+ All Categories
Home > Documents > Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized*...

Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized*...

Date post: 22-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
60
Mul$scale simula$on of fluidized bed biomass gasifica$on Ahmed F. Ghoniem Christos Altantzis, Addison K. Stark, Richard B. Bates Akhilesh Bakshi, Rajesh Sridhar Department of Mechanical Engineering MassachuseHs Ins$tute of Technology NETL Workshop of Mul$phase Simula$ons August 1213, 2015 Project support by BP
Transcript
Page 1: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Mul$-­‐scale  simula$on  of  fluidized  bed  biomass  gasifica$on  

Ahmed  F.  Ghoniem  Christos  Altantzis,  Addison  K.  Stark,  Richard  B.  Bates  

Akhilesh  Bakshi,  Rajesh  Sridhar    

Department  of  Mechanical  Engineering  MassachuseHs  Ins$tute  of  Technology  

 NETL  Workshop  of  Mul$phase  Simula$ons  

August  12-­‐13,  2015      

Project  support  by  BP  

 

Page 2: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Biomass  to  liquids  pathways  

•  Gasifica$on  offers  improved  feedstock  u$liza$on  versus  exis$ng  1st  genera$on  routes    •  Gasifica$on  allows  produc$on  of  drop-­‐in  fuels  (e.g.  FT  Diesel)  as  well  as  chemicals  

Cellulosic biomass

Syngas

Pyrolysis  Bio-oils

Acid  Hydrolysis   Aqueous products

FT  Synthesis  

Catalysis  

Catalysis  

Fermenta$on  Sugar monomers

Alkanes

Liquid fuels

Fuels and chemicals

Ethanol

Thermochemical  routes  

Biochemical  route  

Page 3: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Fluidized  bed  gasi6ication  of  biomass  

Raw  biomass  characteris/cs  •     High  moisture  content  •     Expensive  par$cle  size  reduc$on  

Entrained  flow  gasifier:  Very  dilute  par$cle-­‐gas  mul$phase  flow  •       High  opera$ng  temperatures  •       High  levels  of  carbon  conversion  with  low  tar  content  •       Requires  very  fine  par$cles  (<mm)    

Not  suitable  for  raw  biomass,  unless  it  is  pre-­‐torrefied,  see  Bates  and  Ghoniem,  Bioresource  Tech  

3  

Page 4: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Fluidized  bed  gasi6ication  of  biomass  

Raw  biomass  characteris/cs  •     High  moisture  content  •     Expensive  par$cle  size  reduc$on  

Fluidized  bed:  Widely  used  paradigm  for  dense  par$cle-­‐gas  mul$phase  flows  •   High  surface  area  contact  between  fluid  and  solid  per  unit  bed  volume  •       High  levels  of  intermixing  •       Suitable  for  coarse  par$cles  with  large  residence  $mes  •       Lower  levels  of  carbon  conversion  with  considerable  tar  content    

Appropriate  for  biomass  gasifica$on,  poses  opera$onal  and  modeling  challenges  

4  

Page 5: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Multi-­‐scale  nature  of  biomass  gasi6ication  

Mul$-­‐scale  process:    •   Gas-­‐phase  chemistry  •   Surface  chemistry  •   Single-­‐par$cle  modeling  •   Hydrodynamics  •   Mixing  -­‐  Segrega$on    

Page 6: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Fluidized  bed  biomass  gasi6ication  Modeling  

Challenges    •     Complex  interplay  between:  

•   Mul$phase  fluid  dynamics  •   Massive  chemical  reac$on  networks  

•     Exis$ng  chemical  kine$c  mechanisms  are  too  computa$onally  demanding  

•   Ranzi  et  al.  [2]  460  species,  16000  reac$ons  •   Reliable  chemistry  reduc$on  strategies  are  needed  

 •     Simula$ng  industrial  scale  reactors  requires  the  development  of  advanced  closure  sub-­‐models  for  the  physics  descrip$on  

Typical  structure  of  sodwood  lignin  (Faravelli  et  al.,  2010  [2])  

Page 7: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Multiscale  simulations  &  technical  challenges  

2.    Undesirable  tar  compounds  

Technical  challenges  in  fluidized  bed  gasifica/on    

Demonstra/on  scale  d=2.5m  

Commercial-­‐scale  d=5m  

Lab  scale  d=0.25m  

1.  Expensive  scale-­‐up  

3.    Complex  gas-­‐solid  mixing  and  hydrodynamics    

Page 8: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Multiscale-­‐multi  physics  simulations  

2.    Undesirable  tar  compounds  

Technical  challenges  in  fluidized  bed  gasifica/on    

MIT’s  modeling  work  1.  Bakshi  et  al.  Efficient  computa$onal  schemes  for    

cylindrical  FB  reactors  with  CFD,  Powder  Tech.  2014.  [3]    

