+ All Categories
Home > Documents > n-p pairing in N=Z nuclei

n-p pairing in N=Z nuclei

Date post: 22-Feb-2016
Category:
Upload: jalena
View: 48 times
Download: 0 times
Share this document with a friend
Description:
the Wigner energy and the generalized. blocking phenomenon. cranking in isospace - response of t=0 pairing. against rotations in isospace. reality or fiction ?. n-p pairing in N=Z nuclei. Motivation & fingerprints ( basic concepts ): . W. Satuła University of Warsaw. - PowerPoint PPT Presentation
30
n-p pairing in N=Z nuclei W. Satuła University of Warsaw reality or fiction? Motivation & fingerprints (basic concepts): cranking in isospace - response of t=0 pairing against rotations in isospace elementary isobaric exciatations in N~Z nuclei – a need for isosopin symmetry restoration the Wigner energy and the generalized blocking phenomenon symmetric nuclear matter calculations binding energies - mean-field crisis around N~Z line high-spin signatures of pn-pairing
Transcript
Page 1: n-p pairing in N=Z nuclei

n-p pairing in N=Z nuclei

W. SatułaUniversity of Warsaw

reality or fiction?

Motivation & fingerprints (basic concepts):

cranking in isospace - response of t=0 pairing against rotations in isospace

elementary isobaric exciatations in N~Z nuclei – a need for isosopin symmetry restoration

the Wigner energy and the generalizedblocking phenomenon

symmetric nuclear matter calculations binding energies - mean-field crisis around N~Z line

high-spin signatures of pn-pairing

Page 2: n-p pairing in N=Z nuclei

Structure of nucleonic pairs N=Z nucleons start to occupy „identical” spatial

orbitals Nuclear interaction favoures L=0 coupling Pair-structure is governed by the Pauli principle:

– Isovector (or 1S0) pairs T=1, S=0

- Isoscalar (deuteron-like or 3S1) pairs T=0, S=1

Tz +1 0 -1

Sz +1 0 -1

Neutron

+

-

Proton

Page 3: n-p pairing in N=Z nuclei

From M. Baldo et al. Phys. Rev. C52, 975 (1995)

free-space sp spectrum

BHF sp spectrum

(in-mediumcorrections)

3S1-3D1 (coupled) pairing gap in symmetric Nuclear Matter from Paris VNN

tensor-forceenhancement

Page 4: n-p pairing in N=Z nuclei

Gaps from local effective pairing interaction

E. Garrido et al. PRC60, 064312 (1999)PRC63, 037304 (2001)

DDDI:

DDDI used in Skyrme-HFB calculations by Terasaki et al. NPA621 (1997) 706.

Cut-off!!!(otherwise divergent!)

Isoscalar pairingTensor forceenhancement

ro

Page 5: n-p pairing in N=Z nuclei

3S1-3D1 (coupled) pairing gap in symmetric Nuclear Matter including relativistic corrections

Includes relativistic in-medium corrections(sp levels from Dirac-Brueckner-HF)

Saturationdensity

O. Elgaroy, L.Engvik, M.Hjorth-Jensen, E.Osnes, Phys.Rev.C. 57 (1998) R1069

Page 6: n-p pairing in N=Z nuclei

Empirical NN interaction in N~Z

T=1 channel: J=0 coupling

dominates T=0 channel:

J=1 and J=2j are similar

T=0 is, on the average, stronger than T=1 by a factor of ~1.3

N.Anantaraman& J.P. SchifferPL37B (1971) 229

Dufour & Zucker, Phys. Rev. C54, 1641 (1996)

Page 7: n-p pairing in N=Z nuclei

Pairs:

Hamiltonian BCS:

Pairs: p-ñ + n-p; T=1

Pairs: p-ñ – n-p ; T=0

Pairs ñ-n and p-p « usual » ; T=1

Pairs p-n and p-ñ~

~

~

The model: deformed mean-field plus pairing:

