+ All Categories
Home > Documents > MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

Date post: 22-Feb-2016
Category:
Upload: kaipo
View: 21 times
Download: 0 times
Share this document with a friend
Description:
CS173. Lecture 11: Repeats II, Mutations. MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu. Announcements. TA HW1 Comments. - PowerPoint PPT Presentation
Popular Tags:
54
http://cs173.stanford.edu [BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 11: Repeats II, Mutations
Transcript
Page 1: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 1

MW  11:00-12:15 in Beckman B302Prof: Gill BejeranoTAs: Jim Notwell & Harendra Guturu

CS173

Lecture 11: Repeats II, Mutations

Page 2: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 2

Announcements• TA HW1 Comments

Page 3: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 3

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

Page 4: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Transcription

http://cs173.stanford.edu [BejeranoWinter12/13] 4

Page 5: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 5

Transcription RegulationChromatin / Proteins

DNA / Proteins

Extracellular signals

Page 6: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Repeats

http://cs173.stanford.edu [BejeranoWinter12/13] 6

Page 7: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Sequences that repeat many times in the genome

• Take up cumulatively a whooping half of the genome• Come in two major, very different, flavors

http://cs173.stanford.edu [BejeranoWinter12/13] 7

I

II

Page 8: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 8

I. Interspersed Repeats

Get a copy out of the genome, and into a new location.

Page 9: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 9

II. Simple Repeats

•Every possible motif of mono-, di, tri- and tetranucleotide repeats is vastly overrepresented in the human genome.

•These are called microsatellites,Longer repeating units are called minisatellites,The real long ones are called satellites.

•Highly polymorphic in the human population.•Highly heterozygous in a single individual.•As a result microsatellites are used in paternity testing, forensics, and the inference of demographic processes.

•There is no clear definition of how many repetitions make a simple repeat, nor how imperfect the different copies can be.

•Highly variable between species: e.g., using the same search criteria the mouse & rat genomes have 2-3 times more microsatellites than the human genome. They’re also longer in mouse & rat.

AAAAAAAAACACACACACCAACAACAA

Page 10: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 10

DNA Replication

Page 11: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 11

Simple Repeats Create Funky DNA structures

Page 12: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 12

These Bumps Give The DNA Polymerase Hiccups

Page 13: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 13

Expandable Repeats and Disease

Page 14: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Restriction Enzymes• Restriction enzymes recognize and make a cut within

specific DNA sequences, known as restriction sites. • This is usually a 4-6 base pair palindromic sequence.• Naturally found in different types of bacteria• Bacteria use restriction enzymes to protect themselves

from foreign DNA • Many have been isolated and sold for use in lab work

http://cs173.stanford.edu [BejeranoWinter12/13] 14

blunt end

sticky end

Page 15: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

DNA Fingerprint BasicsDNA fragments of different size will be produced by a restriction enzyme that cuts at the points shown by the arrows.

15

Page 16: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

DNA fragments are then separated based on size using gel

electrophoresis.

16

Page 17: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

DNA Fingerprinting can be used in paternity testing or

murder cases.

17

Page 18: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 18

There are Tracks for it

Page 19: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 19

Interspersed vs. Simple Repeats

From an evolutionary point of view transposons and simple repeats are very different.

Different instances of the same transposon share common ancestry (but not necessarily a direct common progenitor).

Different instances of the same simple repeat most often do not.

Page 20: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Genome Content, Genome Function DONE• Transcripts

• Protein coding genes• Non-coding RNAs

• Gene regulatory elements• Promoters• Enhancers• Repressors• Insulators

• Epigenomics• Nucleosomes, open chromatin• Histone modifications

• Repeats• Interspersed repeats / mobile elements• Simple repeats

http://cs173.stanford.edu [BejeranoWinter12/13] 20

Page 21: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Categories are NOT mutually exclusive• We already discussed repeat instances that became

• Coding exons• Enhancers

• There are known genomic loci that• Code for protein coding exons and act as enhancers.• Ditto for non-coding RNA + enhancer.