2.  Altantzis  et  al.,  Sensi$vity  of  solids  circula$on  to  walls,  par$cle,  flow  characteris$cs  using  CFD.  ,  Powder  Tech.,  2015  [4]  

3.  Bakshi,  et  al.,  Eulerian-­‐Eulerian  simula$on  of  dense  solid-­‐gas  cylindrical  fluidized  beds;  wall  boundary  condi$on  and  its  impact  on  fluidiza$on.  Powder  Tech.,  277  (2015)  47-­‐62  [5]  

4.  Stark  etal.,  Predic$on  and  valida$on  of  syngas  and  tar  species  from  a  reactor  network  model  of  fluidized  bed  biomass  gasifica$on,  Energy  &  Fuels,  2015  [6]  

5.  Bates  et  al,  Char  combus$on,  gasifica$on  and  aHri$on  in  bubbling  fluidized  beds.  Energy  &  Fuels  2015  [7]  

6.  Stark,  A.,  Comprehensive  par$cle  and  homogeneous  chemistry  modeling,  PhD  Thesis  2015  [8]  

7.  Sridhar,  Reactor  Network  Modeling  of  biomass  gasifica$on  with  detailed  chemistry,  Master  Thesis  2015.   8  

1.  Expensive  scale-­‐up  

3.    Complex  gas-­‐solid  mixing  and  hydrodynamics    

Page 9: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

CFD  

Reactor  network  modeling  Par/cle  scale  modeling  

Computa/onal  efficiency  and  scalability  

Valida/on  and  metrics  

Modeling  length  scales  (m)  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola/liza/on  

10-­‐6-­‐10-­‐2   10-­‐3-­‐100   10-­‐2-­‐101  

Network  model  Comprehensive  

chemical  kine/cs  

Gasifica/on  

Towards  Multi-­‐scale  simulation  of  biomass  gasi6ication  

Page 10: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Approach   Gas  Phase   Solid  Phase   Scale  

Discrete Bubble Model

Lagrangian Eulerian Industrial (10 m)

Two Fluid Model

Eulerian Eulerian Engineering (1 m)

Discrete Element Model

Eulerian (unresolved)

Lagrangian Laboratory (0.1 m)

Discrete Particle Model

Eulerian (resolved)

Lagrangian Laboratory (0.1 m)

Molecular Dynamics

Lagrangian Lagrangian Mesoscopic (<0.001 m)

10  

Two-Fluid Model (TFM) balances computational efficiency with

modeling fidelity making it suitable to industrial scale but challenges remain!

Accuracy  

Compu

ta/o

nal  efficien

cy  

Computational  approaches  to  6luidization  

Page 11: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Two  Fluid  Model  

•  Par$cle-­‐Par$cle  interac$ons  –  Kine$c  theory  of  granular  flows  –  Inter-­‐par$cle  drag  law  

•  Segrega$on  slope  coefficient,  Cs  •  Fric$on  coefficient,  Cf  

•  Par$cle-­‐gas  interac$ons  –  Drag  laws  

•  Par$cle-­‐wall  interac$ons  –  Res$tu$on  coefficient,  e  –  Specularity  coefficient,  ϕ    

Closure  models  involve  parameters  whose  influence  on  hydrodynamics  need  inves$ga$on  by  means  of:  •  Detailed  experiments  •  Valida$on  strategies  •  Use  of  detailed  numerical  methodologies  in  smaller  

scales    

Page 12: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

•  Ascending bubbles drive solids motion

•  Bubbles act as

pathways for gas flow

Importance  of  bubble  physics  during  6luidization    

Gas  phase  mo/on                           Solid  phase  mo/on                

Page 13: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

13  

Bubble statistics Dense phase statistics

Time mean solids holdup

Size vs height Velocity vs Height

Original CFD data f(x,y,z,t)

Circulation flux

Metrics  for  6luidization  hydrodynamics  

0.0  

0.3  

0.6  

Page 14: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

3D  bubble  statistics  tool  Bakshi at.al,

Bubble geometric characteristics •  Surface area •  Volume •  Cord length (axial/radial) •  Aspect ratios

Statistical analysis of bubble size and velocity distributions

3D bubble analysis for: •  Accurate detection of the

number of bubbles in the bed (only a fraction is captured with 2D analysis)

•  Azimuthal motion of bubbles

Page 15: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Dense  phase  mixing  metric  

•  Circulation fluxes & circulation times are sensitive to the parameters in sub-models •  Useful quantities for rigorous quantitative validation with novel experimental

measurements employing particle velocimetry •  Strongly coupled with the bubbling behavior in the bed

Page 16: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

16  

100

cm

50 cm

Lab-Scale Model Delgado et al. 2013 [9]

