+ All Categories
Home > Science > Multilayer tutorial-netsci2014-slightlyupdated

Multilayer tutorial-netsci2014-slightlyupdated

Date post: 29-Nov-2014
Category:
Upload: mason-porter
View: 1,064 times
Download: 4 times
Share this document with a friend
Description:
These are the slides for a tutorial talk about "multilayer networks" that I gave at NetSci 2014. I walk people through a review article that I wrote with my PLEXMATH collaborators: http://comnet.oxfordjournals.org/content/2/3/203
99
Mason A. Porter Mathematical Institute, University of Oxford (@masonporter, masonporter.blogspot.co.uk) Mostly, we’ll be “following” (i.e. skimming through) our new review article: M Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, & MAP, “Multilayer Networks”, Journal of Complex Networks, Vol. 2, No. 3: 203–271 [2014].
Transcript
Page 1: Multilayer tutorial-netsci2014-slightlyupdated

Mason  A.  Porter  Mathematical  Institute,  University  of  Oxford  (@masonporter,  masonporter.blogspot.co.uk)  

Mostly,  we’ll  be  “following”  (i.e.  skimming  through)  our  new  review  article:  

M  Kivelä,  A.  Arenas,  M.  Barthelemy,  J.  P.  Gleeson,  Y.  Moreno,  &  MAP,  “Multilayer  Networks”,  Journal  of  Complex  Networks,  Vol.  2,  No.  3:  203–271  [2014].  

Page 2: Multilayer tutorial-netsci2014-slightlyupdated

•  1.  Go  to  http://people.maths.ox.ac.uk/porterm/temp/netsci2014/  and  download  the  .pdf  file  of  this  presentation.  

•  2.  Download  the  review  article  from  http://comnet.oxfordjournals.org/content/2/3/203  and  (just  in  case)  download  our  earlier  article  on  the  tensorial  formalism  –  http://people.maths.ox.ac.uk/porterm/papers/PhysRevX.3.041022.pdf  

•  3.  Use  these  materials  and  be  happy.  

Page 3: Multilayer tutorial-netsci2014-slightlyupdated

•  Browsing  through  the  mega-­‐review  article  –  1.  Introduction  –  2.  Conceptual  and  Mathematical  Framework  –  3.  Data  –  4.  Models,  Methods,  Diagnostics,  and  Dynamics  

–  5.  Conclusions  and  Outlook  •  Some  Advertisements  –  Journals,  workshops/conferences  

Page 4: Multilayer tutorial-netsci2014-slightlyupdated
Page 5: Multilayer tutorial-netsci2014-slightlyupdated

“How  Candide  was  multilayer  networks  were  brought  up  in  a  magnificent  castle  and  how  he  was  they  were  driven  thence”  

Page 6: Multilayer tutorial-netsci2014-slightlyupdated

•  The concept of “multiplex network” has been around for many decades. !

Page 7: Multilayer tutorial-netsci2014-slightlyupdated

•  Monster  movement  in  the  game  “Munchkin  Quest”  

Page 8: Multilayer tutorial-netsci2014-slightlyupdated

•  The notion (and terminology) “network of networks” is also several decades old. !

(Craven  and  Wellman,  1973)  

Page 9: Multilayer tutorial-netsci2014-slightlyupdated

(Courtesy  of  Sco;  Thacker,  ITRC,  University  of  Oxford)  

Page 10: Multilayer tutorial-netsci2014-slightlyupdated

(David  Krackhardt,  1987)  

Page 11: Multilayer tutorial-netsci2014-slightlyupdated
Page 12: Multilayer tutorial-netsci2014-slightlyupdated
Page 13: Multilayer tutorial-netsci2014-slightlyupdated
Page 14: Multilayer tutorial-netsci2014-slightlyupdated
Page 15: Multilayer tutorial-netsci2014-slightlyupdated

“What  befell  Candide  multilayer  networks  among  the  mathematicians”  

Page 16: Multilayer tutorial-netsci2014-slightlyupdated

2.1.  General  Form  

Page 17: Multilayer tutorial-netsci2014-slightlyupdated

•  See  h;p://www.plexmath.eu/?page_id=327  •  M.  De  Domenico,  M.  A.  Porter,  &  A.  Arenas,  arXiv:1405.0843  

Page 18: Multilayer tutorial-netsci2014-slightlyupdated

2.2.  Tensorial  Representa\on  

•  Adjacency  tensor  for  unweighted  case:  

•  Elements  of  adjacency  tensor:    –  Auvαβ  =  Auvα1β1  …  αdβd  =  1  iff  ((u,α),  (v,β))  is  an  element  of  EM  (else  

Auvαβ  =  0)  

•  Important  note:  ‘padding’  layers  with  empty  nodes  –  One  needs  to  dis\nguish  between  a  node  not  present  in  a  layer  

and  nodes  exis\ng  but  edges  not  present  (use  a  supplementary  tensor  with  labels  for  edges  that  could  exist),  as  this  is  important  for  normaliza\on  in  many  quan\\es.  

