+ All Categories
Home > Documents > N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall...

N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall...

Date post: 15-Dec-2015
Category:
Upload: katie-oakland
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
43
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower David A. Kosower Saclay Lectures Saclay Lectures Fall Term 2004 Fall Term 2004
Transcript
Page 1: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

N =4 Supersymmetric Gauge Theory, Twistor Space, and

Dualities

David A. KosowerDavid A. Kosower

Saclay LecturesSaclay Lectures

Fall Term 2004Fall Term 2004

Page 2: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

2

Course Overview

• Present advanced techniques for calculating amplitudes in gauge theories

• Motivation for hard calculations

• Review gauge theories and supersymmetry• Color decomposition; spinor-helicity basis; recurrence

relations; supersymmetry Ward identities; factorization properties of gauge-theory amplitudes

• Twistor space; Cachazo-Svrcek-Witten rules for amplitudes

• Unitarity-based method for loop calculations; loop integral reductions

• Computation of anomalous dimensions

Page 3: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

3

Why Calculate Amplitudes?

• It’s an easy way to while away your professional time

• It leads to great opportunities for TV hosting slots

• There are strong physics motivations: LHC physics

• There are strong mathematical physics motivations: study of AdS/CFT duality

Page 4: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

4

LHC Is Coming, LHC Is Coming!

Page 5: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

5

Page 6: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

6

Page 7: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

7

Page 8: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

8

Page 9: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

9

Page 10: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

10

CDF event

Page 11: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

11

CMS Higgs event simulation

Page 12: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

12

D0 event

Page 13: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

13

Guenther Dissertori (Jan ’04)

Page 14: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

14

Hunting for New Physics

• Compare measurements to predictions — need to calculate signals

• To extract measurements, need to understand backgrounds — and they are often huge!

• Predicting backgrounds requires precision calculations of known Standard Model physics

Page 15: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

15

Precision Perturbative QCD

• Predictions of signals, signals+jets

• Predictions of backgrounds

• Measurement of luminosity

• Measurement of fundamental parameters (s, mt)

• Measurement of electroweak parameters

• Extraction of parton distributions — ingredients in any theoretical prediction

Everything at a hadron collider involves QCD

Page 16: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

16

From the Formal Side

• String theory

• Understanding the nature of quantum gravity

• Gauge theory at strong coupling

• Old idea of ‘t Hooft: large-N QCD at strong coupling should be a string theory

Page 17: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

17

AdS/CFT Duality

Type IIB string theory on a special background, AdS5×S5

is dual to N=4 supersymmetric gauge theory on the boundary at spatial infinity

Maldacena (1997)

Same theory, seen through different variables

Special example of holography in gravitational theory: can be represented by degrees of freedom on the boundary

’t Hooft; Susskind; Thorne

Page 18: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

18

IIB string theory on AdS5×S5 N=4 SUSY gauge theory

’t Hooft coupling

Same symmetries: SU(2,2|4) SO(4,2) conformal SO(6) isometries of S5 = SU(4)R

Page 19: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

19

Planar Limit in Gauge Theories

‘t Hooft (1974)

• Consider large-N gauge theories, g2N ~ 1, use double-line notation

• Planar diagrams dominate

• Sum over all diagrams surface or string diagram

Page 20: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

20

• Computations in the gauge theory good for testing duality

• Understanding string theory better

• Computing in low-energy QCD

Page 21: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

21

Review of Gauge Theory

Take an SU(N) symmetry

and make it local. Introduce connection

Structure constants

Gluon transformation

Covariant derivative

Page 22: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

22

Construct a field-strength tensor

in terms of components:

Squaring it gives us a kinetic energy term, and the Lagrangian

The m = 0 theory has scale invariance classically

Page 23: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

23

Scattering

Scattering matrix element

Decompose it

Invariant matrix element M

Differential cross section

Page 24: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

24

Lorentz-invariant phase-space measure

Compute invariant matrix element by crossing

Page 25: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

25

Functional Integration

Compute operator expectation values

Gauge theories have redundant degrees of freedom

Need to freeze the unphysical degrees of freedom ‘gauge fixing’

Faddeev–Popov trick: functional delta function

gauge transformation

Page 26: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

26

Change variables, the observable is now

Choose a covariant gauge-fixing condition

and use the ’t Hooft trick to average over all ws

Our observable is now

Page 27: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

27

Lagrangian

Page 28: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

28

Feynman Rules

Propagator (like QED)

Three-gluon vertex (unlike QED)

Four-gluon vertex (unlike QED)

Page 29: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

29

The Functional Determinant

Delta function leads to functional determinant

Infinitesimal gauge transformation

determinant

In QED, this is independent of G over-all normalization of path integral, cancels out of Green functions

Page 30: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

30

Represent the functional determinant as a path integral

anticommuting scalars or ghosts

Propagator

coupling to gauge bosons

Page 31: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

31

Light-Cone Gauge

Only physical (transverse) degrees of freedom propagate

physical projector — two degrees of freedom

Page 32: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

32

Color Decomposition

Standard Feynman rules function of momenta, polarization vectors , and color indices

Color structure is predictable. Use representation

to represent each term as a product of traces,

and the Fierz identity

Page 33: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

33

To unwind traces

Leads to tree-level representation in terms of single traces

Color-ordered amplitude — function of momenta & Color-ordered amplitude — function of momenta & polarizations alone; polarizations alone; notnot Bose symmetric Bose symmetric

Page 34: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

34

Symmetry properties

• Cyclic symmetry

• Reflection identity

• Parity flips helicities

• Decoupling equation

Page 35: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

35

Color-Ordered Feynman Rules

Page 36: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

36

Amplitudes

Functions of momenta k, polarization vectors for gluons;

momenta k, spinor wavefunctions u for fermions

Gauge invariance implies this is a redundant representation:

k: A = 0

Page 37: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

37

Spinor Helicity

Spinor wavefunctions

Introduce spinor products

Explicit representation

where

Page 38: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

38

We then obtain the explicit formulæ

otherwise

so that the identity always holds

Page 39: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

39

Introduce four-component representation

corresponding to matrices

in order to define spinor strings

Page 40: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

40

Properties of the Spinor Product

• Antisymmetry

• Gordon identity

• Charge conjugation

• Fierz identity

• Projector representation

• Schouten identity

Page 41: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

41

Spinor-Helicity Representation for Gluons

Gauge bosons also have only ± physical polarizations

Elegant — and covariant — generalization of circular polarization

Xu, Zhang, Chang (1984)

reference momentum q

Transverse

Normalized

Page 42: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

42

What is the significance of q?

Page 43: N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.

43

Properties of the Spinor-Helicity Basis

Physical-state projector

Simplifications


Recommended