•  Lack of experimental data on φw  => φw  is a fitting parameter

 φw  tuned to 2D simulations is not appropriate for 3D simulations  

•  Thin rectangular beds extensively used in experimental studies employing non-intrusive measurements techniques

•  Cylindrical beds more realistic geometries for scale-up and different hydrodynamics compared to pseudo-2D beds

•  Variation of specularity coefficient to evaluate impact on simulation of pilot-scale model

100

cm

14.5 cm

Lab-Scale Model Rudisuli et al. , 2012 [11]

100

cm

10 cm

Lab-Scale Model Verma et al. , 2014 [10]

Parameter  estimation  and  validation  strategy  Example:  specularity  coef6icient  

Page 17: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

100cm  

15cm  

100cm  

30cm  

Rudisuli  et  al.  ,  2012  (Op$cal  probe  measurements  

for  bubble  dynamics)  

Pilot  scale  reactor  

100cm  

50cm  Delgado  et  al.  2013  [9]  (Digital  Image  Analysis  for  solids  mo$on)    

Parametric  analyses  and  valida$on  •  Parametric  analyses  with  respect  to  the  specularity  coefficient  •  Valida$on  based  on  experimental  studies  for  sand-­‐like  par$cles  in  different  bed  geometries  

 •  Thin  rectangular  beds  are  extensively  used  

in  experimental  studies  employing  non-­‐intrusive  measurements  techniques  

•  Significant  influence  of  the  wall  presence  especially  in  the  spanwise  direc$on  

•  NOT  suitable  for  comparison  with  2D  simula$ons  

Page 18: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

100cm  

50cm  Delgado  et  al.  2013  

(Digital  Image  Analysis  for  solids  mo$on)    

Parametric  analyses  and  valida$on  •  Parametric  analyses  with  respect  to  the  specularity  coefficient  •  Valida$on  based  on  experimental  studies  for  sand-­‐like  par$cles  in  different  bed  geometries  

Page 19: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

19  

Decreasing φ results in: •  Larger bubble sizes

•  Slugging fluidization

•  Gas bypassing effects

•  Higher bubble velocities

Uin = 2.5Umf φ = 0.0005

Negligible hindrance

Uin = 2.5Umf φ = 0.5

Significant hindrance

Simulation  Results  

Bubble hydrodynamics and solids motion significantly influenced by wall boundary condition

Thin  rectangular  bed  

Page 20: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

1×10-4 1×10-3 1×10-2 1×10-1 1×100

Specularity coefficient

0

2

4

6

8

Tim

e [s

]

tc+

tc-

tc

1×10-4 1×10-3 1×10-2 1×10-1 1×100

Specularity coefficient

0

2

4

6

8

Tim

e [s

]

tc+

tc-

tc

Case A Case D

Φ = 0.05 Φ  = 0.4

Experiment Experiment

Circ

ulat

ion

time

[s]

Circ

ulat

ion

time

[s]

Uin=2.5Umf Uin=1.75Umf

20  

•  Circulation time ↑ when

•  Uin ↓ - closer to Umf and less bubbling

•  φ ↑ - wall resistance increases ⇒ less solid motion close to walls and smaller bubbles

•  Appropriate φ ↓ as Uin ↑. For the range, 1.5Umf – 2.5Umf,  Φ  ∈ [0.05,0.5]    

Choosing  Φ  

Thin  rectangular  bed  

Page 21: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

100cm  

15cm  

100cm  

30cm  

Rudisuli  et  al.  ,  2012  [11]  (Op$cal  probe  measurements  

for  bubble  dynamics)  

Pilot  scale  reactor  

100cm  

50cm  Delgado  et  al.  2013  

(Digital  Image  Analysis  for  solids  mo$on)    

Parametric  analyses  and  valida$on  •  Parametric  analyses  with  respect  to  φ  and  the  drag  model  •  Valida$on  based  on  experimental  studies  for  sand-­‐like  par$cles  in  different  bed  geometries  

•  Realis$c  geometries  of  gasifiers    •  Effect  of  boundary  condi$ons  for  

different  bed  sizes  

•  Scaling-­‐up  simula$on  towards  industrially  relevant  sizes  

 

Page 22: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

22  

φ = 0.01

Mechanism    

0.2

0.4

0.6

0.8

Influence  of  specularity  coefficient  in  a  3D  cylindrical  bed  

                                                             solids  distribu/on  (circula/on  flux  /  /me)    bubble  dynamics  (Bubble  dia/count)          

Page 23: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Glass 2500 kg/m3, 1.1 mm Bed Dia = 10 cm U=2.0 Umf

Alumina 1040 kg/m3, 1.0 mm Bed Dia = 10 cm U=3.0 Umf

Suitable  ϕ  ?  