Page 19: Multilayer tutorial-netsci2014-slightlyupdated

•  One  can  write  a  general  (rank-­‐4)  mul\layer  adjacency  tensor  M  in  terms  of  a  tensor  product  between  single-­‐layer  adjacency  tensors  [C(l)  in  upper  right]  and  canonical  basis  tensors  [see  lower  right]  

•  w:  weights  •  E:  canonical  basis  tensors  •  Weighted  edge  from  node  ni  in  

layer  h  to  node  nj  in  layer  k  •  Note:  Einstein  summa\on  

conven\on  •  Page  3  of  De  Domenico  et  al.,  PRX,  

2013  

Page 20: Multilayer tutorial-netsci2014-slightlyupdated

•  Explored  in  several  papers.  Examples:  –  Supra-­‐Laplacian  matrices:  S.  Gómez,  A.  Díaz-­‐Guilera,  J.  Gómez-­‐Gardeñes,  C.  J.  Pérez-­‐Vicent,  Y.  Moreno,  &  A.  Arenas,  Physical  Review  Le8ers,  Vol.  110,  028701  (2013)  

– Mul\layer  Laplacian  tensors:  De  Domenico  et  al,  Physical  Review  X,  2013  

–  Spectral  proper\es  of  mul\layer  Laplacians:  A.  Solé-­‐Ribalta,  M.  De  Domenico,  N.  E.  Kouvaris,  A.  Díaz-­‐Guilera,  S.  Gómez,  &  A.  Arenas,  Physical  Review  E,  Vol.  88,  032807  (2013)  

– Also  see  summary  in  the  review  ar\cle.  

Page 21: Multilayer tutorial-netsci2014-slightlyupdated

•  Mul\layer  combinatorial  Laplacian:  

– First  term:  strength  (i.e.  weighted  degree)  tensor  – A  bit  more  on  degree  tensor  later  

– Second  term:  mul\layer  adjacency  tensor  (recall)  – U:  tensor  with  all  entries  equal  to  1  – E:  canonical  basis  for  tensors  (recall)  – δ:  Kronecker  delta  

Page 22: Multilayer tutorial-netsci2014-slightlyupdated

•  P.  J.  Mucha,  T.  Richardson,  K.  Macon,  MAP,  &  J.-­‐P.  Onnela,  “Community  Structure  in  Time-­‐Dependent,  Mul\scale,  and  Mul\plex  Networks”,  Science,  Vol.  328,  No.  5980,  876–878  (2010)  

•  Simple  idea:  Glue  common  nodes  across  “slices”  (i.e.  “layers”)  

Page 23: Multilayer tutorial-netsci2014-slightlyupdated

•  Schematic from M. Bazzi, MAP, S. Williams, M. McDonald, D. J. Fenn, & S. D. Howison, in preparation !

Page 24: Multilayer tutorial-netsci2014-slightlyupdated

•  Special  cases  of  mul\layer  networks  include:  mul\plex  networks,  interdependent  networks,  networks  of  networks,  node-­‐colored  networks,  edge-­‐colored  mul\graphs,  …  

•  To  obtain  one  of  these  special  cases,  we  impose  constraints  on  the  general  structure  defined  earlier.  •  See  the  review  ar\cle  for  details.  

Page 25: Multilayer tutorial-netsci2014-slightlyupdated

•  1.  Node-­‐aligned  (or  fully  interconnected):  All  layers  contain  all  nodes.  •  2.  Layer  disjoint:  Each  node  exists  in  at  most  one  layer.  •  3.  Equal  size:  Each  layer  has  the  same  number  of  nodes  (but  they  need  not  be  the  

same  ones).  •  4.  Diagonal  coupling:  Inter-­‐layer  edges  only  can  exist  between  nodes  and  their  

counterparts.  •  5.  Layer  coupling:  coupling  between  layers  is  independent  of  node  iden\ty  

–  Note:  special  case  of  “diagonal  coupling”  •  6.  Categorical  coupling:  diagonal  couplings  in  which  inter-­‐layer  edges  can  be  

present  between  any  pair  of  layers  –  Contrast:  “ordinal”  coupling  for  tensorial  representa\on  of  temporal  networks  

•  Example  1:  Most  ––  but  not  all!  ––  “mul@plex  networks”  studied  in  the  literature  sa\sfy  (1,3,4,5,6)  and  include  d  =  1  aspects.  –  Note:  Many  important  situa\ons  need  (1,3)  to  be  relaxed.    (E.g.  Some  people  have  Facebook  

accounts  but  not  Twi;er  accounts.)  •  Example  2:  The  “networks  of  networks”  that  have  been  inves\gated  thus  far  sa\sfy  

(3)  and  have  addi\onal  constraints  (which  can  be  relaxed).  

Page 26: Multilayer tutorial-netsci2014-slightlyupdated

The literature is messy. #makeitstop  

Page 27: Multilayer tutorial-netsci2014-slightlyupdated

•  Node-­‐colored  network:  also  known  as  interconnected  network,  network  of  networks,  etc.  

