+ All Categories
Home > Documents > Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal...

Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal...

Date post: 08-Jul-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
12
MOSSBAUER SPECTROSCOPY APPLICATIONS IN CHEMISTRY, BIOLOGY, AND NANOTECHNOLOGY Edited by Virender K. Sharma, Ph.D. Gostar Klingelhofer Tetsuaki Nishida Wiley
Transcript
Page 1: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

MOSSBAUER SPECTROSCOPY

APPLICATIONS IN CHEMISTRY,BIOLOGY, AND NANOTECHNOLOGY

Edited by

Virender K. Sharma, Ph.D.

Gostar KlingelhoferTetsuaki Nishida

Wiley

Page 2: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

Contents

Preface x/x

Contributors xxi

Part I Instrumentation I

Chapter I

Chapter 2

Chapter 3

in Situ Mossbauer Spectroscopy with Synchrotron Radiation

on Thin Films 3

Svetoslav Stankov, Tomasz S/ezak, Marcin Zajqc, Michai S/ezafc, Marcel Stadecek, Ralf Rohlsberger,

Bogdan Sepiol, Gero Vogl, Nika Spiridis, Jan Lazewski, Krzysztof Parlinski, and Jozef Korecki

1.1 Introduction 3

1.2 Instrumentation 4

1.2.1 Nuclear Resonance Beamline 1018 at the ESRF 5

1.2.2 The UHV System for In Situ Nuclear Resonant Scattering Experimentsat ID 18 of the ESRF 6

1.3 Synchrotron Radiation-Based Mossbauer Techniques 10

1.3.1 Coherent Elastic Nuclear Resonant Scattering 10

1.3.2 Coherent Quasielastic Nuclear Resonant Scattering 25

1.3.3 Incoherent Inelastic Nuclear Resonant Scattering 30

1.4 Conclusions 38

Acknowledgments 39

References 39

Mossbauer Spectroscopy in Studying Electronic Spin and Valence

States of Iron in the Earth's Lower Mantle

Jung-Fu Lin, Zhu Mao, and Ercan £ Alp

2.1 Introduction 43

2.2 Synchrotron Mossbauer Spectroscopy at High Pressures and

Temperatures 44

2.3.1 Crystal Field Theory on the 3d Electronic States 46

2.3.2 Electronic Spin Transition of Fe2+ in Ferropericlase 47

2.3.3 Spin and Valence States of Iron in Silicate Perovskite 49

2.3.4 Spin and Valence States of Iron in Silicate Postperovskite 52

2.4 Conclusions 54

Acknowledgments 55

References 55

In-Beam Mossbauer Spectroscopy Using a Radioisotope Beam and

a Neutron Capture Reaction

Yoshio Kobayashi

3.1 Introduction 58

3.2 57Mn (—>57Fe) Implantation Mossbauer Spectroscopy 61

3.2.1 In-Beam Mossbauer Spectrometer 61

3.2.2 Detector for 14.4 keV Mossbauer 7-Rays 62

3.2.3 Application to Materials Science—Ultratrace of Fe Atoms in Si

and Dynamic Jumping 62

43

58

vii

Page 3: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

viii CONTENTS

3.2.4 Application to Inorganic Chemistry 63

3.2.5 Development of Mossbauer 7-Ray Detector 65

3.3 Neutron In-Beam Mossbauer Spectroscopy 66

3.4 Summary 66

References 67

Part II Radionuclides 71

Chapter 4 | Lanthanides (l5lEu and l5SGd) Mossbauer Spectroscopic Studyof Defect-Fluorite Oxides Coupled with New Defect Crystal

Chemistry Model 73

Akio Nakamura, Naoki Igawa, Yoshihiro Okomoto, Yukio Hinatsu, junhu Wang,Masashi Takahashi, and Masuo Takeda