•  Range – 1.25-6.80 Umf, 860-2500 kg/m3, 0.289-1.1 mm •  Bubble diameter comparisons show higher values of ϕ (0.01-0.3) more suitable for dense flows •  Low sensitivity of metrics (solids / bubbles) for suitable ϕ •  Variable  ϕ  model (Li&Benyahia [12]) matches the results of the suitable ϕ

Valida$on  

Page 24: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

2.3 Umf 6.8 Umf •  Gidaspow model = pressure

drop data from packed + homogeneous fluidization experiments

•  Syamlal-O’Brien model = terminal velocity correlation of particles from liquid-solid beds

Takeaways - 1.  Drag model has a strong

impact on fluidization

2.  Gidaspow model more suited for low velocities (2-4 Umf)

Effect  on  Pilot-­‐Scale  Bed  

Influence  of  drag  model  

Page 25: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

CFD  

Reactor  network  modeling  Par/cle  scale  modeling  

Computa/onal  efficiency  and  scalability  

Valida/on  and  metrics  

Modeling  length  scales  (m)  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola/liza/on  

10-­‐6-­‐10-­‐2   10-­‐3-­‐100   10-­‐2-­‐101  

Network  model  

Towards  Multi-­‐scale  simulation  of  biomass  gasi6ication  

Comprehensive  chemical  kine/cs  

Gasifica/on  

Page 26: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Thermochemical  Conversion  of  Biomass  in  FBBG  

Gas-­‐Phase  Conversion  Pathway  

Solids  Conversion  Pathway  

Solids  -­‐>  Gas  conversion:    Complex  interplay  between  Heat  transfer  and  Chemistry  

Gas-­‐Phase  Reac$ons:  Mul$ple  species  and  pathways  

High  char  conversion  crucial  to  op$mal  efficiency  and  opera$on  

Page 27: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Approach:    Integrated  par$cle/reactor  network  models  to  predict  gasifier  outputs  

Reactor  network  model    (Homogeneous  reac=ons)  

Char  conversion    par$cle  model  (Heterogeneous  reac=ons)  

Gasifica$on,    aHri$on  rates  

Gas-­‐phase  concentra$ons  Iterate  un$l  gas  phase  composi$on  converges  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola$liza$on  par$cle-­‐scale  model  Inputs:    Reactor  temperature,  pressure,  feed  par$cle  size  composi$on  

C+H2O      =  CO+H2  C+CO2      =  2CO  C+0.5O2=  CO  

Page 28: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Transport  limita/ons  during  par/cle-­‐Scale  devola/liza/on  

28  

}  Par$cle-­‐phenomena  directly  influence  overall  conversion  

}  Interplay  between  }  External  convec$ve  heat  transfer  

from  the  bed  to  the  par$cle  }  Internal  conduc$ve  heat  transfer  }  Primary  pyrolysis  reac$on  kine$cs  

Page 29: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Devolatilization  Model  Development  

1-­‐D  par/cle  model   Devola/liza/on  Mechanism  

29  

•  Base of model is integration of heat transfer and chemical conversion:

–  1-D heat equation coupled with reactions

–  Mechanism of Ranzi et al. [1]

•  Boundary Conditions: –  Convective  and  radiative  heat  transfer  at  

surface  from  particle  trajectory  history •  Can  come  from  CFD!

•  System of equations are integrated with respect to time.

–  Requires a stiff ODE integrator. –  Simulation cost: 100 cpu-seconds

per second.

Ranzi  et  al.  [1]  

Page 30: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Single  Particle  Model  Predictions  

Resolves  internal  gradients  and  reac/on  dynamics  

Cellulose,  Hemicellulose  and  Lignin  devola$lize  sequen$ally,  yielding  a  triple  pyrolysis  wave  

30  

Page 31: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Single  Particle  Model  Predictions  

Predic/on  of  Devola/liza/on  Species  Rate  of  produc$on  of  tar  precursors  are  of  par$cular  interest.  Physical  parameters  have  a  strong  effect.   20  gaseous  species  and  char  

31  

Page 32: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Par/cle  devola/liza/on  /me  versus  par/cle  size  

0.005 0.01 0.015 0.02 0.025 0.030

50

100

150

200

250

300

Particle Diameter [m]

Con

vers

ion

Tim

e [s

]

500C

900C

“Tar+water”  yields  versus  reactor  temperature  

Par$cle  scale  devola$liza$on  model  valida$on  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

500   600   700   800   900  

Tar    yield  (kg/kg)  

Reactor  temperature  ○C  

Exp.  6mm  

Lines:  Best-­‐fit  by  Gaston  et  al.  2011  [13]  Points:  Model  predic$ons  

32  

Page 33: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Reactor  network  model    (Homogeneous  reac=ons)  

Char  conversion    par$cle  model  (Heterogeneous  reac=ons)  

Gasifica$on,    aHri$on  rates  

Gas-­‐phase  concentra$ons  Iterate  un$l  gas  phase  composi$on  converges  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola$liza$on  par$cle-­‐scale  model  Inputs:    Reactor  temperature,  pressure,  feed  par$cle  size  composi$on  

Approach:    Integrated  par$cle/reactor  network  models  to  predict  gasifier  outputs  

C+H2O      =  CO+H2  C+CO2      =  2CO  C+0.5O2=  CO  

Page 34: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Role  of  char  conversion  during  FBG  

•  Gomez-­‐Barea  &  Leckner  2013  [14]:  •  “The  conversion  of  char  is  the  most  

decisive  factor  in  FBG,  because  the  main  loss  of  efficiency  is  due  to  unconverted  carbon  in  the  ashes.”  