•  (three  alternative  representations)  

Page 28: Multilayer tutorial-netsci2014-slightlyupdated
Page 29: Multilayer tutorial-netsci2014-slightlyupdated
Page 30: Multilayer tutorial-netsci2014-slightlyupdated
Page 31: Multilayer tutorial-netsci2014-slightlyupdated

•  Networks  with  multiple  types  of  edges  –  Also  known  as  multirelational  networks,  edge-­‐colored  multigraphs,  etc.  

•  Many  studies  in  practice  use  the  same  sets  of  nodes  in  each  layer,  but  this  isn’t  required.  –  Challenge  for  tensorial  representation:  need  to  keep  track  of  lack  of  presence  of  a  tie  versus  a  node  not  being  present  in  a  layer  (relevant  e.g.  for  normalization  of  multiplex  clustering  coefficients)  

•  Question:  When  should  you  include  inter-­‐layer  edges  and  when  should  you  ignore  them?  

Page 32: Multilayer tutorial-netsci2014-slightlyupdated

•  Hyperedges  generalize  edges.    A  hyperedge  can  include  any  (nonzero)  number  of  nodes.  

•  Example:  A  k-­‐uniform  hypergraph  has  cardinality  k  for  each  hyperedge  (e.g.  a  folksonomy  like  Flickr).  –  One  can  represent  a  k-­‐uniform  hypergraph  using  adjacency  tensors,  and  there  have  been  some  studies  of  multiplex  networks  by  mapping  them  into  k-­‐uniform  hypergraphs.  

–  A  nice  paper:  Michoel  &  Nachtergaele,  PRE,  2012  •  Note  that  multilayer  networks  are  still  formulated  for  pairwise  connections  (but  a  more  general  type  of  pairwise  connections  than  usual).  

Page 33: Multilayer tutorial-netsci2014-slightlyupdated

•  Ordinal  coupling:  diagonal  inter-­‐layer  edges  among  consecutive  layers  (e.g.  multilayer  representation  of  a  temporal  network)  

•  Categorical  coupling:  diagonal  inter-­‐layer  edges  between  all  pairs  of  edges  

•  Both  can  be  present  in  a  multilayer  network,  and  both  can  be  generalized  

Page 34: Multilayer tutorial-netsci2014-slightlyupdated

•  k-­‐partite  graphs  –  Bipartite  networks  are  most  commonly  studied  

•  Coupled-­‐cell  networks  –  Associate  a  dynamical  system  with  each  node  of  a  

multigraph.  Network  structure  through  coupling  terms.  

•  Multilevel  networks  –  Very  popular  in  social  statistics  literature  

(upcoming  special  issue  of  Social  Networks)  –  Each  level  is  a  layer  –  Think  ‘hierarchical’  situations.  Example:  ‘micro-­‐

level’  social  network  of  researchers  and  a  ‘macro-­‐level’  for  a  research-­‐exchange  network  between  laboratories  to  which  the  researchers  belong  

Page 35: Multilayer tutorial-netsci2014-slightlyupdated
Page 36: Multilayer tutorial-netsci2014-slightlyupdated

“What  they  saw  in  the  Country  of  El  Dorado  real  world”  

Page 37: Multilayer tutorial-netsci2014-slightlyupdated
Page 38: Multilayer tutorial-netsci2014-slightlyupdated
Page 39: Multilayer tutorial-netsci2014-slightlyupdated

•  Lots  of  reliable  data  on  intra-­‐layer  relations  (i.e.  the  usual  kind  of  edges)  

•  It’s  much  more  challenging  to  collect  reliable  data  for  inter-­‐layer  edges.    We  need  more  data.  –  E.g.  Transportation  data  should  be  a  very  good  resource.    

Think  about  the  amount  of  time  to  change  gates  during  a  layover  in  an  airport.  

–  E.g.  Transition  probabilities  of  a  person  using  different  social  media  (each  medium  is  a  layer).  

•  Most  empirical  multilayer-­‐network  studies  thus  far  have  tended  to  be  multiplex  networks.  

•  Determining  inter-­‐layer  edges  as  a  problem  in  trying  to  reconcile  node  identities  across  networks.    (Can  you  figure  out  that  a  Twitter  account  and  Facebook  account  belong  to  the  same  person?)  –  Major  implications  for  privacy  issues  

•  Take-­‐home  message:  Be  creative  about  how  you  construct  multilayer  networks  and  define  layers!  

Page 40: Multilayer tutorial-netsci2014-slightlyupdated
Page 41: Multilayer tutorial-netsci2014-slightlyupdated
Page 42: Multilayer tutorial-netsci2014-slightlyupdated

“Candide’s  Our  voyage  to  Constantinople  Istanbul    measuring  and  modeling”  

Page 43: Multilayer tutorial-netsci2014-slightlyupdated

•  Construct  single-­‐layer  (i.e.  “monoplex”)  networks  and  apply  the  usual  tools.  –  Obtain  edge  weights  as  weighted  average  of  

connections  in  different  layers.  You  get  a  different  weighted  network  with  a  different  weighting  vector.  •  E.g.  Zachary  Karate  Club  

–  Information  loss  •  Is  there  a  way  to  do  this  to  minimize  information  loss?  