4.1 Introduction 73

4.2 Defect Crystal Chemistry (DCC) Lattice Parameter Model 76

4.3 Lns-M6ssbauer and Lattice Parameter Data of DF Oxides 79

4.3.1 l5,Eu-M6ssbauer and Lattice Parameter Data of M-Eus (M4+ = Zr, Hf, Ce, U,

and Th) 79

4.3.2 l55Gd-M6ssbauer and Lattice Parameter Data of Zri_yGdy02_y/2 80

4.4 DCC Model Lattice Parameter and Lns-M6ssbauer Data Analysis 84

4.4.1 DCC Model Lattice Parameter Data Analysis of Ce-Eu and Th-Eu 85

4.4.2 Quantitative BL(Eu3+—0)-Composition (y) Curves in Zr-Eu and Hf-Eu 88

4.4.3 Model Extension Attempt from Macroscopic Lattice Parameter Side 89

4.5 Conclusions 92

References 93

Chapter 5 | Mossbauer and Magnetic Study of Neptunyl(+1) Complexes 95

Tadahiro Nakamoto, Akio Nakamura, and Masuo Takeda

5.1 Introduction 95

5.2 237Np Mossbauer Spectroscopy 96

5.3 Magnetic Property of Neptunyl Monocation (Np02+) 97

5.4 Mossbauer and Magnetic Study of Neptunyl(+I) Complexes 98

5.4.1 (NH4)[Np02(02CH)2] (I) 98

5.4.2 [Np02(02CCH2OH)(H20)] (2) 100

5.4.3 [Np02(02CH)(H20)] (3) 101

5.4.4 [(Np02)2((02C)2C6H4)(H20)3] H20 (4) 104

5.5 Discussion 106

5.5.1 237Np Mossbauer Relaxation Spectra 106

5.5.2 Magnetic Susceptibility and Saturation Moment: Averaged Powder Magnetizationfor the Ground \]z = ±4) Doublet 107

5.6 Conclusion 113

Acknowledgment 113

References 113

Chapter 6 | Mossbauer Spectroscopy of161Dy in Dysprosium Dicarboxylates 116

Masashi Takahashi, Clive I. Wynter, Barbara R. Hillery, Virender K. Sharma, Duncan Quarless,

Leopold May, Toshiyuki Misu, Sabrina G. Sobel, Masuo Takeda, and Edward Brown

6.1 Introduction 116

6.2 Experimental Methods 117

6.3 Results and Discussion 117

Acknowledgment 122

References 122

Page 4: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

CONTENTS ix

Chapter 7 ( Study of Exotic Uranium Compounds Using 238U Mossbauer

Spectroscopy 123

Satoshi Tsutsui and Masami Nakada

7.1 Introduction 123

7.2 Determination of Nuclear g-Factor in the Excited State of 238U Nuclei 125

7.2.1 Background of 238U Mossbauer Spectroscopy and Its Applicationto Magnetism in Uranium Compounds 125

7.2.2 238U Mossbauer and 235U NMR Measurements of U02 in the

Antiferromagnetic State 125

7.2.3 Determination of the Nuclear g-Factor in the First Excited

State of 238U 127

7.3 Application of 238U Mossbauer Spectroscopy to Heavy Fermion

Superconductors 127

7.3.1 Introduction of Uranium-Based Heavy Fermion Superconductors 127

7.3.2 Magnetic Ordering and Paramagnetic Relaxation in Heavy Fermion

Superconductors 129

7.3.3 Summary of 238U Mossbauer Spectroscopy of Uranium-Based

Heavy Fermion Superconductors 133

7.4 Application to Two-Dimensional (2D) Fermi Surface System of Uranium

Dipnictides 134

7.4.1 Introduction of Uranium Dipnictides 134

7.4.2 Hyperfine Interactions Correlated with the Magnetic Structures in Uranium

Dipnictides 135

7.4.3 Summary of 238U Mossbauer Spectroscopy of Uranium Dipnictides 137

7.5 Summary 137

Acknowledgments 138

References 138

Part III Spin Dynamics 141

Chapter 8 | Reversible Spin-State Switching Involving a Structural Change 143

Satoru Nakashima

8.1 Introduction 143

8.2 Three Assembled Structures of Fe(NCX)2(bpa)2 (X = S, Se) and Their

Structural Change by Desorption of Propanol Molecules [23] 144

8.3 Occurrence of Spin-Crossover Phenomenon in Assembled

Complexes Fe(NCX)2(bpa)2 (X = S, Se, BH3) by EnclathratingGuest Molecules [25-27] 145