•  “...results  show  that  value  assigned  for  char  conversion  has  a  major  effect  on  the  temperature,  gas  hea=ng  value,  and  therefore  on  other  parameters  like  gas  composi=on  and  cold  gas  efficiency”  

•  LHV  ranges  5.4-­‐7.75  MJ/Nm3    depending  on  assigned  char  conversion.  

•  Char  conversion  needs  to  be  predicted  accurately  to  reduce  uncertainty  in  major  output  variables   Calcula$ons  for  air-­‐blown  pilot  scale  wood  pellet  

FBG  by  Gomez-­‐Barea  &  Leckner  2013  [14]:    

Air/fuel  equivalence  ra$o  

Page 35: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Char  Particle  Conversion  Model  

Devola$liza$on  +  primary  fragmenta$on+  

shrinkage    

AHri$on  pr

oduces  

elutriable  fi

nes  

CO+H2  

2CO  

CO2  

+H2O  +CO2  +O2  

Assump/on   Jus/fica/on  

Fines  produced  by  aHri$on  are  assumed  to  be  elutriated  as  soon  as  they  are  produced    

Elutria$on  $me  scale  is  fast  compared  to  aHri$on  $me  scale    

Intrapar$cle  diffusion  limita$ons  negligible  during    gasifica$on  ,  dominant  during  combus$on  

Thiele  modulus  <<1  for  gasifica$on    Thiele  modulus  >>  1  during  combus$on  

Isothermal  par$cle   Bi<1    35  

Page 36: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Modi6ied  attrition  kinetics  rate  expression  

Exis$ng  models  do  not  account  for  the  reduc$on  in  density/hardness  during  conversion  to  affect  the  aHri$on  rate    

Current  model  aHempts  to  accounts  for  this  

Page 37: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Fi\ed  model  results:    Spruce  wood  pellet  char  gasifica$on  in  60%vol  CO2  800C  

•  Proposed  structural  model  able  to  accurately  fit  results  for  aHri$on  rate  and  overall  conversion.    

•  ~25%wt  of  ini$al  char  is  aHrited  over  the  course  of  180  minutes  

0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 8.E-06

0 50 100 150

Elut

riatio

n ra

te (k

g/m

in)

Time (minutes)

Expt. (Ammendola et al., 2013) Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0 50 100 150

Car

bon

Con

vers

ion

(Xg)

Time (min)

Model Experiment (wood pellet)

Page 38: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

“Shrinking  core  model”  for  char  combustion;  Internal  and  external  diffusion  limitations  

Page 39: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Valida$on  of  combus$on/aHri$on    par$cle  model  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  

0   5   10  

Carbon

 Con

version  (X)  

Time  (min)  

Ammendola  wood  chip  Shrinking  core  model  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  

0   10   20   30  

Carbon

 Con

version  (X)  

Time  (min)  

Ammendola  2013  spruce  pellet  Shrinking  core  model  

Predic/ons  are  sensi/ve  to:    -­‐Par$cle  geometry/aspect  ra$o    -­‐External  mass  transfer  coefficient    -­‐Char  par$cle  density  and  diffusivity  

Condi/ons  4.5%  Oxygen  at  800C  95.5%  Nitrogen  

Page 40: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Char  gasifica$on/combus$on  par$cle  model  

•  Gasifica$on  assisted  aHri$on  well  represented  by  new  model  –  Sensi$ve  to  assumed  gasifica$on  kine$cs  

•  Combus$on  for  different  feedstocks  is  well  represented  by  effec$veness  factor  model  –  Rate  is  sensi$ve  to  par$cle  shape  and  size    –  Sensi$ve  to  external  mass  transfer  coefficient  model  

•  Can  be  incorporated  in  a  RNM.  •  In  CFD  it  will  be  part  of  a  Lagrangian  descrip$on  

Page 41: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Reactor  network  model    (Homogeneous  reac=ons)  

Char  conversion    par$cle  model  (Heterogeneous  reac=ons)  

Gasifica$on,    aHri$on  rates  

Gas-­‐phase  concentra$ons  Iterate  un$l  gas  phase  composi$on  converges  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola$liza$on  par$cle-­‐scale  model  Inputs:    Reactor  temperature,  pressure,  feed  par$cle  size  composi$on  

