+ All Categories
Home > Documents > MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design...

MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design...

Date post: 21-Mar-2018
Category:
Upload: buinhi
View: 231 times
Download: 9 times
Share this document with a friend
14
MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability Horizontal Stabilizer Parameters: 1. Ratio of horizontal tail-wing aerodynamic centers distance with respect to fuselage length / 2. Overall fuselage length 3. Horizontal tail-wing aerodynamic centers distance 4. Horizontal tail volume coefficient 5. Center of gravity location 6. Horizontal tail arm 7. Horizontal tail planform area 8. Horizontal tail airfoil 9. Horizontal tail aspect ratio 10. Horizontal tail taper ratio 11. Additional geometric parameters (Sweep Angle, Twist Angle, Dihedral) 12. Incidence Angle 13. Neutral Point 14. Static Margin 15. Overall Horizontal Stabilizer Geometry 16. Overall Aircraft Static Longitudinal Stability 17. Elevator (TBD in Control Surfaces Design) Vertical Stabilizer Parameters: 18. Vertical tail volume coefficient 19. Vertical tail arm 20. Vertical tail planform area 21. Vertical tail aspect ratio 22. Vertical tail span 23. Vertical tail sweep angle ฮ› 24. Vertical tail minimum lift curve slope 25. Vertical tail airfoil 26. Overall Vertical Stabilizer Geometry 27. Overall Aircraft Static Direction Stability 28. Rudder (TBD in Control Surfaces Design)
Transcript
Page 1: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability Horizontal Stabilizer Parameters:

1. Ratio of horizontal tail-wing aerodynamic centers distance with respect to fuselage length

๐‘™๐‘Ž๐‘ /๐‘™๐‘“

2. Overall fuselage length ๐‘™๐‘“

3. Horizontal tail-wing aerodynamic centers distance ๐‘™๐‘Ž๐‘ 4. Horizontal tail volume coefficient ๐‘‰๐ป

5. Center of gravity location ๐‘ฅ๐‘๐‘”

6. Horizontal tail arm ๐‘™๐‘ก 7. Horizontal tail planform area ๐‘†๐‘ก 8. Horizontal tail airfoil 9. Horizontal tail aspect ratio ๐ด๐‘…๐‘ก 10. Horizontal tail taper ratio ๐œ†๐‘ก 11. Additional geometric parameters (Sweep Angle, Twist Angle, Dihedral) 12. Incidence Angle ๐‘–๐‘ก 13. Neutral Point ๐‘ฅ๐‘๐‘ƒ 14. Static Margin 15. Overall Horizontal Stabilizer Geometry 16. Overall Aircraft Static Longitudinal Stability 17. Elevator (TBD in Control Surfaces Design)

Vertical Stabilizer Parameters:

18. Vertical tail volume coefficient ๐‘‰๐‘ฃ 19. Vertical tail arm ๐‘™๐‘ฃ 20. Vertical tail planform area ๐‘†๐‘‰ 21. Vertical tail aspect ratio ๐ด๐‘…๐‘ฃ 22. Vertical tail span ๐‘๐‘ฃ 23. Vertical tail sweep angle ฮ›๐‘ฃ

24. Vertical tail minimum lift curve slope ๐ถ๐ฟ๐›ผ ๐‘ฃ

25. Vertical tail airfoil 26. Overall Vertical Stabilizer Geometry 27. Overall Aircraft Static Direction Stability 28. Rudder (TBD in Control Surfaces Design)

Page 2: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

1. l/Lf Ratio: 0.6 The table below shows statistical ratios between the distance between the wing aerodynamic center and the horizontal tail aerodynamic center ๐‘™๐‘Ž๐‘ with respect to the overall fuselage length (Lf).

2. Fuselage Length (Lf): 60.00 in Choosing this value is an iterative process to meet longitudinal and vertical static stability, internal storage, and center of gravity requirements, but preliminarily choose ๐‘™๐‘“ = 60.00 ๐‘–๐‘›

3. Horizontal tail-wing aerodynamic centers distance ๐’๐’‚๐’„ : 36.00 in ๐‘™๐‘Ž๐‘๐‘™๐‘“

= 0.6

๐‘™๐‘Ž๐‘ = 36.00 ๐‘–๐‘› 4. Horizontal Tail Volume Coefficient (VH): 1.0 The table below shows the horizontal and vertical tail coefficients for various types of aircraft.

