+ All Categories
Home > Documents > Multi-task Learning and Structured...

Multi-task Learning and Structured...

Date post: 27-Mar-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
27
Multi-task Learning and Structured Sparsity Massimiliano Pontil Department of Computer Science Centre for Computational Statistics and Machine Learning University College London Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 1 / 27
Transcript
Page 1: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Multi-task Learning and Structured Sparsity

Massimiliano Pontil

Department of Computer ScienceCentre for Computational Statistics and Machine Learning

University College London

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 1 / 27

Page 2: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Outline

Problem formulation and examples

Design of regularization functions

Statistical analysis

Optimization methods

Extensions

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 2 / 27

Page 3: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Problem formulation

Let µ1, . . . , µT be prescribed probability measures on X × Y

(xt1, yt1), . . . , (xtn, ytn) ∼ µt , t = 1, . . . ,T

Goal: find functions ft : X → Y which minimize

1

T

T∑t=1

E(x ,y)∼µt L(y , ft(x))2

Regularization approach:

min1

T

T∑t=1

1

n

n∑i=1

L(yti , ft(xti )) + λ Ω(f1, . . . , fT )

Penalty Ω encourages “common structure” among the functions

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 3 / 27

Page 4: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Problem formulation (cont.)

Focus on linear regression

min1

T

T∑t=1

1

n

n∑i=1

L(yti ,wt>xti )︸ ︷︷ ︸

training error task t

+λ Ω(w1, . . . ,wT )︸ ︷︷ ︸joint regularizer

Single task learning: Ω(w1, . . . ,wT ) =∑

t ω(wt)

Typical scenario: many tasks but only few examples per task

If the tasks are “related”, learning them jointly should improve overlearning each task independently

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 4 / 27

Page 5: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Example 1: user modeling

Each task is to predict a user’s ratings to products

CPU CD RAM · · · HD Screen Price Rating

1GHz Y 1GB · · · 40G 15in $1000 71GHz N 1.5GB · · · 20G 13in $1200 3

1.5GHz Y 1.5GB · · · 40G 17in $1700 52GHz Y 2GB · · · 80G 15in $2000 ?

1.5GHz N 2GB · · · 40G 13in $1800 ?

The ways different people make decisions about products are related,e.g. small variance of parameters

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 5 / 27

Page 6: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Example 2: matrix completion / collaborative filtering

Estimate the entries of a products/users matrix (e.g. Netflix)W := [w1, . . . ,wT ]

5 ? ? 5 ?

? 2 3 ? 5

? 1 ? ? 3

4 ? 5 ? ?

? ? 1 2 ?

Special case of MTL with X = e1, . . . , ed, xti = ek(ti):

minW

1

Tn

T∑t=1

n∑i=1

(yti −Wt,k(ti))2 + λ Ω(W )

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 6 / 27

Page 7: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Example 3: object detection

Multiple object detection in scenes: detection of each objectcorresponds to a binary classification task

Learning common visual features enhances performance Early work in

ML used a hidden layer neural nets with hidden weights shared by all the

tasks [Baxter 96, Caruana 97, Silver and Mercer 96, etc.]

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 7 / 27

Page 8: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Quadratic regularizer[Evgeniou et al. 2005, Caponnetto et al. 08, Baldassarre et al. 10,...]

min1

T

T∑t=1

1

n

n∑i=1

L(yti ,wt>xti ) + λ Ω(w1, . . . ,wT )

Let Ω(w) = w>Ew , with E ∈ SdT×dT++ , w = (w1, . . . ,wT ) ∈ IRdT

Encourages closeness of task parameters / linear relationships – ifblock diagonal, tasks are learned independently

Example Ω(w) =T∑t=1‖wt‖2 + 1−γ

γ

T∑t=1‖wt − 1

T

T∑s=1

ws‖2

γ ∈ [0, 1], γ = 1: independent tasks, γ = 0: identical tasks

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 8 / 27

Page 9: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Equivalent formulation

Consider function (x , t) 7→ ft(x) := v>Btx , for v ∈ Rp andBt ∈ Rp×d (task specific)

Rewrite optimization problem as:

S(v) =T∑t=1

n∑i=1

L(yti , v>Btxti ) + λv>v

Previous example:

B>t = [(1− γ)12 Id×d , 0d×d , . . . , 0d×d︸ ︷︷ ︸

t−1

, (γT )12 Id×d , 0d×d , . . . , 0d×d︸ ︷︷ ︸

T−t

]

Interpretation:

wt = Bt>v =

√1− γv0 +

√γT vt = “common” + “task specific”