Approach:    Integrated  par$cle/reactor  network  models  to  predict  gasifier  outputs  

C+H2O      =  CO+H2  C+CO2      =  2CO  C+0.5O2=  CO  

Page 42: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Importance  of  tar  yields  during  biomass  gasifica$on  

Tar  classifica$on  based  on,  1.  Water  solubility  2.  Condensa$on  temperatures  

Downstream  problems:  1.  Condensa$on  at  low  

temperatures  might  result  in  fouling  or  clogging  of  the  gas  pipelines  

2.  High  solubility  results  in  toxic  wastewater  which  would  require  expensive  disposal  systems  downstream  

[16]  van  Paasen  and  Kiel,  2004  

Page 43: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Reactor  network  model  of  fluidized  biomass  gasifier  

•  Fluidized  bed  is  well  mixed  at  rate  faster  than  $mescale  of  devola$liza$on  

•  Devola$liza$on  is  uniform  through  bed  

•  Gas-­‐phase  reac$ons  in  emulsion  can  be  modeled  as  a  CSTR  (con$nuously  s$rred  tank  reactor)  

•  In  freeboard  few  solids  present  thus  liHle  axial  mixing  

•  Gas-­‐phase  reac$ons  in  freeboard  can  be  modeled  as  a  PFR  (plug  flow  reactor)  

43  

Page 44: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Reactor  network  model  of  fluidized  biomass  gasifier  

Mechanism:  CRECK/Ranzi  ~460  Species  ~16000  Reac$ons    

44  

Page 45: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

CRECK  mechanism  for  primary  pyrolysis  and  secondary  gas  phase  

reac$ons  

• 18  Reac$ons  

• 33  Species  • Diffusion  Modeling  

Biomass  • 16,000  Reac$ons  

• 460  Species  • Homogeneous  Gas-­‐Phase  

Primary  Pyrolysis  Products  

Secondary  Pyrolysis  and  Gasifica$on  Products  

45  

Levoglucosan  

Phenol  

Coumaryl  Alcohol  

C=O  

H2  

Benzene  

Toluene  

Naphthalene  

Page 46: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Experimental  data  available  for  valida$on:  Air-­‐blown  bubbling  fluidized  bed  gasifiers.    

(Van  Paasen  and  Kiel,  2004  [16])  •  Biomass  feed  rate:  1kg/hr  •  Biomass  feedstock:  Beech  •  Air-­‐Fuel  Equivalence  Ra$o:  0.25  •  Fluidizing  medium:  Sand,  270  μm  micron  •  Bed  diameter=  7.4  cm  

(Narvaez  et  al.,  1996  [17])  •  Biomass  feed  rate:  0.5kg/hr  •  Biomass  feedstock:  Pine  sawdust  •  Air-­‐Fuel  Equivalence  Ra$o:  0.25-­‐0.4  •  Fluidizing  medium:  Sand,  360  μm  •  Bed  diameter=6  cm  

(Kurkela  &  Stahlberg,  1992  [18])  •  Biomass  feed  rate:  40kg/hr  •  Biomass  feedstock:  Pine  sawdust  •  Air  and  Steam  employed  •  Air-­‐Fuel  Equivalence  Ra$o:  0.25-­‐0.4  •  Fluidizing  medium:  Sand,  600  μm  •  Bed  diameter=15  cm  •  At  pressure  (4  bar)  •  Secondary  Air  injec$on.  

46  

Freeboard  

Bubbling  bed  

Product  Gas  

Hk  

Biomass  

Air/Steam/O2  

Hb  

Db  

Air/Steam/O2  

Page 47: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

RNM  valida$on:    Effects  of  temperature  on  major  species,  effects  of  CO  and  Water  Gas  

Shid  Kine$cs.  

Page 48: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Comparison  of  full  mechanism  with  experimental  data  

•  Full  mechanism  and  reactor  network  model  able  to  accurately  represent  the  destruc$on  of  tars  at  higher  temperatures  

Page 49: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Tar  Class  predic$ons  

49  

We  are  under-­‐predic$ng  the  

forma$on  of  PAH  compounds…  by  orders  

of  magnitude  

Well  S$rred  bed  possibly  over-­‐predicts  availability  of  oxygen  everywhere,  impeding  

PAH  forma$on…  Transport  likely  playing  

a  role!  

