+ All Categories
Home > Documents > N E A Full Optical Spectrum Hyperspectral Scene Simulation · Smp V b Image SampleLWIR Image...

N E A Full Optical Spectrum Hyperspectral Scene Simulation · Smp V b Image SampleLWIR Image...

Date post: 03-Feb-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
Motivation for Work • Develop VIS-LWIR scene simulation – Realistic levels of clutter •Spectral •Spatial – Easy user control of terrain materials •Reflectance in Visible-MWIR (NASA SBIR) •Emissivity/Temperature in MWIR-LWIR •Statistical terrain definition – Incorporate digital elevation maps – 3D variable atmosphere – 3D complex cloud fields – 3D faceted objects • Simulation tool used to test algorithms – Atmospheric compensation – Object detection – Scene classification/segmentation – Sensor development • Simulations to supplement data collects – Data usually collected on high visibility days – Simulate low visibility & bad weather Full Optical Spectrum Hyperspectral Scene Simulation Robert Sundberg and Steven Richtsmeier Spectral Sciences, Inc., Burlington, MA Raymond Haren AFRL/SNJT, Wright-Patterson AFB, OH 50 km uniform boundary 15-50 km 100 m layers 0-15 km (100 m) voxels 3 (1 m) pixels 2 100 m Atmospheric profile Exit to Space Backward Photon Trajectory Atmospheric Scattering Surface Scattering Sum Solar Scatter Probabilities • Unified UV to LWIR RT • 3D atmospheres with complex clouds • 3D surfaces with BRDF’s (DEM) • 3D object insertion • 3D plume model MODTRAN optical properties, profiles, and spectroscopy • Extended to underwater imaging • Active illumination sources (LIDAR) MCScene Spectral Scene Simulation Validation MCScene Summary • New 3D code for computing visible to LWIR HSI/MSI data cubes • Spectral/spatial clutter with statistical behavior similar to nature • Applicable to wide variety of remote sensing problems • MCScene team – SBIR & STTR funding •AFRL/SNJT phase I/II/II+ •NIMA phase I/II •NASA phase I •US Army phase I – IRAD funding •Spectral Sciences, Inc. – Industrial partners •Kodak •Research Systems, Inc. •Rochester Institute of Technology • Direct sun-ground-sensor term calculated explicitly • Weighting factor for molecular absorption • Integrate thru 3D world in steps • Sample probability distributions for distance traveled and scattering directions • Atmospheric scattering (1 st order) ω, Single scattering albedo P(θs), Scattering phase function 0.0 0.2 0.4 0.6 0.8 1.0 0.250 0.275 0.300 0.325 0.600 0.625 0.650 0.675 # = 0.800 #= 0.975 EXACT 10 4 PHOTONS 10 6 PHOTONS Apparent Reflectance ( " I/ μ F Cosine Solar Zenith (μ) 500 1000 1500 2000 2500 -0.02 0.00 0.02 0.04 0.2 0.4 0.6 0.8 Multiple Scattering Residuals Multiple Scattering Only Total MODTRAN4 w/ DISORT16 MOD4 w/ Cor- & DISORT 16 k Monte-Carlo 500 1000 1500 2000 2500 -0.02 0.00 0.02 0.04 0.2 0.4 0.6 0.8 !gnd=1 APPARENT REFLECTANCE WAVELENGTH (nm) 500 1000 1500 2000 2500 -0.006 -0.003 0.000 0.003 0.05 0.10 0.15 0.20 0.25 Multiple Scattering Residual Multiple Scattering Only Single + Multiple Scattering 500 1000 1500 2000 2500 -0.006 -0.003 0.000 0.003 0.05 0.10 0.15 0.20 0.25 !gnd=0 APPARENT REFLECTANCE WAVELENGTH (nm) MODTRAN4 w/ DISORT16 Monte-Carlo Cloud Scattering Details Data Driven Scene Simulation Download DEM Radiance Cube Correct with FLAASH Deshadow Register DEM & source reflectance MCScene Pre-calculate MODTRAN atmospheres Specify Sun and Sensor Generate Cloud Field Simulation Flow Chart Radiance Reflectance Shadow Map De-shadowed Radiance • Atmospheric Compensation –FLAASH –ELM 10 m USGS DEM Unit Reflectance DEM Image Sample Visible Image Sample LWIR Image • AVIRIS Scene – Virgin Mts., NV – 20 km nadir view – Solar geometry •28° Zenith •317° Azimuth – Composition Simple 3D Cloud Simulations Self Shadow Major Features 1 km Cloud Over Dark Vegetation Atmospheric Shadow Ground Shadow 200 m τc=5 0 100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0 Cloud Self Shadow Cloud Shadow Soil Cloud 0.65μm 0.55μm 0.44μm Radiance ( μ W cm -2 sr -1 / cm -1 ) Image Diagonal Pixel 24500 24600 24700 24800 24900 25000 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Shadow Line Cloud 0.1km Thick Region 0.2km Thick Region CLOUD BASE 7.8km 4.8km 1.8km Apparent Reflectance ( ! I/ μ sun F sun Pixel (meters) Realistic Scene Generation Initialize photon position and view direction Trace path optical depth, ! " = - ln Does path terminate within the atmosphere? Does path terminate at the ground? Photon exit. Photon Next Sum solar scatter source term & update photon weight Sum solar scatter source term & update photon weight If trajectory is completed, Photon Next Sample scattering phase function for new direction Sample surface BRDF for new direction If trajectory is completed, Photon Next Photon Trajectory Flow Chart () () () s cld cld s aer aer s Ray Ray P P P P ! " ! " ! " " + + # ( ) 2 3 2 2 ) cos 2 1 ( 4 1 ; s s G H g g g g P ! " ! # + # = # ( ) 2 2 ) 1 ( 2 ) 2 ( ) 1 ( 2 2 cos g g g g g G H s ! ! ! ! " + # + + + + = # Phase Function Form & Sampling () dT T P sun s T sun a g ! " μ # $ % = 1
Transcript
Page 1: N E A Full Optical Spectrum Hyperspectral Scene Simulation · Smp V b Image SampleLWIR Image •AVIRIS Scene –VirginMts.,NV –20kmnadir iew –Solargeometry •28°Zenith •317°Azimuth