๐‘‰๐ป =๐‘™๐‘ก๐‘†๐‘ก๐‘†๐‘

๐‘‰๐ป = 1

Page 3: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

5. Center of Gravity Location (xcg):๐ŸŽ.๐Ÿ‘๐ŸŽ๐‘ Justification:

a) Choose center of gravity aft of aerodynamic center to aid (give more room) with placing components to meet specified center of gravity location.

b) If horizontal tail stabilizes aircraft pitching up, it generates a positive lift force, adding to the wing lift.

c) 0.30๐‘ is the aft most recommended limit for center of gravity placement. 6. Horizontal Tail Arm ๐’๐’• : 35.2537 in

๐‘™๐‘ก = ๐‘™๐‘Ž๐‘ โˆ’ ๐‘ฅ๐‘๐‘” โˆ’ ๐‘ฅ๐‘Ž๐‘

๐‘™๐‘ก = 35.2537 ๐‘–๐‘› 7. Horizontal Tail Planform Area (St): 3.6352 ๐‘“๐‘ก2

๐‘‰๐ป =๐‘™๐‘ก๐‘†๐‘ก๐‘†๐‘

= 1

๐‘†๐‘ก = 3.6352 ๐‘“๐‘ก2 8. Airfoil Selection: NACA-0021 Justification:

a) Choose symmetric airfoil as the horizontal tail should behave in a similar manner when at a positive or negative angle-of-attack

b) Horizontal tail should never stall, specifically it should at least stall later than the wing for recovery

c) Maximize ๐ถ๐ฟ๐‘š๐‘Ž๐‘ฅ ๐‘ก

d) Maximize ๐ถ๐ฟ๐›ผ ๐‘ก

e) Minimize overall drag f) Minimize overall size

Page 4: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

NACA-0009:

NACA-0010:

Page 5: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

NACA-0015:

NACA-0018

Page 6: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

NACA-0021:

NACA-0024:

Page 7: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

NACA-0018, NACA-0021, NACA-0024 Airfoil Comparison:

9. Aspect Ratio ๐‘จ๐‘น๐’• : 4 Justification:

a) It is recommended that the aspect ratio of the tail be such that the span is longer than the propeller diameter to ensure that a portion of the tail is out of the wake or downwash of the wing, increasing tail efficiency ๐œ‚ .

b) Horizontal tail aspect ratio should be lower than that of the wing to increase stall angle and allow for recovery if needed

c) It is recommended that:

๐ด๐‘…๐‘ก =2

3๐ด๐‘…๐‘ค

๐ด๐‘…๐‘ก = 4

10. Horizontal Tail Taper Ratio ๐€๐’• : 0.7

a) For transport aircraft, the horizontal tail taper ratio is usually between 0.4 and 0.7 b) To ensure a higher stall angle than the wing through a lower Oswald efficiency factor and a lift

distribution that is less elliptical, choose ๐œ†๐‘ก = 0.7

11. Additional geometric parameters (Sweep Angle, Twist Angle, Dihedral): N/A

a) For the benefits of applying the any of the above parameters to the horizontal geometry, refer to the preliminary wing design parameter selection document

b) In the preliminary design phase, it is recommended to make these parameters have the same values as those of the wing.

Page 8: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

12. Horizontal Tail Incidence Angle ๐’Š๐’• : 4.2300 deg

- Determine horizontal tail incidence angle to trim (longitudinal) aircraft at cruise ๐ถ๐‘š๐‘๐‘”

= ๐ถ๐‘š๐‘๐‘” ๐‘ค+ ๐ถ๐‘š๐‘๐‘” ๐‘ก

+ ๐ถ๐‘š๐‘๐‘” ๐‘“= 0

๐ถ๐‘š0๐‘ค

+ ๐ถ๐‘š๐›ผ๐‘ค๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’

+ ๐ถ๐‘š0๐‘ก+ ๐ถ๐‘š๐›ผ ๐‘ก

๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’+ ๐ถ๐‘š0๐‘“

+ ๐ถ๐‘š๐›ผ๐‘“๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’

= 0

๐ถ๐‘š๐‘Ž๐‘ ๐‘ค+ ๐ถ๐ฟ0๐‘ค

๐‘ฅ๐‘๐‘”

๐‘ โˆ’

๐‘ฅ๐‘Ž๐‘

๐‘ + ๐ถ๐ฟ๐›ผ๐‘ค

๐‘ฅ๐‘๐‘”

๐‘ โˆ’

๐‘ฅ๐‘Ž๐‘

๐‘ ๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’ + ๐œ‚๐‘‰๐ป๐ถ๐ฟ๐›ผ ๐‘ก

๐œ€0 + ๐‘–๐‘ค โˆ’ ๐‘–๐‘ก โˆ’ ๐œ‚๐‘‰๐ป๐ถ๐ฟ๐›ผ ๐‘ก 1 โˆ’

