+ All Categories
Home > Documents > Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms...

Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms...

Date post: 20-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
26
Mössbauer's spectroscopy applied on kaolinitic clays . Study of Fe 3+ influences on final color of ceramic bodies (Originally published in JACS, 2005) Jitka Třískova, Daniel Nižňanský (Charles Univerzity, Prague, Czech Republic) Tomas Hanzlicek, Pavel Straka, Michaela Steinerova (Institute of Rock Structure and Mechanics, Academy of Sciences, Prague, Czech Republic)
Transcript
Page 1: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectroscopy applied on kaolinitic clays.

Study of Fe3+ influences on final color of ceramic bodies

(Originally published in JACS, 2005)

Jitka Třískova, Daniel Nižňanský (Charles Univerzity,Prague, Czech Republic)

Tomas Hanzlicek, Pavel Straka, Michaela Steinerova(Institute of Rock Structure and Mechanics, Academyof Sciences, Prague, Czech Republic)

Page 2: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Kaolin- Name comes from Chines locality Kao-Ling (���)

original meaning – „High Mountain Ridge“- Material is used for the production of porcelain, paper,

tires, medicaments etc.

- Basic material for all geopolymer reactions.- Kaolin origins from feldspars

- Main component is kaolinite (accompanied by quartz, rests of feldspar, eventually micas and limited proportions of iron and titanium oxides).

Page 3: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Kaolinite- chemical composition:

Al2O3 2SiO2 2H2O- Double layered structure changing

regularly the layers of tetrahedral (Si2O5) and octahedral (Al2(OH)4)

- Fe3+ izo-morphologically substitutesaluminum ion

Page 4: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Kaolin composition changes through the thermal treatment

Changes formulated by (Brindley and Nakahira-1959) and generally used in ceramic industry :- 580 °C dehydration (– H2O)- 925 °C spinel (2Al2O33SiO2) +SiO2

- 1050 °C mullite phases (2Al2O32SiO2)+SiO2

- 1200 °C mullite (3Al2O32SiO2) +SiO2P.S. The ceramic technology never worked with changes at aluminum ion

coordination after the loss of lattice waters and before the spinel appears.

Page 5: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mullite- The chained structure of octahedral

formations [ AlO6] is joined with tetrahedral [ Al,SiO4].

- chemical composition(3Al2O32SiO2)- disordered aluminum ions partially

in [4] and [6] fold coordination.- appears in form of fibers or dendriticstructures in porcelain bodies.

Page 6: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Fe3+ in kaolin • Commonly used rules: • Fe3+ changes color in clays [pink-red to dark brown].• By the rising temperature color change to the darker

shades. • Industry of the porcelain production resolves the color

problem by reduction atmosphere use during the firing.(Changing by this way the coloring ferric oxide to discoloring ferrous oxide).

• These rules and industrial experiences are not valid generally.

Page 7: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Study of waste kaolinic clay

• Clay „S2“ supplied by EXIMOS a.s.• Clay is by-product of washed sandstone beside getting white sand

for glass production.• Unfortunately clay has no farther use and fills the deposit ponds.

[30000 t/year]• Clay change color according to the treatment temperature.• Raw material – yellow (content of Fe2O3 = 2.57 wt.%)• 750°C brick reddish • 1000 °C – light red • 1100 °C – white, slightly gray shade• 1180 °C - white

Page 8: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectroscopy• Analysis by Mössbauer spectra:- reflects resonant absorption and emission

of gamma rays in solids.- Typically, three types of nuclear

interactions may be observed: isomer shift, also called chemical shift in the older literature; quadrupole splitting; and magnetic hyperfine splitting

Page 9: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectroscopy• Isomer shift describing a shift in the resonance energy

of a nucleus due to the transition of electrons• Quadrupole splitting reflects the interaction between

the nuclear energy levels and surrounding electric field gradient

• The ground to excited state transitions appear as two specific peaks in a spectrum, sometimes referred to as a "doublet".

• Magnetic hyperfine splitting Magnetic (hyperfine splitting) is a result of the interaction between the nucleus and any surrounding magnetic field. In the majority of cases only 6 peaks can be monitored in a spectrum produced by a hyperfine splitting (BHF).

Page 10: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra of the raw materialsample „S2“

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,995

0,996

0,997

0,998

0,999

1,000

1,001subsp.2

subsp. 1

velocity (mm/s)

Subsp. 1 Subsp. 2

IS δ 0.30 mm/s 0.36 mm/s

QUA ΔEQ 0.08 mm/s 0.58 mm/s

- Clay do not contain hematite

- Fe3+ in form of hydro ferric oxide (FeO(OH)

lepidokrokite

Page 11: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „S2“

Sample fired at 750°C

Subsp. 1 Subsp. 2

IS δ 0.37 mm/s

0.27 mm/s

QUAΔEQ

- 0.22 mm/s

0.46 mm/s

BHF 48.9 T

- Lepidokrokite changes to hematite (Fe2O3)

- Color: brick red

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 120,970

0,975

0,980

0,985

0,990

0,995

1,000

velocity (mm/s)

subsp. 1

subsp. 2

Page 12: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „S2“explication

• Subspectrum 1 QS – quadrupole splitting (The quadrupole splitting can be used for determining oxidation state),

• value (- 0.22) shows presence of α-Fe2O3 because no other iron oxide phase has negative value of QS.

• Subspectrum 2 shows the paramagnetic Fe3+ probably bonded to aluminosilicate.