• There are bi-direction exons• Coding in both directions• Coding and anti-sense• Both non-coding

http://cs173.stanford.edu [BejeranoWinter12/13] 21

Page 22: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 22

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

Page 23: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 23

human

mouserat

chimp

chicken

fugu

zfish

dog

tetra

human

mouserat

chimp

chicken

fugu

zfish

dog

tetra

opossum

cow

macaque

platypus

opossum

cow

macaque

platypus

Comparative Genomics

“Nothing in Biology Makes Sense Except in the Light of Evolution” Theodosius Dobzhansky

t

Page 24: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 24

The genome is constantly replicated

Every cell holds 2 copies of all its DNA = its genome.The human body is made of ~1013 cells.All originate from a single cell through repeated cell divisions.

cell

genome =all DNA

chicken ≈ 1013 copies(DNA) of egg (DNA)

chicken

eggegg

egg

celldivision

DNA strings =Chromosomes

Page 25: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 25

Evolution = Mutation + Selection

Mistakes can happen during DNA replication. Mistakes are oblivious to DNA segment function. But then selection kicks in.

...ACGTACGACTGACTAGCATCGACTACGA...

chicken

egg ...ACGTACGACTGACTAGCATCGACTACGA...

functionaljunk

TT CAT

“anythinggoes”

many changesare not tolerated

chicken

This has bad implications – disease, and good implications – adaptation.

Page 26: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 26

Mutation

Page 27: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Chromosomal (ie big) Mutations

• Five types exist:–Deletion–Inversion–Duplication–Translocation–Nondisjunction

Page 28: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Deletion• Due to breakage• A piece of a

chromosome is lost

Page 29: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Inversion• Chromosome segment

breaks off• Segment flips around

backwards• Segment reattaches

Page 30: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Duplication• Occurs when a

genomic region is repeated

Page 31: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Whole Genome Duplication at the Base of the Vertebrate Tree

http://cs173.stanford.edu [BejeranoWinter12/13] 31

Xen.Laevis WGD

Page 32: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Translocation• Involves two

chromosomes that aren’t homologous

• Part of one chromosome is transferred to another chromosomes

Page 33: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Nondisjunction• Failure of chromosomes to

separate during meiosis• Causes gamete to have too many

or too few chromosomes• Disorders:

– Down Syndrome – three 21st chromosomes

– Turner Syndrome – single X chromosome– Klinefelter’s Syndrome – XXY

chromosomes

Page 34: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Genomic (ie small) Mutations

• Six types exist:–Substitution (eg GT)

–Deletion–Insertion–Inversion–Duplication–Translocation

Page 35: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

35

Example: Human-Chimp Genomic DifferencesN

umbe

r of e

vent

s

Nucleotid

e substi

tutions

Indels

< 10 Kb

Microinve

rsions <

100 Kb

Deletions/D

uplicatio

ns

Microinve

rsions >

100 Kb

Pericentr

ic inve

rsions

Fusion

Page 36: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 36

Inferring Genomic MutationsFrom Alignments of Genomes

Page 37: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

37

A Gene tree evolves with respect to a Species tree

Species tree

Gene tree

SpeciationDuplicationLoss

By “Gene” we meanany piece of DNA.

Page 38: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 38

TerminologyOrthologs : Genes related via speciation (e.g. C,M,H3)Paralogs: Genes related through duplication (e.g. H1,H2,H3)Homologs: Genes that share a common origin

(e.g. C,M,H1,H2,H3)

Species tree

Gene tree

SpeciationDuplicationLoss

singleancestralgene

Page 39: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 39

Typical Molecular DistancesIf they were only evolving neutrally:• To which is H1 closer in sequence, H2 or H3?• To which H is M closest?• And C?(Selection may change distances)

Species tree

Gene tree

SpeciationDuplicationLoss

singleancestralgene

Page 40: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 40

Gene trees and even species trees are figments of our (scientific) imagination

Species trees and gene trees can be wrong.All we really have are extant observations, and fossils.

Species tree

Gene tree

SpeciationDuplicationLoss

singleancestralgene

ObservedInferred

Page 41: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Gene Families

41

Page 42: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

DefinitionGiven two strings x = x1x2...xM, y = y1y2…yN,

an alignment is an assignment of gaps to positions0,…, N in x, and 0,…, N in y, so as to line up each

letter in one sequence with either a letter, or a gapin the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCCTAGCTATCACGACCGCGGTCGATTTGCCCGAC

Page 43: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Scoring Function

• Sequence edits:AGGCCTC

Mutations AGGACTC

Insertions AGGGCCTC

Deletions AGG . CTC

Scoring Function:Match: +mMismatch: -sGap: -d

Score F = (# matches) m - (# mismatches) s – (#gaps) d

Alternative definition:

minimal edit distance

“Given two strings x, y,find minimum # of edits (insertions, deletions,

mutations) to transform one string to the other”

Cost of edit operationsneeds to be biologicallyinspired (eg DEL length).