Motivation for Work

• Develop VIS-LWIR scene simulation– Realistic levels of clutter

•Spectral•Spatial

– Easy user control of terrain materials•Reflectance in Visible-MWIR (NASA SBIR)•Emissivity/Temperature in MWIR-LWIR•Statistical terrain definition

– Incorporate digital elevation maps– 3D variable atmosphere– 3D complex cloud fields– 3D faceted objects

• Simulation tool used to test algorithms– Atmospheric compensation– Object detection– Scene classification/segmentation– Sensor development

• Simulations to supplement data collects– Data usually collected on high visibility days– Simulate low visibility & bad weather

Full Optical Spectrum Hyperspectral Scene SimulationRobert Sundberg and Steven RichtsmeierSpectral Sciences, Inc., Burlington, MA

Raymond HarenAFRL/SNJT, Wright-Patterson AFB, OH

50 km uniform boundary

15-50 km100 m layers

0-15 km(100 m) voxels3

(1 m) pixels2

100 m

Atm

osp

heric

pro

fi le

Exit toSpace

BackwardPhoton

Trajectory

AtmosphericScattering

SurfaceScattering

Sum SolarScatterProbabilities

• Unified UV to LWIR RT• 3D atmospheres with complex clouds• 3D surfaces with BRDF’s (DEM)• 3D object insertion• 3D plume model• MODTRAN optical properties, profiles, and spectroscopy• Extended to underwater imaging• Active illumination sources (LIDAR)

MCScene Spectral Scene SimulationValidation

MCScene Summary

• New 3D code for computing visible to LWIR HSI/MSI data cubes• Spectral/spatial clutter with statistical behavior similar to nature• Applicable to wide variety of remote sensing problems• MCScene team

– SBIR & STTR funding•AFRL/SNJT phase I/II/II+•NIMA phase I/II•NASA phase I•US Army phase I

– Los Alamos National Lab

– IRAD funding•Spectral Sciences, Inc.

– Industrial partners•Kodak•Research Systems, Inc.•Rochester Institute ofTechnology

•Direct sun-ground-sensor termcalculated explicitly

•Weighting factor for molecularabsorption

• Integrate thru 3D world in steps•Sample probability distributionsfor distance traveled andscattering directions

•Atmospheric scattering (1st

order)

ω, Single scattering albedo P(θs), Scattering phase function

0.2 0.4 0.6 0.8 1.0 1.2 1.40.00

0.05

0.4

0.6

0.8

Ground Visibility5km

|10km

|23km

|

50km

|100km

|

!gnd

= 0

!gnd

= 1 16-STR DISORT

DSMC

MS

Appare

ntR

eflecta

nce

("Im

s/µ

F)

0.55µ Vertical Optical Depth

0.0 0.2 0.4 0.6 0.8 1.00.250

0.275

0.300

0.325

0.600

0.625

0.650

0.675

# = 0.800

#= 0.975

EXACT

104 PHOTONS

106 PHOTONS

Ap

pa

ren

tR

efle

cta

nce

("I

/µF

)