0 0

N.Anantaramanand J.P. SchifferPL37B (1971) 229

Page 8: n-p pairing in N=Z nuclei

M.Moinester, J.P. Schiffer,W.P. Alford, PR179 (1969) 984

Comparison with delta-forcetowards a local theory

Page 9: n-p pairing in N=Z nuclei

BCS transformation

BCS transformation takes the following form :

where the variational parameters are:

Density matrix (occupation) and the pairing tensor

Generalization: BCSHFB UiU & ViV matrices of dimension 4N

A.L.GoodmanNucl. Phys. A186(1972) 475

i 2

real complex

Page 10: n-p pairing in N=Z nuclei

BCS SolutionEnergy (Routhian)

Variational equation in N=Z system (without Coulomb)

Occupation probabilities ; quasiparticle energies:

Pair gaps: n-ñ, p-p

T=1 n-p + p-ñ

Gap T=0 aã

Gap T=0 aa~

~

Page 11: n-p pairing in N=Z nuclei

T=0/T=1 (no)mixing

X X

X= /

W.S. & R.WyssPLB 393 (1997) 1

Incomplete mixing?

T=1, Tz=+/-1 andTz=0

T=1, Tz=+/-1 and T=0

48Ca

Page 12: n-p pairing in N=Z nuclei

Energy gain as a function of T=0/T=1pairing’s mixing „x”

Thomas-Fermi X=1.1X=1.2X=1.3X=1.4

Energy gain:DMass =E(T=0+1)- E(T=1)

Satuła & Wyss PLB393 (1997) 1

protons neutrons

n-excess blocks pn-pairs

scattering

generalized blocking effect

Wigner term from Myers & Swiatecki

/X=

Page 13: n-p pairing in N=Z nuclei

Wigner effect from self-consistent Skyrme-HF Defficiency of

conventional self-consistent models:

HF or HFB including standard T=1, |Tz|=1 ~ p-p & n-n

pairs: (N-Z)2 ~ T2

term is OK! no (or very weak) |N-Z| ~

term

o-oe-e

A.S. Jensen, P.G.Hansen, B.Jonson, Nucl.Phys. A431(1984) 393

N=ZExp. HFBCS T=1 Sph.HFBCS T=1 Def. (SIII)

|N-Z|=2,4 (black)

Page 14: n-p pairing in N=Z nuclei

0.40.6

0 1 2 3 4 5 6 7

-4 4 0

10152025

05

N-Z

DB (M

eV)

A=48

0.00.2

0.81.0

Jmax

48Cr

24Mg w / wto

tal w

The Wigner effect

DE= asymT(T+x)21

0?1??1.25??? exp. in N~Z4 ???? Wigner SU(4)

X=

Page 15: n-p pairing in N=Z nuclei

Isobaric excitations in N~Z nuclei

P.Vogel, Nucl. Phys. A662 (2000) 148

30 40

0.6

1.4 GT=0

GT=1

A

0.5

1.0

1.5

2.047/A [MeV]

W(A

) [M

eV]

The lowest: T=0, T=1 & T=2 in e-e nuclei T=0 & T=1 states in o-o nuclei The model needs to be extended to include isospin projection isospin cranking

A. Macchiavelli et al. Phys. Rev. C61 (2000) 041303(R) J.Janecke, Nucl. Phys. A73 (1965) 73

strong T=0 pairing limit!

Page 16: n-p pairing in N=Z nuclei

Energy:

The extreme s.p.model:

4-fold degenerated equidistant

s.p. spectrum

Eigen-states (routhians) are 2-fold (Kramers) degene-rated „stright lines”:

Crossings form simple arithmetic serie:

„inertia” defined throughmean level spacing !!!