•  Important:  Loss  of  “Markovianity”  (a  la  temporal  networks)  –  Processes  that  are  Markovian  on  a  multilayer  network  

may  yield  non-­‐Markovian  processes  after  aggregating  the  network  

Page 44: Multilayer tutorial-netsci2014-slightlyupdated

•  Generalizations  of  the  usual  suspects  –  Degree/strength  –  Neighborhood  

•  Which  layers  should  you  consider?  –  Centralities  –  Walks,  paths,  and  distances  –  Transitivity  and  local  clustering  

•  Important  note:  Sometimes  you  want  to  define  different  values  for  different  node-­‐layers  (e.g.  a  vector  of  centralities  for  each  entity)  and  sometimes  you  want  a  scalar.  

•  Need  to  be  able  to  consider  different  subsets  of  the  layers  

•  Need  more  genuinely  multilayer  diagnostics  –  It  is  important  to  go  beyond  “bigger  and  better”  

versions  of  the  usual  concepts.  

Page 45: Multilayer tutorial-netsci2014-slightlyupdated

•  Simplest  way:  Use  aggregation  and  then  measure  degree,  strength,  and  neighborhoods  on  a  monoplex  network  obtained  from  aggregation.  –  Possibly  only  consider  a  subset  of  the  layers  

•  More  sophisticated:  Define  a  multi-­‐edge  as  a  vector  to  track  the  information  in  each  layer.  With  weighted  multilayer  networks,  you  can  keep  track  of  different  weights  in  intra-­‐layer  versus  inter-­‐layer  edges.  

•  Towards  multilayer  measures:  overlap  multiplicity  for  a  multiplex  network  can  track  how  often  an  edge  between  entities  i  and  j  occurs  in  multiple  layers  

Page 46: Multilayer tutorial-netsci2014-slightlyupdated

•  One  can  write  a  general  (rank-­‐4)  mul\layer  adjacency  tensor  M  in  terms  of  a  tensor  product  between  single-­‐layer  adjacency  tensors  [C(l)  in  upper  right]  and  canonical  basis  tensors  [see  lower  right]  

•  w:  weights  •  E:  canonical  basis  tensors  •  Weighted  edge  from  node  ni  in  

layer  h  to  node  nj  in  layer  k  •  Note:  Einstein  summa\on  

conven\on  •  Page  3  of  De  Domenico  et  al.,  PRX,  

2013  

Page 47: Multilayer tutorial-netsci2014-slightlyupdated
Page 48: Multilayer tutorial-netsci2014-slightlyupdated
Page 49: Multilayer tutorial-netsci2014-slightlyupdated

•  To  define  a  walk  (or  a  path)  on  a  multilayer  network,  we  need  to  consider  the  following:  –  Is  changing  layers  considered  to  be  a  step?  Is  there  a  

“cost”  to  changing  layers?  How  do  you  measure  this  cost?  •  E.g.  transportation  networks  vs  social  networks  

–  Are  intra-­‐layer  steps  different  in  different  layers?  •  Example:  labeled  walks  (i.e.  compound  relations)  are  

walks  in  a  multiplex  network  that  are  associated  with  a  sequence  of  layer  labels  

•  Generalizing  walks  and  paths  is  necessary  to  develop  generalizations  for  ideas  like  clustering  coefficients,  transitivity,  communicability,  random  walks,  graph  distance,  connected  components,  betweenness  centralities,  motifs,  etc.  

•  Towards  multilayer  measures:  Interdependence  is  the  ratio  of  the  number  of  shortest  paths  that  traverse  more  than  one  layer  to  the  number  of  shortest  paths    

Page 50: Multilayer tutorial-netsci2014-slightlyupdated

•  Our  approach:  Cozzo  et  al.,  2013  –  Use  the  idea  of  multilayer  walks.    Keep  track  of  returning  to  entity  i  (possibly  in  a  different  layer  from  where  we  started)  separately  for  1  total  layer,  2  total  layers,  3  total  layers  (and  in  principle  more).  

•  Insight:  Need  different  types  of  transitivity  for  different  types  of  multiplex  networks.  –  Example  (again):  transportation  vs  social  networks  

–  There  are  several  different  clustering  coefficients  for  monoplex  weighted  networks,  and  this  situation  is  even  more  extreme  for  multilayer  networks.  

Page 51: Multilayer tutorial-netsci2014-slightlyupdated

•  Our perspective: multilayer walks, which can return to node i on different layers and traverse different numbers of layers !

Page 52: Multilayer tutorial-netsci2014-slightlyupdated

•  In  studies  of  networks,  people  compute  a  crapload  of  centralities.    

•  The  common  ones  have  been  generalized  in  various  ways  for  multilayer  networks.  –  Again,  one  needs  to  ask  whether  you  want  a  centrality  for  

a  node-­‐layer  or  for  a  given  entity  (across  all  layers  or  a  subset  of  layers).  

•  Eigenvector  centralities  and  related  ideas  can  be  derived  from  random  walks  on  multilayer  networks.  –  Consider  different  spreading  weights  for  different  types  

of  edges  (e.g.  intra-­‐layer  vs  inter-­‐layer  edges;  or  different  in  different  layers)  

•  Betweenness  centralities  can  be  calculated  for  different  generalizations  of  short  paths.  

