+ All Categories
Home > Documents > myep3_2012_Y10

myep3_2012_Y10

Date post: 26-Oct-2014
Category:
Upload: chandini-joseph
View: 160 times
Download: 2 times
Share this document with a friend
Popular Tags:
19
1 1 Fig. 1.1 shows apparatus that may be used to compare the strengths of two springs of the same size, but made from different materials. Fig. 1.1 (a) (i) Explain how the masses produce a force to stretch the spring. ............................................... ............................................... .................. (ii) Explain why this force, like all forces, is a vector quantity. ............................................... .................................................... ............. ............................................... .................................................... ............. [2] (b) Fig. 1.2 shows the graphs obtained when the two springs are stretched.
Transcript
Page 1: myep3_2012_Y10

1

1 Fig. 1.1 shows apparatus that may be used to compare the strengths of two springs of the same size, but made from different materials.

Fig. 1.1

(a) (i) Explain how the masses produce a force to stretch the spring.

................................................................................................................

(ii) Explain why this force, like all forces, is a vector quantity.

................................................................................................................

................................................................................................................ [2]

(b) Fig. 1.2 shows the graphs obtained when the two springs are stretched.

Fig 1.2

Page 2: myep3_2012_Y10

2

(i) State which spring is more difficult to extend. Quote values from the graphs to support your answer.

..............................................................................................................

..............................................................................................................

..............................................................................................................

..............................................................................................................

(ii) On the graph of spring 2, mark a point P at the limit of proportionality. Explain your choice of point P.

..............................................................................................................

..............................................................................................................

(iii) Use the graphs to find the difference in the extensions of the two springs when a force of 15 N is applied to each one.

difference in extensions = ..................................[6]

Total: 8 marks

2 The speed of a cyclist reduces uniformly from 2.5 m/s to 1.0 m/s in 12 s.

(a) Calculate the deceleration of the cyclist.

deceleration = ..................................[3]

(b) Calculate the distance travelled by the cyclist in this time.

distance = ..................................[2] Total: 5 marks

Page 3: myep3_2012_Y10

3

3 Fig. 3.1 shows a cycle track.

Fig 3.1

A cyclist starts at A and follows the path ABCDEB.

The speed-time graph is shown in Fig. 3.2.

Fig 3.2

Page 4: myep3_2012_Y10

4

(a) Use information from Fig. 1.1 and Fig. 1.2 to describe the motion of the cyclist

(i) along AB,

............................................................................................................

(ii) along BCDEB.

............................................................................................................

............................................................................................................ [4]

(b) The velocity v of the cyclist at C is shown in Fig. 3.1.

State one similarity and one difference between the velocity at C and the velocity at E.

similarity..........................................................................................................

difference......................................................................................................... [2]

(c) Calculate

(i) the distance along the cycle track from A to B,

distance = …………………

(ii) the circumference of the circular part of the track.

circumference = …………………

[4] Total: 10 marks

Page 5: myep3_2012_Y10

5

4 Fig. 4.1 shows a simple pendulum that swings backwards and forwards between P and Q.

Fig. 4.2

(a) The time taken for the pendulum to swing from P to Q is approximately 0.5 s.Describe how you would determine this time as accurately as possible.

........................................................................................................................

........................................................................................................................

....................................................................................................................[2]

(b) (i) State the two vertical forces acting on the pendulum bob when it is at position R.

1. ..........................................................................................................

2. ...........................................................................................................

[2]

(c) The mass of the bob is 0.2 kg. During the swing it moves so that P is 0.05 m higher than R.Calculate the increase in potential energy of the pendulum bob between R and P.

potential energy = ………………. [3] Total: 7 marks

Page 6: myep3_2012_Y10

6

5 A student sets up the apparatus shown in Fig. 5.1 in order to find the resultant of the two tensions T1 and T2 acting at P. When the tensions T1, T2 and T3 are balanced, the angles between T1 and the vertical and T2 and the vertical are as marked on Fig. 5.1.