8.4 Reversible Structural Change of Host Framework of Fe(NCS)2(bpp)2 2

(Benzene) Triggered by Sorption of Benzene Molecules [29] 147

8.5 Reversible Spin-State Switching Involving a Structural Changeof Fe(NCX)2(bpp)2-2(Benzene) (X = Se, BH3) Triggered by Sorption

of Benzene Molecules [30] 149

8.6 Conclusions 150

References 151

Chapter 9 | Spin-Crossover and Related Phenomena Coupled with Spin,

Photon, and Charge 152

Norimichi Kojima and Akira Sugahara

9.1 Introduction 152

9.2 Photoinduced Spin-Crossover Phenomena 153

9.2.1 LIESST for Fe(ll) Complexes 153

Page 5: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

X CONTENTS

9.2.2 LIESST for Fe(lll) Complexes 157

9.2.3 Recent Topics of Photoinduced Spin-Crossover Phenomena 160

9.3 Charge Transfer Phase Transition 161

9.3.1 Thermally Induced Charge Transfer Phase Transition 161

9.3.2 Photoinduced Charge Transfer Phase Transition 164

9.4 Spin Equilibrium and Succeeding Phenomena 168

9.4.1 Rapid Spin Equilibrium in Solid State 168

9.4.2 Concerted Phenomenon Coupled with Spin Equilibrium and Valence

Fluctuation 173

References 175

Chapter 10 | Spin Crossover in Iron(lll) Porphyrins Involving the

Intermediate-Spin State 177

Mikio Nakamura and Masashi Takahashi

10.1 Introduction 177

10.2 Methodology to Obtain Pure Intermediate-Spin Complexes 178

10.2.1 Saddled Deformation 178

10.2.2 Ruffled Deformation 182

10.2.3 Core Modification 184

10.3 Spin Crossover Involving the Intermediate-Spin State 189

10.3.1 Spin Crossover Between S = 3/2 and S = 112 189

10.3.2 Spin Crossover Between S = 3/2 and S = 5/2 192

10.4 Spin-Crossover Triangle in Iron(lll) Porphyrin Complexes 195

10.5 Conclusions 198

Acknowledgments 198

References 199

Chapter I I | Tin(ll) Lone Pair Stereoactivity: Influence on Structures and

Properties and Mossbauer Spectroscopic Properties 202

Georges Denes, Abdualhafed Muntasar, M. Cecilia Madamba, and Hocine Merazig

11.1 Introduction 202

11.2 Experimental Aspects 203

11.2.1 Sample Preparation 203

11.3 Crystal Structures 204

11.3.1 The Fluorite-Type Structure: A Typically Ionic Structure 204

11.3.2 Tin(ll) Fluoride: Covalent Bonding and Polymeric Structure 205

11.3.3 The a-PbSnF4 Structure: The Unexpected Combination of Ionic

Bonding and Covalent Bonding 207

I 1.3.4 The PbCIF-Type Structure: An Ionic Structure and a Tetragonal Distortion

of the Fluorite Type 207

11.4 Tin Electronic Structure and Mossbauer Spectroscopy 208

I 1.4.1 Tin Electronic Structure, Bonding Type, and Coordination 208

I 1.4.2 Using Mossbauer Spectroscopy to Probe the Tin Electronic Structure

and Bonding Mode 21 I

11.5 Application to the Structural Determination of a-SnF2 213

11.5.1 History 213

11.5.2 Using "9Sn Mossbauer Spectroscopy to Determine that the Tin Positions

Used by Bergerhoff Were Incorrect 214

11.6 Application to the Structural Determination of the Highly Layered

Structures of o>PbSnF4 and BaSnF4 216

11.6.1 History 216

11.6.2 Unit Cell of MSnF4 and Relationships with the Fluorite-Type MF2 217

Page 6: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

CONTENTS xi

11.6.3 Mossbauer Spectroscopy, Bonding Type, Crystal Symmetry, and Preferred

Orientation 220

11.6.4 Combining All the Results: The a-PbSnF4 Structural Type 225

11.7 Application to the Structural Study of Disordered Phases 226

11.7.1 Disordered Fluoride Phases 226

11.7.2 Disordered Chloride Fluoride Phases 232

I 1.8 Lone Pair Stereoactivity and Material Properties 241

11.9 Conclusions 242

Acknowledgments 243

References 243

Part IV Biological Applications 247

Chapter 12 Synchrotron Radiation-Based Nuclear Resonant Scattering:Applications to Bioinorganic ChemistryYisong Guo, Yoshitaka Yoda, Xiaowei Zhang, Yarning Xiao, and Stephen P. Cramer