๐‘‘๐œ€

๐‘‘๐›ผ ๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’ +

๐‘˜2โˆ’๐‘˜1

36.5๐‘†๐‘ ๐‘ค๐‘“

2 ๐›ผ0๐‘ค+ ๐‘–๐‘“ ฮ”๐‘ฅ

๐‘ฅ=๐‘™๐‘“๐‘ฅ=0 +

1

36.5๐‘†๐‘ ๐‘ค๐‘“

2 ๐œ•๐œ€๐‘ข

๐œ•๐›ผฮ”๐‘ฅ

๐‘ฅ=๐‘™๐‘“๐‘ฅ=0 ๐›ผ๐‘ค๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’

= 0

๐‘–๐‘ก = 4.2300 ๐‘‘๐‘’๐‘” 13. Neutral Point ๐’™๐‘ต๐‘ท :0.7067๐‘

๐‘ฅ๐‘›๐‘

๐‘ =

๐‘ฅ๐‘Ž๐‘๐‘

โˆ’๐ถ๐‘š๐›ผ ๐‘“

๐ถ๐ฟ๐›ผ๐‘ค

+ ๐œ‚๐‘‰๐ป๐ถ๐ฟ๐›ผ ๐‘ก

๐ถ๐ฟ๐›ผ๐‘ค

1 โˆ’๐‘‘๐œ€

๐‘‘๐›ผ

๐‘ฅ๐‘๐‘ƒ = 0.7067๐‘ 14. Static Margin: 0.3548 ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘› = ๐‘ฅ๐‘๐‘ƒ โˆ’ ๐‘ฅ๐‘๐‘”

๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘› = 0.3548

Page 9: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

15. Horizontal Stabilizer Geometry

Page 10: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

16. Overall Aircraft Longitudinal Stability Criteria for Longitudinal Static Stability

๐ถ๐‘š๐›ผ=

๐‘‘๐ถ๐‘š๐‘‘๐›ผ

< 0

๐ถ๐‘š0

> 0

๐ถ๐‘š0

= ๐ถ๐‘š0๐‘ค+ ๐ถ๐‘š0๐‘ก+๐ถ๐‘š0๐‘“

๐ถ๐‘š0= ๐ถ๐‘š๐‘Ž๐‘ ๐‘ค

+ ๐ถ๐ฟ0๐‘ค ๐‘ฅ๐‘๐‘”

๐‘ โˆ’๐‘ฅ๐‘Ž๐‘๐‘ + ๐œ‚๐‘‰๐ป๐ถ๐ฟ๐›ผ ๐‘ก

๐œ€0 + ๐‘–๐‘ค โˆ’ ๐‘–๐‘ก +๐‘˜2 โˆ’ ๐‘˜1

36.5๐‘†๐‘ ๐‘ค๐‘“

2 ๐›ผ0๐‘ค+ ๐‘–๐‘“ ฮ”๐‘ฅ

๐‘ฅ=๐‘™๐‘“

๐‘ฅ=0

๐ถ๐‘š๐›ผ

= ๐ถ๐‘š๐›ผ๐‘ค+ ๐ถ๐‘š๐›ผ ๐‘ก

+ ๐ถ๐‘š๐›ผ๐‘“

๐ถ๐‘š๐›ผ= ๐ถ๐ฟ๐›ผ๐‘ค

๐‘ฅ๐‘๐‘”

๐‘ โˆ’๐‘ฅ๐‘Ž๐‘๐‘ โˆ’ ๐œ‚๐‘‰๐ป๐ถ๐ฟ๐›ผ ๐‘ก

1 โˆ’๐‘‘๐œ€

๐‘‘๐›ผ +

1

36.5๐‘†๐‘ ๐‘ค๐‘“

2๐œ•๐œ€๐‘ข๐œ•๐›ผ

ฮ”๐‘ฅ

๐‘ฅ=๐‘™๐‘“

๐‘ฅ=0

๐‘ช๐’Ž๐œถ ๐Ÿ/๐’“๐’‚๐’… -1.4679

๐‘ช๐’Ž๐ŸŽ 0.1281

Page 11: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

18. Vertical tail volume coefficient ๐‘ฝ๐’— : 0.06 The following table shows the vertical tail characteristics for various aircraft. Because our aircraft configuration and mission requirements are very similar to the C-130, many vertical tail parameters are chosen so that they match those of that aircraft.