Page 13: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „S2“

Sample fired at 1000°C

Subsp. 1 Subsp. 2

IS δ 0.37 mm/s

0.29 mm/s

QUAΔEQ

- 0.21 mm/s

0.82 mm/s

BHF 50.0 T

- Hematite starts to dissolve

- Color: Light red

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,990

0,992

0,994

0,996

0,998

1,000

1,002

subsp.1

velocity (mm/s)

subsp.2

Page 14: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „S2“

Sample fired at 1180°C

Subsp. 1 Subsp. 2

IS δ 0.33 mm/s

0.31 mm/s

QUAΔEQ

0.76 mm/s

1.21 mm/s

- Change of color -discoloring

- Fe3+ totally incorporated into mullite lattice

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 120,96

0,97

0,98

0,99

1,00

subsp. 2

subsp. 1

velocity (mm/s)

Page 15: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mossbauer's spectra clay „S2“

• We see the typical „doublet“–significant the presence of paramagnetic Fe3+ diluted in the aluminosilicate matrix at atomic level.

• Even the spectra shows the presence of Fe3+

ions, the incorporation means also discoloration.

• Following studies present limit of Fe3+content incorporated into the aluminosilicate matrix.

Page 16: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Study of red clay materialused for the floor tiles production

• Clay – deposit „Zelec“• Naturally dark red kaolinitic clay• Content of Fe2O3 > 10.2 wt. %• Color changes are practically invisible during

firing:• raw material – dark red/brown• 750 °C red but slightly lighter than raw material• 1000 °C similar as above• 1180 °C very dark red/brown color

Page 17: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „Zelec“

Raw material

Subsp. 1 Subsp. 2

IS δ 0.30 mm/s

0.40 mm/s

QUA ΔEQ0.60 mm/s

- 0.23 mm/s

BHF 50.8 T

- Clay contents

hematite (α-Fe2O3)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,988

0,990

0,992

0,994

0,996

0,998

1,000

1,002

data

fit

subsp.1

subsp.2

velocity (mm/s)

Page 18: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „Zelec“

Sample fired at 750°C

Subsp. 1 Subsp. 2

IS δ 0,38 mm/s

0,38 mm/s

QUA ΔEQ1,53 mm/s

- 0,23 mm/s

BHF 50,8 T

- Hematite confirmed

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,988

0,990

0,992

0,994

0,996

0,998

1,000

1,002

data

fit

subsp.1

subsp.2

velocity (mm/s)

Page 19: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mössbauer's spectra clay „Zelec“

Sample fired at 1000°C

Subsp. 1 Subsp. 2

IS δ 0.28 mm/s

0.37 mm/s

QUA ΔEQ0.82 mm/s

-0.23 mm/s

BHF 49.7 T

- Hematite content still confirmed

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,980

0,985

0,990

0,995

1,000

datafitsubsp.1subsp.2

velocity (mm/s)

Page 20: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Mossbauer's spectra clay „Zelec“

Sample fired at 1180°C

Subsp. 1 Subsp. 2

IS δ 0.30 mm/s

0.37 mm/s

QUA ΔEQ1.10 mm/s

- 0.21 mm/s

BHF 49.3 T

- Hematite is not

dissolved in

aluminosilicate matrix

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0,980

0,985

0,990

0,995

1,000

data

fit

subsp.1

subsp.2

velocity (mm/s)

Page 21: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

The ability of kaolinite to dissolve Fe3+

• Study on standard kaolin „Sedlec Ia“ used in the production of Czech porcelain.

• Fe2O3 content lower than 1 wt. %• Doped by Fe(NO3)3 .9 H2O gradually up to 5 wt. %• Observed color changes during temperature rise:• Presented results on samples with maximal iron content:• 750 °C – orange/red• 1000 °C – light skin pink• 1180 °C – very light, practically white

Page 22: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

The ability of kaolin to dissolve Fe3+ ionsDoped Kaolin sample fired at 750°C

Subsp. 1

Subsp. 2

Subsp. 3

IS δ 0.33mm/s

0.35mm/s

0.38 mm/s

QUAΔEQ

1.27mm/s

0.78mm/s

- 0.21mm/s

BHF 50.5 T

- Hematite confirmed-15 -10 -5 0 5 10 150.975

0.980

0.985

0.990

0.995

1.000

velocity (mm/s)

Subspektrum1

data

Subspektrum3Subspektrum2

Page 23: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

The ability of kaolin to dissolve Fe3+ ionsSample fired at 1000°C

Subsp. 1 Subsp. 2

IS δ 0.27mm/s

0.38mm/s

QUA ΔEQ0.94 mm/s

- 0.19mm/s

BHF 50.0 T

- Hematite still occures-15 -10 -5 0 5 10 150.95

0.96

0.97

0.98

0.99

1.00

Velocity (mm/s)

Subspektrum 2

dataSubspektrum 1

Page 24: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

The ability of kaolin to dissolve Fe3+ ionsSample fired at 1180°C

Subsp

IS δ 0.31 mm/s

QUAΔEQ 1.09 mm/s

- Hematite completely dissolved in aluminosilicates

-15 -10 -5 0 5 10 15

0.96

0.97

0.98

0.99

1.00

Velocity (mm/s)

Page 25: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Conclusions• The content of Fe3+ ions is not the only determination of

the final color of ceramic body.• Significant is a form of Fe3+ ions:

Hematite (Fe2O3) always means darker colors (orange, red and brown).

• Mössbauer’s spectroscopy confirms incorporation of Fe3+

ions in aluminosilicate matrix.• Discoloring effect is limited by maximal amount of Fe2O3 in

clays (5 - 6 wt. %) and temperature exceeding 1180 °C.• Hematite originated through the firing is highly reactive due

to the small and very small particles.

Page 26: Mössbauer's spectroscopy applied on kaolinitic clays. · • Mössbauer’s spectroscopy confirms incorporation of Fe3+ ions in aluminosilicate matrix. • Discoloring effect is

Thank you for your attention


Recommended