Page 17: n-p pairing in N=Z nuclei

0

5

10

15

20

20 30 40 50 A

DET

=2 [M

eV]

hWS+HT=1 -wtx

2028

14

T=2

iso -crank ing

vacuum

T=2 states in e-e nuclei

hWS+HT=1+HT=0-wtx

DE= deT212

Iso-cranking gives excitation energy which goes like:

mean level spaceing at the Fermi energy

+ Epair

Page 18: n-p pairing in N=Z nuclei

D [M

eV]

0

1

2

3

0 1 2 3hw [MeV]

DT=0

DT=1

48Cr

0

1

2

3 6

Tx

(iso)Coriolis antipairing effect

D/e = 0.5;1.0;1.50

0.5

1.0

1.5

iso-

mom

ent o

f ine

rtia D/e = 0.001

0.3

0.4

0.5

0.6

0.7

0 1 2 3

Tz01234is

o-m

omen

t of i

nerti

a

hw

e=1

iso-MoI

Page 19: n-p pairing in N=Z nuclei

T=1 states in e-e N=Z nuclei T=1 states: 2qp + isocranking

Page 20: n-p pairing in N=Z nuclei

Isocranking N=Z odd-odd nuclei

3de

T

4

2

5

3

10iso-signatureselection rule

de

de

2de 4de 6de

hw

de

de

de

de 5de hw

de

odd-T sequence

even-T sequence

Eeven-T = 1/2deTx2

Eodd-T = 1/2deTx2 - 1/2de

Page 21: n-p pairing in N=Z nuclei

DET=

1 - D

E T=0

[MeV

]

-0.5

0.0

0.5

1.0

20 30 40 50 60 70A

crank

ing2qp

vacuum

T=1T=0

expth

T=0 vs T=1 states in o-o N=Z nuclei

Page 22: n-p pairing in N=Z nuclei

Neutron-proton pairing collectivity(a fit plus three easy steps)

Fit of GT=0 /GT=1ET=2 - ET=0 (even-even)

(I)

ET=1 - ET=0 (even-even)(II)

ET=1 - ET=0 (odd-odd)(III)

W. Satuła & R. Wyss Phys. Rev. Lett., 86, 4488 (2001);

Phys. Rev. Lett., 87, 052504 (2001)

Wigner energy linked to the n-p pairing collectivityT=2 states in even-even nuclei obtained from isocrankingT=1 states in even-even nuclei obtained as 2qp excitationsT=1 states in odd-odd nuclei obtained from isocrankingT=0 states in odd-odd nuclei obtained as 2qp excitations

Page 23: n-p pairing in N=Z nuclei

E= (de+k)T212

mean -- field

(Hartree)HMF =hsp- (w - k T )T

iso-cranking with isospin-dependent frequency!!!

1H=hsp- wT+ kTT2

extreme sp model

12E= (de+k)T2+ kT1

2

HartreeHartree- -Fock

Schematic isospin-isospin interaction:

de 3de

de

de

de

hw de+k 3(de+k)

l

even-even vacuum

see e.g. Bohr & Mottelson „Nuclear Structure” vol. INeergard PLB572 (2003) 159

Page 24: n-p pairing in N=Z nuclei

Resistance of nucleonic paires against fast rotation:

Pairing in fast rotating nucleiMuller et al., Nucl. Phys. A383 (1982) 233

Page 25: n-p pairing in N=Z nuclei

J. Terasaki, R. Wyss, and P.H. Heenen PLB437, 1 (1998)

[nf7/2 pf7/2]4 4

16+

Collective (prolate)rotation

Non-collective (oblate) rotation

isoscalarpairing

d3/2 g9/2-1

T=1 collapses

Skyrme interaction in p-h DDDI in p-p channel fully self-consistent theory no spherical symmetry two-classes of solutions:

no T=0 atlow spins

(termination)

48Cr ; HFB calculations including T=0 & T=1 pairing

exp

- T=0 dominated at I=0- T=1 dominated at I=0

Page 26: n-p pairing in N=Z nuclei

Conventional TRS calculations involving only T=1 pairing:

-0.50.00.5

1.0

1.52.02.5

Ew [M

eV]