•  A  point  of  caution:  “What  the  world  needs  now  is  another  centrality  measure.”  –  I.e.  although  they  can  be  very  useful,  please  don’t  go  too  

crazy  with  them.    

Page 53: Multilayer tutorial-netsci2014-slightlyupdated

•  The  community  needs  to  construct  genuinely  multilayer  diagnostics  and  go  beyond  ‘bigger  and  better’  versions  of  the  concepts  we  know  and  (presumably)  love.  –  Not  very  many  yet  

•  Correlations  of  network  structures  between  layers  –  E.g.  interlayer  degree-­‐degree  correlations  (or  any  other  diagnostic)  •  !  Interpreting  communities  as  layers,  quantities  like  assortativity  can  be  construed  as  inter-­‐layer  diagnostics  

•  Interdependence  is  the  ratio  of  the  number  of  shortest  paths  that  traverse  more  than  one  layer  to  the  number  of  shortest  paths    

Page 54: Multilayer tutorial-netsci2014-slightlyupdated

•  Straightforward:  Use  your  favorite  monoplex  model  for  intra-­‐layer  connections  and  then  construct  inter-­‐layer  edges  in  some  way.  –  E.g.  random-­‐graph  models  like  Erdös-­‐Rényi,  network  growth  models  like  preferential  attachment  

•  Correlated  layers:  Include  correlations  between  properties  in  different  intra-­‐layer  networks  in  the  construction  of  random-­‐graph  ensembles.  –  E.g.  Include  intra-­‐layer  degree-­‐degree  correlations  ρ  in  [-­‐1,1]  

•  Exponential  Random  Graph  Models  (ERGMs)  for  multiplex  networks  –  Used  a  lot  for  multilevel  networks  

Page 55: Multilayer tutorial-netsci2014-slightlyupdated

•  Statistical-­‐mechanical  ensembles  of  multiplex  networks  

•  Generalize  growth  mechanisms  like  preferential  attachment  –  Again,  one  can  include  inter-­‐layer  correlations  in  designing  a  model  

•  It  would  be  good  to  go  beyond  “bigger  and  better”  versions  of  the  usual  ideas.  –  Including  simple  inter-­‐layer  correlations  (especially  between  intra-­‐layer  degrees)  has  been  the  main  approach  so  far.  

Page 56: Multilayer tutorial-netsci2014-slightlyupdated

•  Straightforward:  Construct  different  layers  separately  using  your  favorite  model  (or  even  one  that  you  hate)  and  then  add  inter-­‐layer  edges  uniformly  at  random.  

•  More  sophisticated:  Be  more  strategic  in  adding  inter-­‐layer  edges.  

•  Some  random-­‐graph  modules  with  community  structure  can  be  useful,  where  we  think  of  each  community  as  a  separate  layer  (i.e.  as  a  separate  network  in  a  network  of  networks)  –  E.g.  Melnik  et  al’s  paper  (Chaos,  2014)  on  random  

graphs  with  heterogeneous  degree  assortativity    •  The  homophily  is  different  in  different  layers  and  there  is  a  mixing  matrix  for  inter-­‐layer  connections    

Page 57: Multilayer tutorial-netsci2014-slightlyupdated

•  Communities  are  dense  sets  of  nodes  in  a  network  (typically  relative  to  some  null  model).    –  One  can  use  these  ideas  for  multilayer  networks  (e.g.  

multislice  modularity).  •  Interpreting  communities  as  roadblocks  to  some  dynamical  process  

(e.g.  starting  from  some  initial  condition),  one  can  have  such  a  process  on  a  multilayer  network—with  different  spreading  rates  in  different  types  of  edges—to  algorithmically  find  communities  in  multilayer  networks.  

•  Most  work  thus  far  on  multilayer  representation  of  temporal  networks.  –  One  exception  is  recent  work  on  “Kantian  fractionalization”  in  

international  relations.  •  Challenge:  Develop  multilayer  null  models  for  community  detection  

(different  for  ordinal  vs.  categorical  coupling)  

•  Blockmodels  •  Spectral  clustering  (e.g.  Michoel  &  Nachtergaele)  •  Note:  Because  I  have  done  a  lot  of  work  in  this  area,  I  

will  go  through  a  bit  in  some  detail  to  help  illustrate  some  general  points  that  are  also  relevant  in  other  studies  of  multilayer  networks.  

Page 58: Multilayer tutorial-netsci2014-slightlyupdated

!  Communities = Cohesive groups/modules/mesoscopic structures ›  In stat phys, you try to

derive macroscopic and mesoscopic insights from microscopic information

!  Community structure consists of complicated interactions between modular (horizontal) and hierarchical (vertical) structures

!  communities have denser set of Internal edges relative to some null model for what edges are present at random ›  “Modularity”

Page 59: Multilayer tutorial-netsci2014-slightlyupdated

•  P.  J.  Mucha,  T.  Richardson,  K.  Macon,  MAP,  &  J.-­‐P.  Onnela,  “Community  Structure  in  Time-­‐Dependent,  Mul\scale,  and  Mul\plex  Networks”,  Science,  Vol.  328,  No.  5980,  876–878  (2010)  

•  Simple  idea:  Glue  common  nodes  across  “slices”  (i.e.  “layers”)  •  “Diagonal”  coupling  

Page 60: Multilayer tutorial-netsci2014-slightlyupdated

•  Find  communi\es  algorithmically  by  op\mizing  “mul\slice  modularity”  – We  derived  this  func\on  in  Mucha  et  al,  2010  

•  Laplacian  dynamics:  find  communi\es  based  on  how  long  random  walkers  are  trapped  there.  Exponen\ate  and  then  linearize  to  derive  modularity.  

