+ All Categories
Home > Documents > MSP’s special challenges in tropical areas Ecosystem ... · Knowledge available from acoustics...

MSP’s special challenges in tropical areas Ecosystem ... · Knowledge available from acoustics...

Date post: 28-Sep-2018
Category:
Upload: vuongnguyet
View: 215 times
Download: 0 times
Share this document with a friend
34
This communication is a contribution to the PADDLE project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 734271. MSP’s special challenges in tropical areas Ecosystem dynamics point of view: the active acoustics input Anne Lebourges-Dhaussy IRD/UMR LEMAR
Transcript

ThiscommunicationisacontributiontothePADDLEproject,whichhasreceivedfundingfromtheEuropeanUnion’sHorizon2020researchandinnovationprogrammeunderGrantagreementNo734271.

MSP’sspecialchallengesintropicalareasEcosystemdynamicspointofview:theactiveacousticsinputAnneLebourges-DhaussyIRD/UMRLEMAR

WhereistheacousticinputinMSP?

2

PADDLEProject(M.Bonnin)

3

Advantagesu  Non-invasive and non-destructive

method u  Horizontally & vertically

continuous information (in opposite to stations) along large spatio-temporal scales

u  Allows deep observations (> 1000 m)

u  Provides a rather exhaustive view of the water column

Limitsu  Difficult specific identification of

organisms u  Only estimation of biomasses Trenkeletal.(2011)

Advantages&limitsofactiveacoustics

Acoustictoolsandtargets

4

Benoit-Bird&Lawson,2015

Knowledgeavailablefromacoustics

  Fishstockassessment  Spatialdistributionofmarineorganisms  Time-seriesPredator/preysrelationships

  Distributions/environmentconditionsrelationships  HabitatsBehaviourstudies

Useful tool for ecosystemic approach Useful tool for monitoring changes impacts

5

Knowledgeavailablefromacoustics

  Fishstockassessment  Spatialdistributionofmarineorganisms  Time-seriesPredator/preysrelationships

  Distributions/environmentconditionsrelationshipsBehaviourstudies

  Habitats

Useful tool for ecosystemic approach Useful tool for monitoring changes impacts

6

Spatialdistributionandstockassessments

7

ExampleofsmallpelagicstockassessmentinPeru:here,resultsonanchovies

Acoustictransects

Samplingtrawls

CourtesyofM.Gutierrez

Onetransect

An acoustic transect: the formation of an Echogram (cf anim)

Surface

Bottom

Electricvoltagemeasuredateachtransmission

SaturedRed:transmittedsignal&bottomecho

Red:fishschools

Yellow,green,blue:youngfish,zooplankton,ofvarioussizesanddensities

20m

40m

Distancerun

Theechosounderprovides1transmission~eachsecond

8

Howreachthemapsperspecies?

TheboatmovingTransmit/ Receive areas

Whatmaycauseanecho?

AnythingthatisanobstacletothepropagationAnobstacle=anyobjectwhichhasnotthesameacousticpropertiesthanthewater§ Density§ Wavepropagationcelerity

Air, gaz Bottom, rocks

Fish

Turbidity, zooplankton

Thehigherthecontrast,thehigherthereflectedpartofthewave

CourtesyofJ.Habasque

Atka mackerel

Eulachon

Capelin

Pacific herring

Walleye pollock

Mallotus villosus

Clupea pallasii

Theragra chalcogramma

Thaleichthys pacificus

Pleurogrammus monopterygius

Species Lateralview DorsalviewS.GauthierPers.Com.

Forthefish:Theswimbladder

10

Echo-counting

11

CourtesyofA.Bertrand

12

Echogramwithdispersedfish

12

Targetstrengthmeasurements=Fishechostrengthproportionaltoitslength

Echointegration

13

CourtesyofA.Bertrand

14

Echo-integration

ESDU

Forasetofpings,onanelementarysamplingdistanceunit andoveragivenwaterheight iscalculatedanintegrationoftheenergyreceived fromthereflectionofthewaveonthebiologicaltargets

Identificationofthedetections

15

TypicalexamplesoffishschoolsdetectedintheBayofBiscay (N.Diner,Ifremer)

Trawlsamplings

AnchovyschoolsinPeru

16

Characteristicsdependingontheplace

Biomassestimate

Allocationofafishassemblageorspeciesforeachsamplingdistanceunit

Acousticdensitymapsperspecies

Semi-empiricalmodelstorelateTargetStrength(TS)tolength(L):♦Clupéidés:TS=20logL-71.2dBèL=20cm,TS:-45.2dB♦Gadidés:TS=20logL-66dB èL=60cm,TS:-30.4dB♦Maquereau:TS=20logL-82dBèL=30cm,TS:-52.5dB(noswimbladder)

