+ All Categories
Home > Documents > N6 Mathematics November 2016 - Future Managers Suppo… · (16030186) -4- T900(E)(N24)T Copyright...

N6 Mathematics November 2016 - Future Managers Suppo… · (16030186) -4- T900(E)(N24)T Copyright...

Date post: 31-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
12
Copyright reserved Please turn over T900(E)(N24)T NOVEMBER EXAMINATION NATIONAL CERTIFICATE MATHEMATICS N6 (16030186) 24 November 2016 (X-Paper) 09:00–12:00 Calculators may be used. This question paper consists of 5 pages and a formula sheet of 7 pages.
Transcript
  • Copyright reserved Please turn over

    T900(E)(N24)T

    NOVEMBER EXAMINATION

    NATIONAL CERTIFICATE

    MATHEMATICS N6

    (16030186)

    24 November 2016 (X-Paper) 09:00–12:00

    Calculators may be used.

    This question paper consists of 5 pages and a formula sheet of 7 pages.

  • (16030186) -2- T900(E)(N24)T

    Copyright reserved Please turn over

    DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

    NATIONAL CERTIFICATE MATHEMATICS N6

    TIME: 3 HOURS MARKS: 100

    INSTRUCTIONS AND INFORMATION 1. 2. 3. 4. 5. 6. 7. 8.

    Answer ALL the questions. Read ALL the questions carefully. Number the answers according to the numbering system used in this question paper. Questions may be answered in any order, but subsections of questions must be kept together. Show ALL the intermediate steps. ALL the formulae used must be written down. Use only BLUE or BLACK ink. Write neatly and legibly.

  • (16030186) -3- T900(E)(N24)T

    Copyright reserved Please turn over

    QUESTION 1 1.1 If z = calculate the following:

    1.1.1

    (2)

    1.1.2

    (1)

    1.2 The parametric equations of a function are given as and .

    Calculate the value of

    (3) [6]

    QUESTION 2 Determine if:

    2.1 = (2)

    2.2 =

    (4)

    2.3 =

    (4)

    2.4 = (4)

    2.5 = (4) [18]

    QUESTION 3 Use partial fractions to calculate the following integrals:

    3.1

    (6)

    3.2

    (6) [12]

    )(cosec)tan( 223 xyyx +

    xz¶¶

    yz¶¶

    2tx = 52ty =

    2

    2

    dxyd

    ò dxy

    y x3arcsin

    yx2sec

    24

    y24124

    12 ++ xx

    y xx 4cos.4cosec 35

    y xx 2sin.3

    ò -++-)1()12(133

    2

    2

    xxxx dx

    ò +-+xx

    xx3

    24 2 dx

  • (16030186) -4- T900(E)(N24)T

    Copyright reserved Please turn over

    QUESTION 4 4.1 Calculate the particular solution of

    , if when .

    (5)

    4.2 Calculate the particular solution of

    + 2 = , if when and when .

    (7) [12]

    QUESTION 5 5.1 5.1.1 Make a neat sketch of the graph . Show the representative

    strip/element that you will use to calculate the volume generated if the area bounded by the graph, the line , the -axis and the y-axis rotates about the x-axis.

    (2)

    5.1.2 Calculate the volume generated if the area described in

    QUESTION 5.1.1 rotates about the -axis.

    (5) 5.2 5.2.1 Calculate the points of intersection of the two curves = and

    . Make a neat sketch of the two curves and show the area bounded by the curves in the second quadrant. Show the representative strip/element PARALLEL to the x-axis that you will use to calculate the area bounded by the curves.

    (3)

    5.2.2 Calculate the area bounded by the two curves in the second quadrant

    described in QUESTION 5.2.1.

    (3) 5.2.3 Calculate the second moment of area when the area bounded by the two

    curves in the second quadrant described in QUESTION 5.2.1 is rotated about the x-axis.

    (4)

    5.2.4 Express the answer in QUESTION 5.2.3 in terms of the area. (1)

    5.3

    5.3.1 Make a neat sketch of the graph and show the representative strip/element PERPENDICULAR to the x-axis that you will use to calculate the volume of the solid generated when the area bounded by the curve for rotates about the x-axis.

    (2) 5.3.2 Calculate the volume described in QUESTION 5.3.1. (3) 5.3.3 Calculate the moment of inertia of the solid obtained when the area

    described in QUESTION 5.3.1 rotates about the x-axis.