12.1 Introduction 249

12.2 Technical Background 250

12.2.1 Theoretical Aspects of NFS 250

12.2.2 Theoretical Aspects of SRPAC 252

12.2.3 Experimental Aspects of NFS and SRPAC 255

12.3 Applications in Bioinorganic Chemistry 258

12.3.1 Nuclear Forward Scattering 258

12.3.2 SRPAC 264

12.4 Summary and Prospects 269

Acknowledgments 269

References 269

249

Chapter 13 Mossbauer Spectroscopy in Biological and Biomedical Research

Alexander A. Kamnev, Krisztina Kovacs, Irina V. Alenkina, and Michael I. Oshtrakh

272

13.1 Introduction 272

13.2 Microorganisms-Related Studies

13.3 Plants 276

13.4 Enzymes 280

13.5 Hemoglobin 281

13.6 Ferritin and Hemosiderin 283

13.7 Tissues 284

13.8 Pharmaceutical Products 286

13.9 Conclusions 286

Acknowledgments 287

References 287

273

Chapter 14 | Controlled Spontaneous Decay of Mossbauer Nuclei

(Theory and Experiments) 292

Vladimir I. Vysotskii and Alia A. Kornilova

14.1 Introduction to the Problem of Controlled Spontaneous Gamma Decay 292

14.2 The Theory of Controlled Radiative Gamma Decay 293

14.2.1 General Consideration 293

14.3 Controlled Spontaneous Gamma Decay of Excited Nucleus in the Systemof Mutually Uncorrelated Modes of Electromagnetic Vacuum 295

14.3.1 Spontaneous Gamma Decay in the Case of Free Space 296

14.3.2 Spontaneous Gamma Decay of Excited Nuclei in the Case of Screen

Presence 298

Page 7: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

xii CONTENTS

14.4 Spontaneous Gamma Decay in the System of SynchronizedModes of Electromagnetic Vacuum 302

14.5 Experimental Study of the Phenomenon of Controlled Gamma Decayof Mossbauer Nuclei 303

14.5.1 Investigation of the Phenomenon of Controlled Gamma Decay by Analysis of

Deformation of Mossbauer Gamma Spectrum 303

14.6 Experimental Study of the Phenomenon of Controlled Gamma Decayby Investigation of Space Anisotropy and Self-Focusing of

Mossbauer Radiation 309

14.7 Direct Experimental Observation and Study of the Process of Controlled

Radioactive and Excited Nuclei Radiative Gamma Decay by the DelayedGamma-Gamma Coincidence Method 311

14.8 Conclusions 314

References 314

Chapter 15 | Nature's Strategy for Oxidizing Tryptophan: EPR and Mossbauer

Characterization of the Unusual High-Valent Heme Fe Intermediates 315

Kednerlin Dornevil and Aimin Liu

15.1 Two Oxidizing Equivalents Stored at a Ferric Heme 315

15.2 Oxidation of L-Tryptophan by Heme-Based Enzymes 316

15.3 The Chemical Reaction Catalyzed by MauG 318

15.4 A High-Valent Bis-Fe(IV) Intermediate in MauG 319

15.5 A High-Valent Fe Intermediate of Tryptophan 2,3-Dioxygenase 320

15.6 Concluding Remarks 321

References 322

Chapter 16 | Iron in Neurodegeneration 324

Jolanta Gaiqzka-Friedman, Erika R. Bauminger, and Andrzej Friedman

16.1 Introduction 324

16.2 Neurodegeneration and Oxidative Stress 324

16.3 Mossbauer Studies of Healthy Brain Tissue 325

16.4 Properties of Ferritin and Hemosiderin Present in Healthy Brain Tissue 327

16.5 Concentration of Iron Present in Healthy and Diseased Brain Tissue:

Labile Iron 328

16.6 Asymmetry of the Mossbauer Spectra of Healthy and Diseased

Brain Tissue 330

16.7 Conclusion: The Possible Role of Iron in Neurodegeneration 331

References 331

Chapter 17 | Emission (57Co) Mossbauer Spectroscopy: Biology-Related Applications,Potentials, and Prospects 333