Solve via Dynamic Programming

Page 44: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Are two sequences homologous?

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given an (optimal) alignment between two genome regions,you can ask what is the probability that they are (not) related by homology?

Note that (when known) the answer is a function of the molecular distance between the two (eg, between two species)

AGGCTATCACCTGACCTCCAGGCCGATGCCCTAGCTATCACGACCGCGGTCGATTTGCCCGAC

DP matrix:

Page 45: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 45

Chaining Alignments

Chaining highlights homologous regions between genomes (it bridges the gulf between syntenic blocks and base-by-base alignments.

Local alignments tend to break at transposon insertions, inversions, duplications, etc.

Global alignments tend to force non-homologous bases to align.Chaining is a rigorous way of joining together local alignments into larger structures.

dot plots:DP matrix:

Page 46: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

46

“Raw” (B)lastz track (no longer displayed)

Protease Regulatory Subunit 3

Alignment = homologous regions

Page 47: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Chains & Nets: How they’re built

• 1: Blastz one genome to another– Local alignment algorithm– Finds short blocks of similarity

Hg18: AAAAAACCCCCAAAAAMm8: AAAAAAGGGGG

Hg18.1-6 + AAAAAAMm8.1-6 + AAAAAA

Hg18.7-11 + CCCCCMm8.1-5 - CCCCC

Hg18.12-16 + AAAAAMm8.1-5 + AAAAA

47

Page 48: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Chains & Nets: How they’re built• 2: “Chain” alignment blocks together

– Links blocks that preserve order and orientation– Not single coverage in either species

Hg18: AAAAAACCCCCAAAAAMm8: AAAAAAGGGGGAAAAA

Hg18: AAAAAACCCCCAAAAA Mm8 chains

Mm8.1-6 +

Mm8.7-11 -

Mm8.12-16 +

Mm8.12-15 + Mm8.1-5 + 48

Page 49: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

Another Chain ExampleA B C

D E

Ancestral Sequence

A B CD E

Human SequenceA B CD E

Mouse Sequence

B’

In Human BrowserImplicitHumansequence

Mousechains B’

D E

D E

In Mouse BrowserImplicitMousesequence

Humanchains

… D E

49

Page 50: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

The Use of an Outgroup

A B CD E

Outgroup Sequence

A B CD E

Human SequenceA B CD E

Mouse Sequence

B’

In Human BrowserImplicitHumansequence

Mousechains B’

D E

D E

In Mouse BrowserImplicitMousesequence

Humanchains

… D E

50

Page 51: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 51

Chains join together related local alignments

Protease Regulatory Subunit 3

likely ortholog

likely paralogsshared domain?

Page 52: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 52

Chains• a chain is a sequence of gapless aligned blocks, where there must

be no overlaps of blocks' target or query coords within the chain.• Within a chain, target and query coords are monotonically non-

decreasing. (i.e. always increasing or flat)• double-sided gaps are a new capability (blastz can't do that) that

allow extremely long chains to be constructed.• not just orthologs, but paralogs too, can result in good chains. but

that's useful!• chains should be symmetrical -- e.g. swap human-mouse -> mouse-

human chains, and you should get approx. the same chains as if you chain swapped mouse-human blastz alignments.

• chained blastz alignments are not single-coverage in either target or query unless some subsequent filtering (like netting) is done.

• chain tracks can contain massive pileups when a piece of the target aligns well to many places in the query. Common causes of this include insufficient masking of repeats and high-copy-number genes (or paralogs). [Angie Hinrichs, UCSC wiki]

Page 53: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 53

Before and After Chaining

Page 54: MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim  Notwell  & Harendra  Guturu

http://cs173.stanford.edu [BejeranoWinter12/13] 54

Chaining AlgorithmInput - blocks of gapless alignments from blastzDynamic program based on the recurrence relationship: score(Bi) = max(score(Bj) + match(Bi) - gap(Bi, Bj))

Uses Miller’s KD-tree algorithm to minimize which parts of dynamic programming graph to traverse. Timing is O(N logN), where N is number of blocks (which is in hundreds of thousands)

j<i


Recommended