Cosine Solar Zenith (µ)

500 1000 1500 2000 2500-0.02

0.00

0.02

0.04

0.2

0.4

0.6

0.8

Multiple Scattering Residuals

Multiple

Scattering

Only

Total

MODTRAN4 w/ DISORT16

MOD4 w/ Cor- & DISORT 16k

Monte-Carlo

500 1000 1500 2000 2500-0.02

0.00

0.02

0.04

0.2

0.4

0.6

0.8!gnd=1

AP

PA

RE

NT

RE

FL

EC

TA

NC

E

WAVELENGTH (nm)

500 1000 1500 2000 2500-0.006

-0.003

0.000

0.003

0.05

0.10

0.15

0.20

0.25

Multiple Scattering Residual

Multiple Scattering Only

Single + Multiple Scattering

500 1000 1500 2000 2500-0.006

-0.003

0.000

0.003

0.05

0.10

0.15

0.20

0.25!gnd=0

AP

PA

RE

NT

RE

FL

EC

TA

NC

E

WAVELENGTH (nm)

MODTRAN4 w/ DISORT16

Monte-Carlo

Cloud Scattering Details

Data Driven Scene Simulation

Download DEM

RadianceCube

Correctwith FLAASH Deshadow

Register DEM& source

reflectanceMCScene

Pre-calculateMODTRAN

atmospheres

SpecifySun andSensor

GenerateCloudField

Simulation Flow Chart

Radiance Reflectance

ShadowMap

De-shadowedRadiance

• Atmospheric Compensation–FLAASH–ELM

10 m USGSDEM

Unit ReflectanceDEM Image

Sample Visible Image

Sample LWIR Image

• AVIRIS Scene– Virgin Mts., NV– 20 km nadir view– Solar geometry

•28° Zenith•317° Azimuth

– Composition• Vegetation• Minerals/Soils

Simple 3D Cloud Simulations

Self Shadow

Major Features

1 km

Cloud Over DarkVegetation

AtmosphericShadow

GroundShadow

200

m

τc=5

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

1.0

Cloud

Self Shadow Cloud Shadow

Soil

Cloud 0.65µm

0.55µm

0.44µm

Radia

nce

(µW

cm

-2sr-1

/cm

-1)

Image Diagonal Pixel

24500 24600 24700 24800 24900 250000.0

0.1

0.2

0.3

0.4

0.5

0.6

Shadow

Line

Cloud

0.1km ThickRegion

0.2km ThickRegion

CLOUD BASE

7.8km

4.8km

1.8km

Appare

nt

Reflecta

nce

(!I

/µsun

F sun

)

Pixel (meters)

• AVIRIS source reflectance– Atmospheric compensation– De-shadowed

• 10 m USGS DEM• CSSM for cloud field

– Nimbostratus cloud– 20 m resolution

Realistic Scene Generation

Initialize photonposition and

view direction

Trace path optical depth,

! "= - ln

Does pathterminate within the

atmosphere?

Does pathterminate

at the ground?

Photon exit. PhotonNext

Sum solar scattersource term

& updatephoton weight

Sum solar scattersource term

& updatephoton weight

If trajectory is completed,

PhotonNext

Sample scatteringphase function

for new direction

Sample surfaceBRDF

for new direction

If trajectory is completed,

PhotonNext

Photon Trajectory Flow Chart

• Solar geometry:– SE, 44 º zenith angle

• Nadir sensor– 20 km altitude, 17 m GSD

• Atmosphere– Mid-latitude summer– Desert aerosol (50 km Vis)

• Scattering albedo weighted phase function

– Use MODTRAN3 form for Rayleigh phase function

• PR ay (θ s ) = 0.06050402 + 0.0572197 cos2θ s• Rayleigh function is sampled isotropically with a small anisotropy correction

• Aerosol and cloud scattering phase functions use H enyey-Greenstein

– Spectral and altitude dependent asymmetry factors, g

• The H-G function is sampled analytically with

w here α is a random number between -1 and 1

( ) ( ) ( )scldcldsaeraersRayRay PPPP !"!"!"" ++#

( )232

2

)cos21(4

1;

s

sGHgg

ggP

!"!

#+

#=#

( )2

2

)1(2

)2(

)1(22cos

g

gg

g

gGHs

!

!

!

!"

+

#++

++=

#

Phase Function Form & Sampling

( ) dTTP suns

Tsun

a

g

!"µ

#$ %=

1

Recommended