    (5)

    12 2 +-=- ttydtdyt 1=t

    21

    -=y

    2

    2

    dxyd

    dxdy2+ y 26

    x

    e 1=y 0=x 1=dxdy 0=x

    xy ln2=

    2=y x

    x

    y 6+x8-=xy

    3649 22 =+ yx

    20 ££ x

  • (16030186) -5- T900(E)(N24)T

    Copyright reserved

    5.4 5.4.1 A water canal in the shape of a parabola is 5 m deep, 10 m wide at the top

    and full of water. A vertical retaining wall is placed in the canal with its top 1 m below the water surface. Sketch the retaining wall and show the representative strip/element that you will use to calculate the area moment of the wall about the water level. Calculate the relation between the two variables and .

    (4)

    5.4.2 Calculate, by using integration, the area moment of the retaining wall

    about the water level in QUESTION 5.4.1.

    (3) 5.4.3 Calculate, by using integration, the second moment of area of the

    retaining wall described in QUESTION 5.4.1, about the water level as well as the depth of the centre of pressure on the retaining wall.

    (5) [40]

    QUESTION 6 6.1 Calculate the length of the curve between and . (5) 6.2 Calculate the surface area of revolution generated by rotating the two curves,

    and about the x-axis, between and .

    (7) [12]

    TOTAL: 100

    x y

    42 2 -= xy 0=x 2=x

    q3cosax = q3sinay =2pq =

    2pq -=

  • (16030186) -1- T900(E)(N24)T

    Copyright reserved Please turn over

    MATHEMATICS N6 FORMULA SHEET Any applicable formula may also be used. Trigonometry sin2 x + cos2 x = 1 1 + tan2 x = sec2 x 1 + cot2 x = cosec2 x sin 2A = 2 sin A cos A cos 2A = cos2A - sin2A

    tan 2A =

    sin2 A = ½ - ½ cos 2A cos2 A = ½ + ½ cos 2A sin (A ± B) = sin A cos B ± sin B cos A cos (A ± B) = cos A cos B sin A sin B

    tan (A ± B) =

    sin A cos B = ½ [sin (A + B) + sin (A - B)] cos A sin B = ½ [sin (A + B) - sin (A - B)] cos A cos B = ½ [cos (A + B) + cos (A - B)] sin A sin B = ½ [cos (A - B) - cos (A + B)]

    Atan1Atan22-

    !

    BABA

    tantan1tantan

    !

    ±

    xx

    xx

    xxx

    sec1cos;

    cosec1sin;

    cossintan ===

  • (16030186) -2- T900(E)(N24)T

    Copyright reserved Please turn over

    _________________________________________________________________

    f(x) f(x)dx

    _________________________________________________________________

    xn nxn - 1

    axn a a xn dx

    (ax + b)

    (dx + e)

    ln(ax) xln ax - x + C

    -

    -

    ln f(x) -

    sin ax a cos ax -

    cos ax -a sin ax

    tan ax a sec2 ax

    cot ax -a cosec2 ax

    sec ax a sec ax tan ax

    cosec ax -a cosec ax cot ax

    )(xfdxd

    ò

    Cnxn

    ++

    +

    1

    11)-( =/n

    nxdxd

    ò

    baxe +dxde bax .+

    ( )C

    baxdxde bax

    ++

    +

    edxa +dxdaa edx .ln.+

    ( )C

    edxdxda

    a edx+

    +

    +

    .ln

    axdxd

    ax.1

    )(xfe )()( xfdxde xf

    )(xfa )(.ln.)( xfdxdaa xf

    )(.)(

    1 xfdxd

    xf

    Caax

    +cos

    Caax

    +sin

    Caxa

    +)]([secln1

    Caxa

    +)]([sinln1

    Caxaxa

    ++ ]tan[secln1

    Caxa

    +úû

    ùêë

    é÷øö

    çèæ2

    tanln1

  • (16030186) -3- T900(E)(N24)T

    Copyright reserved Please turn over

    _________________________________________________________________

    f (x) f (x) dx

    _________________________________________________________________ sin f (x) cos f (x) . f '(x) -

    cos f (x) -sin f (x) . f '(x) - tan f (x) sec2 f (x) . f '(x) - cot f (x) -cosec2f (x) . f '(x) - sec f (x) sec f (x) tan f (x) . f '(x) - cosec f (x) -cosec f (x) cot f (x) . f '(x) -

    sin-1 f (x) -

    cos-1 f (x) -

    tan-1 f (x) -

    cot-1 f (x) -

    sec-1 f (x) -

    cosec-1 f (x) -

    sin2(ax) -

    cos2(ax) -

    tan2(ax) -

    )(xfdxd

    ò

    2)]x(f[1

    )x('f

    -

    2)]x(f[1

    )x('f

    -

    -

    1)]([)('2 +xfxf

    1)]x(f[)x('f

    2 +

    -

    [ ] 12)()()('