Page 50: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Well-­‐s$rred  Bed  Zone  is  a  strong  assump$on  

50  

Increasing  Gas  velocity  =>  Faster  bubble  growth  and  faster  bubble  flow    Larger  bubbles    =>    Less  gas  exchange  between  emulsion  and  bubble    

Page 51: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

51  

Well-­‐s$rred  Bed  Zone  is  a  strong  assump$on  

XN2   Xtari   Rdevol   Voidage  •  Bubbles  carry  majority  

of  excess  fluidiza$on  gas  

•  Devola$liza$on  occurs  in  emulsion  

•  Full  mixing  occurs  at  splash  zone  

•  Emulsion  rela$vely  rich…  

RNM  needs  to  capture  this  to  predict  PAH  forma$on.  

Page 52: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Improved  RNM  Formula$on  

Page 53: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Improved  RNM  Formula$on  

Devol.    Gases  

Air  

Freebo

ard  

 (PFR)  

Bubb

le  

 (PFR)  

Emulsio

n    (C

STR)  

x  1-­‐x  

y  1-­‐y  

Page 54: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Devol.    Gases  

Air  

Freebo

ard  

 (PFR)  

Bubb

le  

 (PFR)  

Emulsio

n    (C

STR)  

x  1-­‐x  

y  1-­‐y  

Impact  of  bubble-­‐phase  on  gas-­‐phase  conversion  

Page 55: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Impact  of  bubble-­‐phase  on  gas-­‐phase  conversion  

Devol.    Gases  

Air  

Freebo

ard  

 (PFR)  

Bubb

le  

 (PFR)  

Emulsio

n    (C

STR)  

x  1-­‐x  

y  1-­‐y  

Page 56: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

CFD  

Reactor  network  modeling  Par/cle  scale  modeling  

Computa/onal  efficiency  and  scalability  

Valida/on  and  metrics  

Modeling  length  scales  (m)  

Internal  +  External  Mass  Transfer

Primary  Pyrolysis  Reaction  zone

Gas  Phase  Secondary  Pyrolysis  Reactions,  Tar  Reformation  and  Oxidation  Reactions

Heterogeneous  Reactions

Heat  Transfer  (conduction,  convection,    radiation)

Abrasion    causes  attrition

Devola/liza/on  

10-­‐6-­‐10-­‐2   10-­‐3-­‐100   10-­‐2-­‐101  

Network  model  

Current  work:  Coupling  CFD,  particle  thermochemistry  and  RNM  

Comprehensive  chemical  kine/cs  

Gasifica/on  

Bubble  phase  and  emulsion  proper$es  

Page 57: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

Concluding  remarks  •  Mul$-­‐scale  simula$on  necessary  to  tackle  the  complexity  of  fluidized  bed  

biomass  gasifica$on  

•  Eulerian  Eulerian  approach  for  fluidiza$on  offers  computa$onal  scalability  but  requires  closures  and  valida$on  –  Contribu$ons  in  appropriate  metrics,  robust  parametriza$on,  computa$onal  

efficiency  

•  Par$cle  scale  modeling:    –  FBG  dominated  by  par$cle  scale  processes  of  devola$liza$on,    gasifica$on  and  

combus$on  –  Dominant  physical/chemical  processes  must  be  iden$fied  

•  Impossible  to  model  “all”  processes  

•  Reactor  network  modeling    –  Flexible,  incorporates  comprehensive  chemistry  and  par$cle  models  –  Can  benefit  from  CFD  results  (gas  distribu$on,  exchange  …  )    

Page 58: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

References  [1]  E.  Ranzi,  M.  CorbeHa,  F.  Manen$,  S.  Pierucci,  “Kine$c  modeling  of  the  thermal  degrada$on  and  combus$on  of  biomass”,  Chemical  Engineering  Science,  2014,  110:2-­‐12    [2]  T.  Faravelli,  A.  Frassolda$,  G.  Migliavacca,  E.  Ranzi,  “Detailed  kine$c  modeling  of  the  thermal  degrada$on  of  lignins”  Biomass  and  Bioenergy,  2010,34(3):290–301    [3]  A.  Bakshi,  C.  Altantzis,  A.F.  Ghoniem,  “Towards  accurate  three-­‐dimensional  simula$on  of  dense  mul$-­‐phase  flows  using  cylindrical  coordinates”,  2014,  Powder  Technology,  264:242-­‐255    [4]  C.  Altantzis,  R.B.  Bates,  A.F.  Ghoniem,  “3D  Eulerian  modeling  of  thin  rectangular  gas–solid  fluidized  beds:  es$ma$on  of  the  specularity  coefficient  and  its  effects  on  bubbling  dynamics  and  circula$on  $mes”,  Powder  Technology,  2015,  270(A):256-­‐270    [5]  A.  Bakshi,  C.  Altantzis,  R.B.  Bates,  A.F.  Ghoniem,  “Eulerian–Eulerian  simula$on  of  dense  solid–gas  cylindrical  fluidized  beds:  Impact  of  wall  boundary  condi$on  and  drag  model  on  fluidiza$on”,  Powder  Technology,  2015,  277:47-­‐62    [6]  A.K.  Stark,  R.B.  Bates,  Z.  Zhao,  A.F.  Ghoniem,  “Predic$on  and  Valida$on  of  Major  Gas  and  Tar  Species  from  a  Reactor  Network  Model  of  Air-­‐Blown  Fluidized  Bed  Biomass  Gasifica$on”,  Energy  &  Fuels,  2015,  29(4):2437-­‐2452    