Alexander A. Kamnev

17.1 Introduction 333

17.2 Methodology 334

17.3 Microbiological Applications 336

17.4 Enzymological Applications 340

17.4.1 Choosing a Test Object 340

17.4.2 Prerequisites for Using the S7Co EMS Technique 342

17.4.3 Experimental 57Co EMS Studies 342

17.4.4 Two-Metal-lon Catalysis: Competitive Metal Binding at the Active Centers 344

17.4.5 Possibilities of 57Co Substitution for Other Cations in Metalloproteins 345

17.5 Conclusions and Outlook 345

Acknowledgments 345

References 346

Page 8: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

CONTENTS xlli

Part V Iron Oxides 349

Chapter 18

Chapter 19

Mossbauer Spectroscopy in Study of Nanocrystalline Iron Oxides

from Thermal Processes

Jin Tucek, tibor Machala, Jin Frydrych, Jin' Pechousek, and Radek Zbori/

351

18.1 Introduction 351

18.2 Polymorphs of Iron(lll) Oxide, Their Crystal Structures, Magnetic

Properties, and Polymorphous Phase Transformations 352

18.2.1 a-Fe203 353

18.2.2 3-Fe203 358

18.2.3 7-Fe203 360

18.2.4 e-Fe203 364

18.2.5 Amorphous Fe203 369

18.3 Use of 57Fe Mossbauer Spectroscopy in Monitoring Solid-State

Reaction Mechanisms Toward Iron Oxides 371

18.3.1 Thermal Decomposition of Ammonium Ferrocyanide—A Valence ChangeMechanism 371

18.3.2 Thermal Decomposition of Prussian Blue in Air 374

18.3.3 Thermal Conversion of Fe2(S04)3 in Air—Polymorphous Exhibition of Fe20318.3.4 Nanocrystalline Fe203 Catalyst from FeC204-2H20 376

18.4 Various Mossbauer Spectroscopy Techniques in Study of ApplicationsRelated to Nanocrystalline Iron Oxides 378

18.4.1 57Fe Transmission Mossbauer Spectroscopy at Various Temperatures 378

18.4.2 In-Field 57Fe Transmission Mossbauer Spectroscopy 379

18.4.3 In Situ High-Temperature 57Fe Transmission Mossbauer Spectroscopy 381

18.4.4 S7Fe Conversion Electron and Conversion X-Ray Mossbauer Spectroscopy18.5 Conclusions 389

Acknowledgments 389

References 389

Transmission and Emission S7Fe Mossbauer Studies on Perovskites

and Related Oxide SystemsZoltan Homonnay and Zoltan Nemeth

376

383

393

19.1

19.2

19.3

19.4

Introduction 393

Study of High-Tc Superconductors 394

19.2.1 Study of 57Co-Doped YBa2Cu307^ 395

19.2.2 Study of S7Co-Doped Y|_xPrxBa2Cu307 a 397

Study of Strontium Ferrate and Its Substituted Analogues 401

19.3.1 Study of Sro.gsCao.osCoo.sFeo.sO^g and Sro.sCao.5Coo.sFeo.503_8 401

Pursuing Colossal Magnetoresistance in Doped Lanthanum Cobaltates

19.4.1 Emission Mossbauer Study of La0.8Sr0.2CoO3 8 Perovskites 408

19.4.2 Emission and Transmission Mossbauer Study of Iron-Doped

407

References

Lao.8Sr0.2FeyCo(.

413

y^-S Perovskites 41 I

Chapter 20 Enhancing the Possibilities of 57Fe Mossbauer Spectrometryto Study the Inherent Properties of Rust LayersKaren £ Garda, Cesar A. Barrero, Alvaro L Morales, and Jean-Marc Greneche