•  Generalizes  deriva\on  of  monoplex  modularity  from  R.  Lambio;e,  J.-­‐C.  Delvenne,  &.  M  Barahona,  arXiv:0812.1770  •  Different  spreading  weights  on  different  types  of  edges  

– Node  x  in  layer  r  is  a  different  node-­‐layer  from  node  x  in  layer  s  

Page 61: Multilayer tutorial-netsci2014-slightlyupdated

Example:  Zachary  Karate  Club  

Page 62: Multilayer tutorial-netsci2014-slightlyupdated

•  A.  S.  Waugh,  L.  Pei,  J.  H.  Fowler,  P.  J.  Mucha,  &  M.  A.  Porter  [2012],  arXiv:0907.3509  (without  multilayer  formulation)  

•  Modularity  Q  as  a  measure  of  polarization  •  Can  calculate  how  closely  each  legislator  is  tied  to  their  community  

(e.g.  by  looking  at  magnitude  of  corresponding  component  of  leading  eigenvector  of  modularity  matrix  if  using  a  spectral  optimization  method)  

•  Medium  levels  of  optimized  modularity  as  a  predictor  of  majority  turnover  –  By  contrast,  leading  political  science  measure  doesn’t  give  statistically  

significant  indication  •  One  network  slice  for  each  two-­‐year  Congress  

Page 63: Multilayer tutorial-netsci2014-slightlyupdated

P.  J.  Mucha  &  M.  A.  Porter,  Chaos,  Vol.  20,  No.  4,  041108  (2010)  

Page 64: Multilayer tutorial-netsci2014-slightlyupdated
Page 65: Multilayer tutorial-netsci2014-slightlyupdated
Page 66: Multilayer tutorial-netsci2014-slightlyupdated
Page 67: Multilayer tutorial-netsci2014-slightlyupdated

Braiiiiiiiiiiiiins  

Page 68: Multilayer tutorial-netsci2014-slightlyupdated
Page 69: Multilayer tutorial-netsci2014-slightlyupdated

Construc\ng  Time-­‐Dependent  Networks  

Page 70: Multilayer tutorial-netsci2014-slightlyupdated

•  fMRI  data:  network  from  correlated  time  series  

•  Examine  role  of  modularity  in  human  learning  by  identifying  dynamic  changes  in  modular  organization  over  multiple  time  scales  

•  Main  result:  flexibility,  as  measured  by  allegiance  of  nodes  to  communities,  in  one  session  predicts  amount  of  learning  in  subsequent  session  

Page 71: Multilayer tutorial-netsci2014-slightlyupdated

Sta\onarity  and  Flexibility  

•  Community  sta\onarity  ζ  (autocorrela\on  over  \me  of  community  membership):  

•  Node  flexibility:  –  fi  =  number  of  \mes  node  i  changed  communi\es  divided  by  total  number  of  possible  changes  

– Flexibility  f  =  <fi>  

Page 72: Multilayer tutorial-netsci2014-slightlyupdated

•  Investigating  community  structure  in  a  multilayer  framework  requires  consideration  of  new  null  models  

•  Many  more  details!  –  E.g.,  Robustness  of  

results  to  choice  of  size  of  time  window,  size  of  inter-­‐slice  coupling,  particular  definition  of  flexibility,  complicated  modularity  landscape,  definition  of  ‘similarity’  of  time  series,  etc.  

Page 73: Multilayer tutorial-netsci2014-slightlyupdated

Dynamic  Reconfigura\on  of  Human  Brain  Networks  During  Learning    

(Basse;  et  al,  PNAS,  2011)  

•  fMRI  data:  network  from  correlated  \me  series  

•  Examine  role  of  modularity  in  human  learning  by  iden\fying  dynamic  changes  in  modular  organiza\on  over  mul\ple  \me  scales  

•  Main  result:  flexibility,  as  measured  by  allegiance  of  nodes  to  communi\es,  in  one  session  predicts  amount  of  learning  in  subsequent  session  

Page 74: Multilayer tutorial-netsci2014-slightlyupdated

Development  of  Null  Models  for  Mul\layer  Networks  

•  D.  S.  Basse;,  M.  A.  Porter,  N.  F.  Wymbs,  S.  T.  Gra�on,  J.  M.  Carlson,  &  P.  J.  Mucha,  Chaos,  23(1):  013142  (2013)  

•  Addi\onal  structure  in  adjacency  tensors  gives  more  freedom  (and  responsibility)  for  choosing  null  models.  