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 9 / 27

Page 10: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Structured sparsity: few shared variables

Favour matrices with many zero rows:

‖W ‖2,1 :=d∑

j=1

√√√√ T∑t=1

w 2jt

Special case of group Lasso method [Lounici et al. 09, Obozinski et al. 10,

Yuan and Lin, 06]

Compare matrices W favoured by different regularizers (green = 0, blue = 1):

#rows = 13 5 2‖ · ‖2,1 = 19 12 8`1-norm = 29 29 29

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 10 / 27

Page 11: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Statistical analysis

Linear regression model: yti = wt>xti + εti , with εti i.i.d. N(0, σ2)

i = 1, . . . , n, d n, use the square loss: L(y , y ′) = (y − y ′)2.

Assume card

j :

T∑t=1

w 2jt > 0

6 s

Variables not too correlated: 1n

∣∣∣∣ n∑i=1

(xti )j(xti )k

∣∣∣∣ ≤ 1−ρ7s , ∀t, ∀j 6= k

Theorem [Lounici et al. 2011] If λ = 4σ√nT

√1 + A log d

T , A ≥ 4 then w.h.p.

1

T

T∑t=1

‖wt − wt‖2 ≤(

ρ

)2 s

n

√1 + A

log d

T

Dependency on the dimension d is negligible for large T

Compare to Lasso: 1T

T∑t=1‖w (L)

t − wt‖2 ≥ c ′ sn log(d T )

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 11 / 27

Page 12: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Multitask feature learning [Argyriou et al., 2007]

Extend above formulation to learn a low dimensional representation:

minU,A

T∑t=1

n∑i=1

L(yti , at>U>xti ) + λ ‖A‖2,1 : U>U = Id×d , A ∈ IRd×T

Let W = UA and minimize over orthogonal U

minU‖U>W ‖2,1 = ‖W ‖tr :=

r∑j=1

σj(W )

Obtain trace norm regularization

minW

T∑t=1

n∑i=1

L(yti ,wt>xti ) + λ ‖W ‖tr

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 12 / 27

Page 13: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Variational form and alternate minimization

Lemma: ‖W ‖tr = 12 infD0

tr(D−1WW >) + tr(D)

where the

infimizer is D(W ) = (WW >)12

minW , D0

T∑t=1

n∑i=1

L(yti ,wt>xti ) +

λ

2

[tr(W >D−1W )︸ ︷︷ ︸

T∑t=1

wt>D−1wt

+ tr(D)]

Further constraining D to be diagonal yields ‖W ‖2,1

Extension (spectral regularizers) e.g. Schatten p-norms

Requires a perturbation step in order to prove convergence

See [Dudık et al, 2012] for comparison results

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 13 / 27

Page 14: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Risk bound

Theorem [Maurer and P. 2012] Let R(W ) = 1T

∑Tt=1 E(x ,y)∼µt L(y ,wt

>x)

and R(W ) the empirical error. Assume L(y , ·) is φ-Lipschitz and ‖xti‖ ≤ 1.

If W ∈ argmin

R(W ) : ‖W ‖tr ≤ B√

T

then with prob. at least 1− δ

R(W )− R (W ∗) ≤ 2φB

(√‖C‖∞

n+

√2 (ln (nT ) + 1)

nT

)+

√8 ln (3/δ)

nT

with C = 1nT

∑t,i xtixti

> and W ∗ ∈ argmin R(W )

Interpretation: Assume rank(W ∗) = K , ‖w∗t ‖ ≤ 1 and chooseB = K 1/2. If the inputs are uniformly distributed, as T grows wehave a O(

√K/nd) bound as compared to O(

√1/n) for single task

learning

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 14 / 27

Page 15: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Experiment (computer survey)

Test error vs. #tasks Eigenvalues of matrix D

0 50 100 150 2004.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

1 2 3 4 5 6 7 8 9 10 11 12 13 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Performance improves with more tasks

A single most important feature shared by everyone

Dataset [Lenk et al. 1996]: consumers’ ratings of PC models: 180 persons (tasks), 8 training, 4

test points, 13 inputs (RAM, CPU, price etc.), output in 0, . . . , 10 (likelihood of purchase)

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 15 / 27

Page 16: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Experiment (computer survey)

TE RAM SC CPU HD CD CA CO AV WA SW GU PR−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Method TestIndependent 15.05Aggregate 5.52

Quadratic (best λ) 4.37Structured Sparsity 4.04

Trace norm 3.72Quadratic + Trace 3.20

The most important feature (1st eigenvector of D) weighs technicalcharacteristics (RAM, CPU, CD-ROM) vs. price