Fig. 5.1

In the space below, draw a scale diagram of the forces T1 and T2. Use the diagram to find the resultant of the two forces.

State(a) the scale used, scale = ........................................(b) the value of the resultant, value = ........................................(c) the direction of the resultant. direction = ........................................

[8] Total: 8 marks

Page 7: myep3_2012_Y10

7

6 An electric pump is used to raise water from a well, as shown in Fig. 6.1.

Fig. 6.1(a) The pump does work in raising the water. State an equation that could be

used to calculate the work done in raising the water.

................................................................................................................... [2]

(b) The water is raised through a vertical distance of 8.0 m. The weight of water raised in 5.0 s is 100 N.

(i) Calculate the work done in raising the water in this time.

work done = ....................... [2]

(ii) Calculate the power the pump uses to raise the water.

power = ........................ [3]

(iii) The energy transferred by the pump to the water is greater than your answer to (i).

Suggest what the additional energy is used for.

...........................................................................................................[1] Total: 8 marks

Page 8: myep3_2012_Y10

8

7 Fig. 7.1 shows a steam safety valve. When the pressure gets too high, the steam lifts the weight W and allows steam to escape.

Fig. 7.1

(a) Explain, in terms of moments of forces, how the valve works.

..........................................................................................................................

..........................................................................................................................

.......................................................................................................................... [2]

(b) The moment of weight W about the pivot is 12 N m. The perpendicular distance of the line of action of the force of the steam on the valve from the pivot is 0.2 m.

The area of the piston is 0.0003 m2.Calculate(i) the minimum steam force needed for the steam to escape,

force = ................................................ [3]

(ii) the minimum steam pressure for the steam to escape.

pressure = ................................................ [3]

Total: 8 marks8 (a) Name the process by which energy is released in the core of the Sun.

Page 9: myep3_2012_Y10

9

................................................................................................................... [1]

(b) Describe how energy from the Sun becomes stored energy in water behind a dam.

...................................................................................................................

...................................................................................................................

...................................................................................................................

.................................................................................................................... [3]

(c) Data for two small power stations is given in Table 8.1

Table 8.1

(i) State what is meant by the efficiency of a power station.

................................................................................................................

................................................................................................................

................................................................................................................

.............................................................................................................[3]

(ii) Use the data in Table 8.1 to explain that the hydroelectric station is more efficient than the gas-fired power station.

................................................................................................................

................................................................................................................

.............................................................................................................[2]

Total: 9 marks

9 A cyclist rides up and then back down the hill shown in Fig. 9.1.

Page 10: myep3_2012_Y10

10

Fig. 9.1

The cyclist and her bicycle have a combined mass of 90 kg. She pedals up to the top and then stops. She turns around and rides back to the bottom without pedalling or using her brakes.

(a) Calculate the potential energy gained by the cyclist and her bicycle when she has reached the top of the hill.

potential energy = ................................................ [2]

(b) Calculate the maximum speed she could have when she arrives back at the starting point.

speed = ................................................ [3]

(d) Explain why her actual speed will be less than that calculated in (b).

................................................................................................................

................................................................................................................

................................................................................................................ [2] Total: 7 marks

Page 11: myep3_2012_Y10

11

10 A wind turbine has blades, which sweep out an area of diameter 25 m.

Fig. 10.1

(a) The wind is blowing directly towards the wind turbine at a speed of 12 m / s. At this wind speed, 7500 kg of air passes every second through the circular area swept out by the blades.

(i) Calculate the kinetic energy of the air travelling at 12 m / s, which passes through the circular area in 1 second.

kinetic energy = ................................................ [3]

(ii) The turbine converts 10% of the kinetic energy of the wind to electrical energy.

Calculate the electrical power output of the turbine. State any equation that you use.

power = ................................................ [3] Total: 6 marks

11 Complete the table below to identify the physical quantities as scalars or vectors.

Page 12: myep3_2012_Y10

12

[4] Total: 4 marks

Prepared by: Checked by: Verified by:

------------------ --------------------- ----------------Chandini Joseph Pn Shieh Senior Assistant


Recommended