•  Null  models  that  incorporate  informa\on  about  a  system  •  E.g.  chain  null  model  fixes  network  topology  but  

randomizes  network  “geometry”  (edge  weights)    

•  Also:  Examine  null  models  from  shuffling  \me  series  directly  (before  turning  into  a  network)  

•  Structural  (γ)  versus  temporal  resolu\on  parameter  (ω)  •  More  generally,  how  to  choose  inter-­‐layer  (off-­‐

diagonal)  terms  Cjrs  •  Time  series  from  experiments  as  well  as  output  of  a  

dynamical  system  (e.g.  Kuramoto  model).  Analogous  to  structural  vs  func\onal  brain  networks.  

Page 75: Multilayer tutorial-netsci2014-slightlyupdated

•  Many  different  generalizations  of  singular  value  decomposition  (SVD)  to  tensors  –  Every  matrix  has  a  unique  SVD,  but  we  have  to  relax  this  for  tensors.  

–  See  Kolda  and  Bader,  SIAM  Review,  2009  –  Tensor  rank  vs  matrix  rank:  hard  to  determine  that  rank  of  tensors  of  order  3+  •  Note:  “rank”  is  also  used  as  a  synonym  for  “order”  (see  earlier).    Here,  “rank”  is  the  generalization  of  matrix  rank:  the  minimum  number  of  column  vectors  needed  to  span  the  range  of  a  matrix.  The  tensor  rank  is  the  minimum  number  of  rank-­‐1  tensors  with  which  one  can  express  a  tensor  as  a  sum.    The  purpose  of  an  SVD  (and  generalizations)  is  to  find  a  low-­‐rank  approximation.  

•  Non-­‐negative  tensor  factorization  

Page 76: Multilayer tutorial-netsci2014-slightlyupdated

•  Basic  question:  How  do  multilayer  structures  affect  dynamical  systems  on  networks?  –  Effects  of  multiplexity?  (edge  colorings)  –  Effects  of  interconnectedness?  (node  colorings)  

•  Important  goal:  Find  new  phenomena  that  cannot  occur  without  multilayer  structures.  –  Example:  Speeding  up  vs  slowing  down  spreading?  

–  Example:  Multiplexity-­‐induced  correlations  in  dynamics?  

–  Example:  Effect  of  different  costs  for  changing  layers?  

Page 77: Multilayer tutorial-netsci2014-slightlyupdated

•  Connected  component  defined  as  in  monoplex  networks,  except  that  multiple  types  of  edges  can  occur  in  a  path.  

•  In  multilayer  networks,  one  again  uses  branching-­‐process  approximations  that  allow  the  use  of  generating  function  technology.  –  Same  fundamental  idea  (and  limitations)  as  in  monoplex  networks,  but  the  calculations  are  more  intricate  

•  More  flavors  of  giant  connected  components  (GCCs)  that  can  be  defined  

Page 78: Multilayer tutorial-netsci2014-slightlyupdated

•  Example  (from  Buldyrev  et  al,  Nature,  2010)  

Page 79: Multilayer tutorial-netsci2014-slightlyupdated
Page 80: Multilayer tutorial-netsci2014-slightlyupdated

•  Numerous  papers  for  both  multiplex  networks  and  interconnected  networks  

•  A  few  interesting  ideas  – Localized  attack  •  More  generally,  multilayer  networks  allow  more  creativity  in  targeted  attacks.    Why  in  Hell  is  it  almost  always  by  degree  (even  for  monoplex  networks)?  Be  creative!  

– Viable  cluster:  mutually  connected  giant  component  

Page 81: Multilayer tutorial-netsci2014-slightlyupdated

•  Random  walks  and  Laplacians  –  Different  spreading  rates  on  different  types  of  edges  •  See  earlier  discussions  of  multislice  community  structure  

•  Strong  vs  weak  inter-­‐layer  coupling  –  Examine  generic  properties  of  phase  transitions  (e.g.  as  a  function  of  weights  of  inter-­‐layer  edges)  

•  Competing  (toy  models  of)  biological  contagions  –  Your  favorite  toy  models  (SI,  SIS,  SIR,  SIRS,  etc.)  

•  Layers  with  biological  contagions  interacting  with  layers  of  information  diffusion  (e.g.  of  awareness)  

Page 82: Multilayer tutorial-netsci2014-slightlyupdated
Page 83: Multilayer tutorial-netsci2014-slightlyupdated
Page 84: Multilayer tutorial-netsci2014-slightlyupdated

•  Metapopulation  models  as  biological  epidemics  on  networks  of  networks  – E.g.  Melnik  et  al.  random-­‐graph  model  (different  degree  assortativities  in  different  layers),  similar  model  by  Joel  Miller  and  collaborators  (explicitly  in  a  metapopulation  context)  

Page 85: Multilayer tutorial-netsci2014-slightlyupdated

•  Each  node  is  associated  with  a  dynamical  system,  and  two  nodes  have  the  same  color  if  they  have  the  same  state  space  and  an  identical  dynamical  system.    