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 16 / 27

Page 17: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

More complex models

Composite regularizers: Ω(B W ), e.g. Ω([w1 − w , . . . ,wT − w ]).More challenging optimization problem [Argyriou et al. 2011]

“Robust” model: Ω(W ) = minW=V+Z

Ω(V ) + ‖Z>‖2,1 [Chen et al. 2011]

Constrained variational [Micchelli, Morales, P., 2010], e.g.D = diag(λ1, . . . , λd) : λ ∈ Λ, with Λ ⊆ IRd

++ a convex cone

Multitask clustering [Jacob et al. 2008]

Tensor learning [Gandy et al. 2011, Liu et al. 2011, Signoretto et al. 2012]

Encourage heterogeneous features [Romera-Paredes et al., 2012]

Sparse coding for MTL [Kumar and Daume III, 2012, Maurer et al. 2012]

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 17 / 27

Page 18: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Tensor learning

Example: predict action units’ (e.g. cheek raiser) activation fordifferent people [Lucey et. al 2011]

Now t is a double index corresponding to identity/action unit

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 18 / 27

Page 19: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Tensor learning (cont.)

Let W ∈ IRd×T1×T2 . For all t1 ∈ [1:T1], t2 ∈ [1:T2], W:,t1,t2 ∈ Rd is aregression vector from which we generate data samples

Goal: control rank of each matricization of W :

rank(W(1)) + rank(W(2)) + rank(W(3))

where W(n) is the mode-n matricization of W

Convex lower bound [Liu et al. 2011, Gandy et al 2011, Signoretto et al. 2012]

3∑n=1

‖W(n)‖tr

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 19 / 27

Page 20: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Tensor learning (cont.)

E (L(W)) + λ

3∑n=1

‖W(n)‖tr

Solved by alternating direction of multipliers [Gandy et al. 2011]

Alternative non-convex approach using Tucker decomposition

50 100 150 200 250

0.16

0.18

0.2

0.22

0.24

0.26

0.28

m (Training Set Size)

Co

rre

latio

n

GRR

GTNR

GMF

TTNR

TF

Convex lower bound not tight – ongoing work studying alternativeconvex relaxations [Argyriou et al. 2012]

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 20 / 27

Page 21: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Exploiting unrelated groups of tasks

Example: recognizing identityand emotion on a set of faces

emotion related featureidentity related feature

Assumption:1. Low rank within each group2. Tasks from different groups

tend to use orthogonal features

30 40 50 60 70 80 90 1000.2

0.3

0.4

0.5

0.6

0.7

0.8

Training Set SizeM

iscla

ssific

atio

n E

rro

r R

ate

Ridge Regression

MTL

MTL−2G

OrthoMTL

OrthoMTL−EN

minErr(W ) + Err(V ) + γ

[‖[W ,V ]‖tr + ρ‖W >V ‖2

Fr

]Related convex problem under conditions [Romera-Paredes et al., 2012]

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 21 / 27

Page 22: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Multi-task learning with dictionaries[Maurer et al. 2012]

Method (natural extension of [Olshausen and Field 1996])

min

1

T

T∑t=1

‖yt − Xtwt‖22 : wt = Uat

U = [u1, . . . , uK ] with ‖uk‖2 ≤ 1

Similar approach with Frobenius norm bound [Kumar and Daume III]

Sparse coding constraint: ‖at‖1 ≤ α or other structure sparsitynorms [Jenatton et al. 2011]

Estimation bounds show improvement over single task learning andtrace norm regularization

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 22 / 27

Page 23: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Conclusions

Multi-task learning is ubiquitous – exploiting task relatedness canenhance learning performance

Reviewed families of regularizers which naturally extend complexitynotions (smoothness and sparsity) used for the single-task learning;touched upon statistical analyses and optimisation techniques

Wide scope for convex relaxation and optimisation techniques inmore complex task-relatedness scenarios

Further work on nonlinear MTL via reproducing kernel Hilbert spaces

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 23 / 27

Page 24: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

Thanks

Andreas Argyriou

Nadia Bianchi-Berthouze

Andrea Caponnetto

Theodoros Evgeniou

Karim Lounici

Andreas Maurer

Charles Micchelli

Bernardino Romera-Paredes

Alexandre Tsybakov

Sara van de Geer

Yiming Ying

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 24 / 27

Page 25: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

References (I)

[Abernethy, Bach, Evgeniou, Vert] A new approach to collaborative filtering: operatorestimation with spectral regularization. JMLR 2009.