๐‘‰๐‘ฃ =๐‘™๐‘ฃ๐‘†๐‘ฃ๐‘†๐‘

๐‘‰๐‘ฃ = 0.06 19. Vertical tail arm ๐’๐’— : 36.1102 in During the preliminary design phase, the vertical tail arm is selected to be equal to the horizontal tail arm, then adjusted after further iterations if needed. ๐‘™๐‘ฃ = 36.1102 ๐‘–๐‘›

20. Vertical tail planform area ๐‘บ๐‘ฝ : 1.1521 ๐‘“๐‘ก2

๐‘‰๐‘ฃ =๐‘™๐‘ฃ๐‘†๐‘ฃ๐‘†๐‘

= 0.08

๐‘†๐‘ฃ = 1.1521 ๐‘“๐‘ก2

Page 12: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

21. Vertical tail aspect ratio ๐‘จ๐‘น๐’— : 1.84 Choose vertical tail aspect ratio such that it matches that of the C-130 (Table 6.6). ๐‘จ๐‘น๐’— = ๐Ÿ.๐Ÿ–๐Ÿ’ 22. Vertical tail span ๐’ƒ๐’— : 17.4716 in

๐ด๐‘…๐‘ฃ =๐‘๐‘ฃ

2

๐‘†๐‘ฃ

๐‘๐‘ฃ = 17.4716 ๐‘–๐‘› 23. Vertical tail sweep angle ๐šฒ๐’— : 18.8 deg Choose vertical tail sweep angle such that it matches that of the C-130 (Table 6.6). ฮ›๐‘ฃ = 18.8 ๐‘‘๐‘’๐‘”

24. Vertical tail minimum lift curve slope ๐‘ช๐‘ณ๐œถ๐’— : 0.0011137 [1/deg]

- Determine minimum vertical tail lift curve slope so to meet the static directional stability

requirement ๐ถ๐‘›๐›ฝ> 0

๐ถ๐‘›๐›ฝ

= ๐ถ๐‘›๐›ฝ๐‘ค๐‘“+ ๐ถ๐‘›๐›ฝ ๐‘ฃ

๐ถ๐‘›๐›ฝ= โˆ’๐‘˜๐‘›๐‘˜๐‘…๐‘™

๐‘†๐‘“๐‘  ๐‘™๐‘“

๐‘†๐‘+ ๐‘‰๐‘ฃ๐ถ๐ฟ๐›ผ๐‘ฃ

๐œ‚๐‘ฃ 1 โˆ’๐‘‘๐œŽ

๐‘‘๐›ฝ

๐ถ๐ฟ๐›ผ๐‘ฃ๐‘š๐‘–๐‘›

= 0.0011137 1/๐‘‘๐‘’๐‘”

25. Vertical Tail Airfoil: NACA-0009

a) Choose symmetric airfoil as the vertical tail should behave in a similar manner when at a positive or negative angle-of-attack

b) To minimize structure and weight, choose airfoil with smallest thickness that meets ๐ถ๐ฟ๐›ผ๐‘ฃ๐‘š๐‘–๐‘›

c) Refer to symmetric airfoil plots when choosing the horizontal tail airfoil

NACA-0009 (As Stabilizer not Airfoil, from XFLR5)

๐›ผ (deg) ๐ถ๐ฟ๐‘ฃ

0 0

5.00 0.314

๐ถ๐‘™๐›ผ =ฮ”๐ถ๐ฟ๐‘ฃฮ”๐›ผ

๐ถ๐ฟ๐›ผ๐‘ฃ= 0.1214 [1/deg]

Page 13: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

26. Vertical Stabilizer Geometry

Page 14: MSD : SAE Aero Aircraft Design & Buildedge.rit.edu/edge/P16121/public/Subsystem Design Documents/Marc...MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer

27. Overall Aircraft Directional Stability Criterion for Directional Static Stability

๐ถ๐‘›๐›ฝ=

๐‘‘๐ถ๐‘›๐‘‘๐›ฝ

> 0

๐ถ๐‘›๐›ฝ

= ๐ถ๐‘›๐›ฝ๐‘ค๐‘“+ ๐ถ๐‘›๐›ฝ ๐‘ฃ

๐ถ๐‘›๐›ฝ= โˆ’๐‘˜๐‘›๐‘˜๐‘…๐‘™

๐‘†๐‘“๐‘  ๐‘™๐‘“

๐‘†๐‘+ ๐‘‰๐‘ฃ๐ถ๐ฟ๐›ผ๐‘ฃ

๐œ‚๐‘ฃ 1 โˆ’๐‘‘๐œŽ

๐‘‘๐›ฝ

๐‘ช๐’๐œท ๐Ÿ/๐’“๐’‚๐’… 0.2847


Recommended