20.1 Introduction 415

20.2 Mossbauer Characterization of Some Iron Phases Presented in the Rust

Layers 416

20.2.1 Akaganeite 416

415

Page 9: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

xlv CONTENTS

20.2.2 Goethite 418

20.2.3 Magnetite/Maghemite 420

20.3 Determining Inherent Properties of Rust Layers by Mossbauer

Spectrometry 421

20.3.1 Rust Layers in Steels Submitted to Total Immersion Tests 421

20.3.2 Rust Layers in Steels Submitted to Dry-Wet Cycles 424

20.3.3 Rust Layers in Steels Submitted to Outdoor Tests 426

20.4 Final Remarks 426

Acknowledgments 426

References 426

Chapter 21 | Application of Mossbauer Spectroscopy to Nanomagnetics 429

Lakshmi Nambakkat

21.1 Introduction 429

21.2 Spinel Ferrites 430

21.2.1 Microstructure Determination 430

21.2.2 Elucidation of Bulk Magnetic Properties in Nanoferrites Using In-Field Mossbauer

Spectroscopy 434

21.2.3 Core-Shell Effect on the Magnetic Properties in Superparamagnetic

Nanosystems 436

21.3 Nanosized Fe-AI Alloys Synthesized by High-Energy Ball Milling 441

21.3.1 Nanosized Al-1 at% Fe 442

21.4 Magnetic Thin Films/Multilayer Systems: 57Fe/AI MLS 446

21.4.1 Structural Characterization 447

21.4.2 DC Magnetization Studies 448

21.4.3 M6ssbauer (CEMS) Study 451

21.5 Conclusions 452

Acknowledgments 453

References 453

Chapter 22 | Mossbauer Spectroscopy and Surface Analysis 455

Jose F. Marco, Jose Ramon Gancedo, Matteo Monti, and Juan de La Figuera

22.1 Introduction 455

22.2 The Physical Basis: How and Why Electrons Appear in Mossbauer

Spectroscopy 456

22.3 Increasing Surface Sensitivity in Electron Mossbauer Spectroscopy 458

22.4 The Practical Way: Experimental Low-Energy Electron Mossbauer

Spectroscopy 460

22.5 Mossbauer Surface Imaging Techniques 465

22.6 Recent Surface Mossbauer Studies in an "Ancient" Material:

Fe304 466

Acknowledgment 468

References 468

Chapter 23 | S7Fe Mossbauer Spectroscopy in the Investigation of the

Precipitation of Iron Oxides 470

Svetozar Music, Mira Ristic, and Stjepko Krehula

23.1 Introduction 470

23.2 Complexation of Iron Ions by Hydrolysis 470

23.3 Precipitation of Iron Oxides by Hydrolysis Reactions 472

23.4 Precipitation of Iron Oxides from Dense 0-FeOOHSuspensions 480

Page 10: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

CONTENTS xv

23.5 Precipitation and Properties of Some Other Iron Oxides 483

23.5.1 Ferrihydrite 483

23.5.2 Lepidocrocite (7-FeOOH) 485

23.5.3 Magnetite (Fe304) and Maghemite (7-Fe203) 487

23.6 Influence of Cations on the Precipitation of Iron Oxides 490

23.6.1 Goethite 490

23.6.2 Hematite 495

23.6.3 Magnetite and Maghemite 496

Acknowledgment 496

References 497

Chapter 24 | Ferrates(IV, V, and VI): Mossbauer Spectroscopy Characterization 505

Virender K. Sharma, Yurii D. Perfiliev, Radek Zbofil, Libor Machala, and Clive I. Wynter