[Ando and Zhang] A framework for learning predictive structures from multiple tasks andunlabeled data. JMLR 2005.

[Argyriou, Evgeniou, Pontil] Multi-task feature learning. NIPS 2006.

[Argyriou, Evgeniou, Pontil] Convex multi-task feature learning. Machine Learning 2008.

[Argyriou, Foygel, Srebro] Sparse Prediction with the k-Support Norm. NIPS 2012.

[Argyriou, Maurer, Pontil] An algorithm for transfer learning in a heterogeneous environment.ECML 2008b.

[Argyriou, Micchelli, Pontil] When is there a representer theorem? Vector versus matrixregularizers. JMLR 2009.

[Argyriou, Micchelli, Pontil, Shen, Xu] Efficient first order methods for linear compositeregularizers. arXiv:1104.1436.

[Baxter] A model for inductive bias learning. JAIR 2000.

[Ben-David and Schuller] Exploiting task relatedness for multiple task learning. COLT 2003.

[Caponnetto, Micchelli, Pontil, Ying] Universal mult-task kernels. JMLR 2008.

[Carmeli, De Vito, Toigo] Vector valued reproducing kernel Hilbert spaces, integrablefunctions and Mercer theorem. Analysis and Applications, 2006.

[Caruana] Multi–task learning. Machine Learning 1998.

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 25 / 27

Page 26: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

References (II)

[Dudık, Harchaoui, Malik] Lifted coordinate descent for learning with trace-normregularization, AISTATS 2012.

[Evgeniou and Pontil] Regularized multi-task learning. SIGKDD 2004.

[Evgeniou, Micchelli, Pontil] Learning multiple tasks with kernel methods. JMLR 2005.

[Fazel, Hindi and Boyd] A rank minimization heuristic with application to minimum ordersystem approximation. American Control Conference, 2001.

[Jacob, Bach, Vert] Clustered multi-task learning: a convex formulation. NIPS 2008.

[Jebara] Multi-task feature and kernel selection for SVMs. ICML 2004.

[Lounici, Pontil, Tsybakov, van de Geer] Taking advantage of sparsity in multi-task learning.COLT 2009.

[Lounici, Pontil, Tsybakov, van de Geer] Oracle inequalities and optimal inference under groupsparsity. Annals of Statistics 2011.

[Izenman] Reduced-rank regression for the multivariate linear model, J. Multivariate Analysis,1975.

[Lenk, DeSarbo, Green, Young] Hierarchical Bayes conjoint analysis: recovery of partworthheterogeneity from reduced experimental designs. Marketing Science 1996.

[Maurer] Bounds for linear multi-task learning. JMLR 2006.

[Maurer and Pontil] Structured sparsity and generalization. JMLR 2012.

[Maurer, Pontil, Romera-Paredes] Sparse coding for multitask and transfer learning.arXiv:1209.0738.

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 26 / 27

Page 27: Multi-task Learning and Structured Sparsityhelper.ipam.ucla.edu/publications/crm2013/crm2013_11153.pdf · Multi-task Learning and Structured Sparsity Massimiliano Pontil Department

References (III)

[Micchelli, Morales, Pontil] A family of penalty functions for structured sparsity. NIPS 2010.

[Micchelli and Pontil] On learning vector-valued functions. Neural Computation 2005.

[Romera-Paredes, Argyriou, Pontil, Berthouze] Exploiting unrelated tasks in multi-tasklearning. AISTATS 2012.

[Salakhutdinov, Torralba, Tenenbaum] Learning to share visual appearance for multiclassobject detection. CVPR 2011.

[Srivastava and Dwivedi] Estimation of seemingly unrelated regression equations: A briefsurvey J. Econometrics,1971.

[Silver & Mercer] The parallel transfer of task knowledge using dynamic learning rates basedon a measure of relatedness. Connection Science 1996. [Yu, Tresp, Schwaighofer] Learning

Gaussian processes from multiple tasks. ICML 2005.

[Srebro, Rennie, Jaakkola] Maximum-margin matrix factorization. NIPS 2004.

[Thrun and Pratt] Learning to learn, Springer, 1998.

[Thrun and OSullivan]. Clustering learning tasks and the selective crosstask transfer ofknowledge. 1998.

[Torralba, Murphy, Freeman] Sharing features: efficient boosting procedures for multiclassobject detection. CVPR 2004.

[Zellner] An efficient method for estimating seemingly unrelated regression equations andtests for aggregation bias. JASA, 1962.

Massimiliano Pontil (UCL) Multi-Task Learning IPAM, 11/2/13 27 / 27


Recommended