(+,+) (-,-)

0.5 1.0 1.5hw [MeV]

0.5 1.0 1.5

5

10

15

20

25

30 (-,-)73KrIx

hw [MeV]0.5 1.0 1.5

1qp

5qp

73Krpositive parity negative parity negative parity

3qp

3qp

1qp

|1qp> = a+n(fp)|0>

|3qp> = a+ng a+

pg a+p(fp)|0>

<1qp|E2|3qp> ~ 0 (one-body operator)

g

40

fp 73K

r: K

elsa

ll et

al.,

Phy

s. R

ev. C

65 0

4433

1 (2

005)

R.Wyss, P.J. Davis, WS, R. Wadsworth(1) 73Kr – manifestation of (dynamical) T=0 pairing?

Page 27: n-p pairing in N=Z nuclei

Scattering of a T=0 np pair

n(fp)ng9/2n(fp)ng9/2

n(fp)ng9/2n(fp)ng9/2

p(fp)pg9/2p(fp)pg9/2

p(fp)pg9/2p(fp)pg9/2

1qp configurationn(fp)(-) vacuum

ng9/2(+) pg9/2 p(fp)(-)

3qp configuration

in 73Kr

What makes the 1qp and 3qp configurations alike?

051015202530

0.4 0.8 1.2 1.60.2 0.6 1.0 1.4hw [MeV]

I x

73Kr

theoryexp

DT=0

Dp

Dn

00.51.0

D [M

eV]

TRS involving T=0 and T=1pairing

(2) 73Kr – manifestation of (dynamical) T=0 pairing?

Page 28: n-p pairing in N=Z nuclei

-0.5

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5hw [MeV]

Ew [M

eV]

75Rb 3qp

1qp

5

10

15

20

25

30(+,+)

(-,+)75RbIx

0.5 1.0 1.5hw [MeV]

0.5 1.0 1.5

1qp

3qp

positive parity negative parityall bands

Excellent agreement was obtained in: Tz=1 : 74Kr,76Rb, D. Rudolph et al. Phys. Rev. C56, 98 (1997) Tz=1/2: 75Rb, C. Gross et al. Phys. Rev. C56, R591 (1997) Tz=1/2: 79Y, S.D. Paul et al. Phys. Rev. C58, R3037 (1998)

Conventional TRS calculations involving only T=1 pairingin neighbouring nuclei:

(3) 73Kr – manifestation of (dynamical) T=0 pairing?

Page 29: n-p pairing in N=Z nuclei

SUMMARYPart of T=0 correlations in N~Z nuclei is definitelybeyond standard formulation of mean-field(Wigner energy)

Adding T=0 pairing helps but cannot solve the problem of the Wigner energy (symmetry energy) in N~Z nuclei which seems to be beyond mean-field There is no convincing arguments for coherency of the T=0 phaseTheoretical treatment of T=1 states in e-e nuclei and T=0 states o-o nuclei requires angular momentum and isospin projections

Page 30: n-p pairing in N=Z nuclei

Independent least-square fits of: the Wigner energy strength: aw|N-Z|/Aa

the symmetry energy strength: as(N-Z)2/Aa

4asT(T+x); x=aw/2as

Fit includes N~Z nuclei with:very consistent with: Janecke, Nucl. Phys. (1965) 97

Z>10; 1<Tz<3 excluding odd-odd Tz=1 nuclei

0.95 39 0.196 31 0.106 1.261/2 8 0.239 6 0.153 1.332/3 14 0.213 11 0.125 1.271 47 0.196 38 0.107 1.24

Głowacz, Satuła, Wyss, J. Phys. A19, 33 (2004)

a aw 2assn-1 sn-1 x(*) (**)

(*) See: Satuła et al. Phys. Lett. B407 (1997) 103(**) Based on double-difference formula:

J.-Y Zhang et al. Phys. Lett. B227 (1989) 1

- --


Recommended