•  The  couplings  between  dynamical  systems  are  the  edges  (or  hyperedges).  Two  edges  have  the  same  color  if  the  couplings  are  equivalent  

•  There  exist  many  nice  results  for  generic  bifurcations  in  small  coupled-­‐celled  networks.  –  Spiritually  similar  results  for  generic  phase  

transitions  in  random  walks  and  Laplacians,  but  for  very  low-­‐dimensional  systems  instead  of  high-­‐dimensional  ones  

•  Surgeon  General’s  warning:  The  papers  on  coupled-­‐cell  networks  (many  by  Marty  Golubitsky  and  company)  are  very  mathematical.  

Page 86: Multilayer tutorial-netsci2014-slightlyupdated

•  The  usual  suspects.  Pick  your  favorite.  :)  

•  Kuramoto  model  •  Threshold  models  of  social  influence  –  Percolation-­‐like  –  E.g.  Watts  model  

•  Games  on  networks  •  Sandpiles  •  Others  

Page 87: Multilayer tutorial-netsci2014-slightlyupdated

•  It’s  important  to  consider  feedback  loops.  •  Maybe  one  is  only  allowed  to  apply  controls  to  a  

subset  of  the  layers?  •  Layer  decompositions:  Start  with  a  network  and  try  

to  infer  layers  –  Reminiscent  of  community  detection,  but  with  layers  

instead  of  dense  modules  –  E.g.  research  by  Prescott  and  Papachristodoulou  on  

biochemical  networks  –  Similar  problem  in  social  networks  

•  “Control  network”  used  to  influence  an  “open-­‐loop  network”  (which  doesn’t  include  feedback)  

•  “Pinning  control”,  in  which  one  controls  a  small  fraction  of  nodes  to  try  to  influence  the  dynamics  of  other  nodes,  in  the  context  of  interconnected  networks.  

Page 88: Multilayer tutorial-netsci2014-slightlyupdated
Page 89: Multilayer tutorial-netsci2014-slightlyupdated
Page 90: Multilayer tutorial-netsci2014-slightlyupdated

“What  befell  Candide  us  at  the  end  of  his  our  journey”  

Page 91: Multilayer tutorial-netsci2014-slightlyupdated

•  Multilayer networks are interesting and important objects to study. !•  We have developed a unified framework that allows a

classification of different types of multilayer networks. !•  Many real networks have multilayer structures. !•  Multilayer networks make it possible to throw away less data.

Additionally, they have interesting structural features and have interesting effects in dynamical processes. !

•  Adjacency tensors: their time has come !–  We need to use tools from multilinear algebra. Tensors generalize

matrices, but there are important differences to consider. !•  Challenge: Need to collect good data, especially w.r.t. realiable

quantitative values for inter-layer edges !•  Challenge: Need more genuinely interlayer diagnostics !

•  Not just “bigger and better” version of monoplex objects !•  Challenge: Need additional general results on dynamical processes

(bifurcations, phase transitions). There are some, but we need more. !

•  Challenge: Need to move farther beyond the usual percolation-like models !•  Not just “bigger and better” versions of monoplex processes !

•  Review article of multilayer networks: Journal of Complex Networks, in press (arXiv:1309.7233) !

•  Code for visualization and analysis of multilayer networks: http://www.plexmath.eu/?page_id=327!

•  Thanks: James S. McDonnell Foundation, EPSRC, FET-Proactive project “PLEXMATH” !

Page 92: Multilayer tutorial-netsci2014-slightlyupdated

•  All  is  for  the  best  in  this  best  of  all  possible  worlds.  

•  (Also:  The  future’s  so  bright,  we  gotta  to  wear  shades.)  

Page 93: Multilayer tutorial-netsci2014-slightlyupdated
Page 94: Multilayer tutorial-netsci2014-slightlyupdated

“What  befell  Candide  us  after  the  story  ended”  

Page 95: Multilayer tutorial-netsci2014-slightlyupdated

•  Ones with me on the editorial board: !– Journal of Complex Networks (OUP) !– IEEE Transactions on Network Science and Engineering (IEEE) !

•  Without me: !– Network Science (CUP)!

Page 96: Multilayer tutorial-netsci2014-slightlyupdated

•  Lake Como School of Advanced Studies: !– http://lakecomoschool.org/ !

•  School on Complex Networks !– The Boss: Carlo Piccardi !– Scientific Board: Stefano Battiston, Vittoria Colizza, Peter Holme, Yamir Moreno, Mason Porter !

Page 97: Multilayer tutorial-netsci2014-slightlyupdated

•  Organizers: Alex Arenas, Mason Porter !

•  July 6–8, 2015, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany !

•  Watch this space: !– http://www.mpipks-dresden.mpg.de/pages/veranstaltungen/frames_veranst_en.html !

Page 98: Multilayer tutorial-netsci2014-slightlyupdated

•  Mathematical Biosciences Institute, The Ohio State University, USA !

•  Semester program on “Dynamics of Biologically Inspired Networks” !– http://mbi.osu.edu/programs/emphasis-programs/future-programs/spring-2016-dynamics-biologically-inspired-networks/!

•  Focuses on theoretical questions on networks that arise from biology !

Page 99: Multilayer tutorial-netsci2014-slightlyupdated

•  March 21–25, 2016 !•  http://mbi.osu.edu/event/?id=898 !


Recommended