf
47/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
Non Contact, fast Small Signal sensitivity
No sample size limitation
Spot measurement on wafer (~m)
In line wafer mapping Penetration depth limited
No absolute magnetization
Principle : Rotation of light polarizationafter reflection from magnetic surface
Magneto-Optical Kerr Effect (MOKE)
inMRAMinMRAM
7/28/2019 MRAM processing NOZIERES.pdf
48/53
InMRAM 2013 JP.Nozieres
inMRAMinMRAM2013
inMRAMinMRAMCurrent-In-Plane tunneling (CiPTec)
7/28/2019 MRAM processing NOZIERES.pdf
49/53
InMRAM 2013 JP.Nozieres
inMRAM2013
Problem : How to measure
RA, TMR in blankets films ?
Current In Plane tunneling (CiPTec)
BARRIER
TOP LAYER
[FREE]
BOTTOM LAYER
[PINNED]
I+
V+
V-
I-
x xx
Rt x
Rb x
RA
x
RA
x
BARRIER
TOP LAYER
[FREE]
BOTTOM LAYER[PINNED]
I+ V+ V- I-
x xx
Rt x
Small probe pitch measures Rt
Intermediate probe pitch
measures RA and MR
RT // RB
RT
Probe pitch
Rsq
Large probe pitch measures RT // RB
( ) +
= 2ln2||
00
xK
xK
R
RRR
I
VR
B
TBT
inMRAMinMRAMCurrent-In-Plane tunneling (CiPTec)
7/28/2019 MRAM processing NOZIERES.pdf
50/53
InMRAM 2013 JP.Nozieres
2013
No need to pattern
Local measurement (~100m)
Non destructive if done in scribe line
Mapping possible
Need special capping layer (probe-to-stack contact)
May require low conductivity underlayer
Tips wear / cost
Current In Plane tunneling (CiPTec)
inMRAMinMRAMMagnetic QSW
7/28/2019 MRAM processing NOZIERES.pdf
51/53
InMRAM 2013 JP.Nozieres
2013Magnetic QSW
Principle : Standard Electroglass wafer
prober platform with built-inquadrupole
magnet for rotating field generation
7/28/2019 MRAM processing NOZIERES.pdf
52/53
inMRAMinMRAM2013
7/28/2019 MRAM processing NOZIERES.pdf
53/53
InMRAM 2013 JP.Nozieres
2013
THANK YOU !