Conversionacousticdensity/fishweight

fromstandardequations

Closestrepresentative

trawl

Senegalexample:Twospeciesofsardinella

18

PhDA.Sarré,2017RVItafDemeacousticsurveysof2005-2006-2007

NASC=acousticdensity

Lessonfromtimeseries

19

Fish acous

tic densit

ies

Northern limit of

Sardinellas

detection from

fishing operation

s

Northern limit of vessel operations each year

Northwardtrendinthedistributionofsardinellafrom1995to2015 Fromacousticdensities,evolutionof

biomassesbarycenters

NorthwardtrendforS.aurita

PhDA.Sarré,2017

Contextofincreaseofseasurfacetemperatureoverthe

period

“Fisheries”threshold=-65dB“Ecosystemic”threshold=-90dBShip speed 0 m.s-1 de 0 a 5m.s-1

Peruvian echogram (M. Gutierrez, com. pers.)

Towardstheecosystemicacoustic,decreasingthethreshold…

38kHz 120kHz

70kHz 200kHz

…andincreasingthefrequencies

21

Frequencysignaturesofmarineorganisms

22

Benoit-Bird&Lawson,2015

Epipelagic layer

Ballón et al. (2011, PinO)

Exploitingfrequencypropertiesto discriminateorganisms

Gelatinous organisms?

1/Sv38+Sv120>threshold1? YES NO NO2/Sv38>Sv120?YESNO

3/Sv120>threshold2? YES NO

Epipelagic layer

Mappingthemacrozooplanktondistribution

Macrozooplankton,euphausiidsparticularly=anchoviespreys

(Bertrand et al., 2008, PinO)

Oxygèneisstructuringpelagicspecieshabitat(Bertrandetal.,2011PLoSONE)

Acousticsallowstheresolutiontothesubmesoscaleofthe

oxygenmeasurements=>potentialhabitatvolumeD

epth

(m)

OMZ

DO (mL/L)

Ballón et al. (2011, PinO)

Fishrelationshipswith:itspreys,itsenvironmentparameters

8018

6

781614

1210

872

7476

Latitude(ºS)

Longitu

de(ºW

)

0

150

100

50

Dep

th(m

)

Paita

PiscoCall

aoChimbot

e

Log(FishNAS

C+1)

18

Bertrand et al. (2010, PLoS ONE)

Potentialanchovyhabitatvolume9187 km3

Crucero pelágico Feb. Abril 2005

Pelagichabitat

Benthichabitat

Soundersusedalsotocharacterizethebottomtypes

Lateral sonar, or multibeams, or vertical echosounders

Needs a training of the algorithms on known bottoms

28DAY NIGHT

Behaviourobservations:agregation/dispersion

Guillard&al.2004

Temperature

Impact on fishing

strategy

Amangroveapplicationofavertical echosounder

29Krumme&Hanning,2005

Floating device supporting the transducer

Study site in the center of the mangrove north of Bragança 24H time series of vertical distribution of fish tracks and current

speeds. UP: fish abundance versus depth cell versus time. LOWER: concurrent water level and and tidal current speed.

30

FishinmangroveQuickturningfishobservedamidmangroveroots.

CourtesyofPeterJohnson,LGLNorthwestforSoundMetrics

Startofroots

Acousticcamerainamangrove: accesstonewareas

Monitoringmarineprotectedarea

31

Example of the Coral Sea – New Caledonia, with a pluridisciplinary approach

Monitoringofamarineprotectedarea

32

Example of the Coral Sea – New Caledonia

Acousticestimateoftunapreysdensity

Winter Summer

PhotoV.Allain,SPC

Trawledlayer

Micronektondiversitystudy

RVALISechosounderechogram

Tracking4tunasmigrations

DAY NIGHT

DAY

NIGHT

Micronektonmigrations

Monitoringsurroundingecosystemsaroundmarinerenewableenergydevices

33

Anapproachthatitdevelopping:acousticequippedmooringsaroundMREdevicesExampleofWilliamson&al,2017work:Combinationofmultibeamandvertical

multifrequencyechosoundersaroundatidalturbinestructuretomonitormarinelifeandstudy:diveprofiles,depthpreferences,predator-preysinteractionsfishschoolingbehaviour

inconjunctionwiththehydrodynamicimpactofthedevice.

Multibeam principle (F. Gerlotto)

Challenge in the data processing due to high detections of bubbles.

Combined multibeam behaviour/multifrequency observations + vision (seabirds) to classify targets: no biological sampling.

Conclusion

34

Thankyou!

A not invasive approach adapted for

- exhaustive description of the ecosystems - trophic relationships studies - highlight physical/biology interactions - evidence physical structures - monitor key areas

Training in ecosystem acoustic organised at UFPE-Récife in october 2017 october 2018


Recommended