Page 59: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

References  [7]  R.B.  Bates,  C.  Altantzis,  A.F.  Ghoniem,  “Modeling  of  biomass  char  gasifica$on,  combus$on  and  aHri$on  kine$cs  in  fluidized  beds”,  Energy  &  Fuels,  2015,  submiHed  for  publica$on      [8]  Addison  Stark,  “Mul$-­‐Scale  Chemistry  Modeling  of  the  Thermochemical  Conversion  of  Biomass  in  a  Fluidized  Bed  Gasifier”,  MassachuseHs  Ins$tute  of  Technology,  PhD  Thesis,  2015    [9]  S.  Sánchez-­‐Delgado,  C.  Marugán-­‐Cruz,  A.  Soria-­‐Verdugo,  D.  Santana,  “Es$ma$on  ans  experimental  validaiton  of  the  circula$on  $me  in  a  2D  gas-­‐solid  fluidized  beds”,  Powder  Technology,  2013,  235:669-­‐676    [10]  V.  Verma,  J.  T.  Padding,  N.G.  Deen,  J.A.M.  (Hans)  Kuipers,  F.  Barthel,  M.  Bieberle,  M.  Wagner,  U.  Hampel,  “Bubble  dynamics  in  a  3-­‐d  gas–solid  fluidized  bed  using  ultrafast  electron  beam  X-­‐ray  tomography  and  two-­‐fluid  model”,  AIChE  Journal,  2014,  60(5):1632-­‐1644    [11]  M.  Rüdisüli,  T.J.  Schildhauer,  S.M.A.  Biollaz,  A.  Wokaun,  J.R.  van  Ommen,  “Comparison  of  bubble  growth  obtained  from  pressure  fluctua$on  measurements  to  op$cal  probing  and  literature  correla$ons”,  Chemical  Engineering  Science,  2012,  74(0):266-­‐275    [12]  T.  Li,  S.  Benyahia,  “Revisi$ng  Johnson  and  Jackson  boundary  condi$ons  for  granular  flows”,  AIChE  Journal,  2012,  58(7):2058-­‐2068  

Page 60: Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* · Mul$%scale*simulaon*of*fluidized* bed*biomass*gasificaon* Ahmed*F.*Ghoniem Christos*Altantzis,*Addison*K.*Stark,*Richard*B.*Bates*

References  [13]  K.R.  Gaston,  M.W.  Jarvis,  P.  Pepiot  ,  K.M.  Smith,  W.J.  Jr.  Frederick,  M.R.  Nimlos,  “Biomass  Pyrolysis  and  Gasifica$on  of  Varying  Par$cle  Sizes  in  a  Fluidized-­‐Bed  Reactor”,  Energy  &  Fuels,  2011,  25:3747–3757    [14]  A.  Gómez-­‐Barea,  B.  Leckner,  “Es$ma$on  of  gas  composi$on  and  char  conversion  in  a  fluidized  bed  biomass  gasifier”,  Fuel,  2013,107:419–431    [15]  P.  Ammendola,  R.  Chirone,  G.  Ruoppolo,  F.  Scala,  “The  effect  of  pelle$za$on  on  the  aHri$on  of  wood  under  fluidized  bed  combus$on  and  gasifica$on  condi$ons”,    2013,  Proceedings  of  the  Combus=on  Ins=tute,  34(2):2735-­‐2740    [16]  S.V.B.  van  Paasen,  J.H.A.  Kiel,  “Tar  forma$on  in  a  fluidized-­‐bed  gasifier”,  Report  ECN-­‐C-­‐-­‐04-­‐013,  Energy  and  Research  Centre  of  the  Netherlands  (ECN),  PeHen,  The  Netherlands,  2004    [17]  I.  Narváez,  A.  Orı́o,  M.P.  Aznar,  J.  Corella,  “Biomass  gasifica$on  with  air  in  an  atmospheric  bubbling  fluidized  bed.  Effect  of  six  opera$onal  variables  on  the  quality  of  produced  raw  gas”,  Industrial  and  Engineering  Chemistry  Research,  1996,  35:2110–2120    [18]  E.  Kurkela,  P.  Ståhlberg,  “Air  Gasifica$on  of  peat,  wood  and  brown  coal  in  a  pressurized  fluidized  bed  reactor.  I.  Carbon  conversion,  gas  yields  and  tar  forma$on”,  Fuel  Processing  Technology,  1992,  31:1–21  


Recommended