24.1 Introduction 505

24.2 Spectroscopic Characterization 506

24.3 Mossbauer Spectroscopy Characterization 508

24.3.1 Ferryl(IV) Ion 508

24.3.2 FerratesflV, V, and VI) 510

24.3.3 Case Studies 513

Acknowledgments 517

References 517

Chapter 25 | Characterization of Dilute Iron-Doped Yttrium Aluminum

Garnets by Mossbauer Spectrometry 521

Kiyoshi Nomura and Zoltan Nemetb

25.1 Introduction 521

25.2 Sample Preparations by the Sol-Gel Method 523

25.3 X-Ray Diffraction and EXAFS Analysis 523

25.4 Magnetic Properties 525

25.5 Mossbauer Analysis of YAG Doped with Dilute Iron 526

25.6 Microdischarge Treatment of Iron-Doped YAG 528

25.7 Conclusions 531

Acknowledgments 532

References 532

Part VI Industrial Applications 533

Chapter 26 | Some Mossbauer Studies of Fe-As-Based

High-Temperature Superconductors 535

Amar Nath and Airat Khasanov

26.1 Introduction 535

26.2 Experimental Procedure 535

26.3 Where Do the Injected Electrons Go? 537

26.4 New Electron-Rich Species in Ni-Doped Single Crystals: Is It

Superconducting? 538

26.5 Can 02 Play an Important Role? 539

Acknowledgment 541

References 541

Chapter 27 | Mossbauer Study of New Electrically Conductive Oxide Glass 542

Tetsuaki Nishida and Shiro Kubuki

27.1 Introduction 542

27.1.1 Electrically Conductive Oxide Glass 542

27.1.2 Cathode Active Material for Lithium-Ion Battery (LIB) 543

Page 11: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

xvi CONTENTS

27.2 Structural Relaxation of Electrically Conductive Vanadate Glass 544

27.2.1 Increase in the Electrically Conductivity of Vanadate Glass 544

27.2.2 Cathode Active Material for Li-Ion Battery (LIB) 547

27.3 Summary 551

Acknowledgments 551

References 551

Chapter 28 | Applications of Mossbauer Spectroscopy in the Study of Lithium

Battery Materials 552

Ricardo Alcantara, Pedro Lavela, Carlos Perez Vicente, and Jose L Tirado

28.1 Introduction 552

28.2 Cathode Materials for Li-Ion Batteries 554

28.2.1 Layered Intercalation Electrodes 554

28.2.2 Phosphate Electrodes with Olivine Structure 554

28.2.3 Insertion Silicate Electrodes 555

28.3 Anode Materials for Li-Ion Batteries 556

28.3.1 Conversion Oxides 556

28.3.2 Tin Alloys and Intermetallic Compounds 558

28.3.3 Antimony Alloys and Intermetallic Compounds 560

28.4 Conclusions 561

Acknowledgments 561

References 562

Chapter 29 | Mossbauer Spectroscopic Investigations of Novel Bimetal Catalystsfor Preferential CO Oxidation in H2 564

Wansheng Zhang, Junhu Wang, Kuo Uu, Jie Jin, and Too Zhang

29.1 Introduction 564

29.2 Experimental Section 564

29.2.1 Catalyst Preparation 564

29.2.2 Catalytic Activity Test 565

29.2.3 Mossbauer Spectra Characterization 565

29.3 Results and Discussion 565

29.3.1 PtFe Alloy Nanoparticles Catalyst 565

29.3.2 Ir-Fe/Si02 Catalyst 567

29.4 Conclusions 574

Acknowledgments 574

References 575

Chapter 30 | The Use of Mossbauer Spectroscopy in Coal Research: Is It Relevant

or Not? 576

Frans 8. Waanders

30.1 Introduction 576

30.2 Experimental Procedures 577

30.2.1 Mossbauer Spectroscopy 577

30.2.2 SEM Analyses 577

30.2.3 XRD Analyses 577

30.2.4 Samples and Sample Preparation 577

30.3 Results and Discussion 578

30.3.1 Mossbauer Analyses of the As-Mined Samples 578

30.3.2 Weathering of Coal 578

30.3.3 Corrosion of Mild Steel Due to the Presence of Compacted Fine Coal 583

30.3.4 Coal Combustion 584

30.3.5 Coal Gasification and Resultant Products 587

Page 12: Mössbauer spectroscopy : applications in …11.6.3 Mossbauer Spectroscopy, BondingType, Crystal Symmetry, and Preferred Orientation 220 11.6.4 CombiningAll the Results: The a-PbSnF4

CONTENTS xvii

30.4 Conclusions 590

Acknowledgments 591

References 591

Part VII Environmental Applications 593

Chapter 3 I | Water Purification and Characterization of RecycledIron-Silicate Glass 595

Shiro Kubuki and Tetsuaki Nishida

31.1 Introduction 595

31.1.1 Water-Purifying Ability of Recycled Iron Silicate Glass 595

31.1.2 Iron Silicate Glass Prepared by Recycling Coal Ash 596

31.2 Properties and Structure of Recycled Silicate Glasses 596

31.2.1 Water-Purifying Ability of Recycled Silicate Glasses 596

31.2.2 Electromagnetic Property of Recycled Silicate Glasses 601

31.3 Summary 605

31.3.1 Water-Purifying Ability of Recycled Silicate Glasses 605

31.3.2 Electromagnetic Property of Recycled Silicate Glasses 606

References 606

Chapter 32 | Mossbauer Spectroscopy in the Study of Laterite Mineral Processing 608

Eamonn Devlin, Michail Samouhos, and Charalabos Zografidis

32.1 Introduction 608

32.2 Conventional Processing 609

32.3 Microwave Processing 612

References 619

Index 621


Recommended