    -xfxf

    xf

    1)]x(f[)x(f

    )x('f2 -

    -

    Ca4)ax2sin(

    2x

    +-

    Caaxx

    ++4

    )2sin(2

    Cx)ax(tana1

    +-

  • (16030186) -4- T900(E)(N24)T

    Copyright reserved Please turn over

    _________________________________________________________________

    f (x) f (x) dx

    _________________________________________________________________

    cot2 (ax) - -

    f(x) g' (x) dx = f(x) g(x) - f ' (x) g(x) dx

    Applications of integration AREAS

    )(xfdxd

    ò

    Cx)ax(cota1

    +-

    ò ò

    ò [ ] [ ] Cnxfdxxfxfn

    n ++

    =+

    1)()(')(

    11)-( =/n

    Cxfdxxfxf

    += )(ln)()('∫

    Cabxsin

    b1

    xba

    dx 1222

    +=-

    -∫

    Cabx

    abxbadx 1- +=+

    tan1∫ 222

    Cxba2x

    abxsin

    b2adxxba 22212

    222 +-+=- -∫

    Cbxabxa

    abxbadx

    +÷÷ø

    öççè

    æ-+

    =-

    ln21∫ 222

    [ ] Cbxxbbxxdxbx +±+±±=± 2222222 ln22∫

    [ ] Caxbbxbaxb

    dx+±+=

    ±222

    222ln1∫

    ( ) dxyyAydxA bax

    b

    ax ∫∫ 21; -==

    ( ) dyxxAxdyA bay

    b

    ay ∫∫ 21; -==

  • (16030186) -5- T900(E)(N24)T

    Copyright reserved Please turn over

    VOLUMES

    AREA MOMENTS

    CENTROID

    SECOND MOMENT OF AREA

    VOLUME MOMENTS

    CENTRE OF GRAVITY

    MOMENTS OF INERTIA Mass = Density × volume M = rV DEFINITION: I = m r2

    ( ) ∫∫∫ 2;; 22212 baxb

    axb

    axxydyVdxyyVdxyV ppp =-==

    ( ) ∫∫∫ 2;; 22212 bayb

    ayb

    ayxydxVdyxxVdyxV ppp =-==

    rdAArdAA ymxm == --

    xA

    rdA

    AA

    yA

    rdA

    AA

    b

    axmb

    aym ∫∫ ; ==== --

    dArIdArIb

    ayb

    ax ∫∫22 ; ==

    ∫∫ ;b

    a

    b

    a ymxmrdVVrdVV == --

    V

    rdV

    Vv

    yV

    rdV

    Vv

    x

    b

    axmb

    aym ∫∫ ; ==== --

  • (16030186) -6- T900(E)(N24)T

    Copyright reserved Please turn over

    GENERAL:

    CIRCULAR LAMINA

    CENTRE OF FLUID PRESSURE

    dVrdmrIb

    a

    b

    a ∫∫22 r==

    2

    21mrIz =

    dVrdmrIb

    a

    b

    a ∫∫22

    21

    21 r==

    dyxIdxyIb

    ayb

    ax ∫∫44

    21

    21 rprp ==

    ∫∫ 2b

    a

    b

    a

    rdA

    dAry =

    nn baxZ

    baxC

    baxB

    baxA

    baxxf

    )(...

    )()()()(

    32 ++

    ++

    ++

    +=

    +

    =)+()+(

    )(33 dcxbax

    xf3232 )()()()()( dcx

    Fdcx

    Edcx

    Dbax

    Cbax

    Bbax

    A+

    ++

    ++

    ++

    ++

    ++

    =+++ nedxcbxax

    xf))((

    )(2 nedx

    Zedx

    Cedx

    Bcbxax

    FAx)(

    ...)( 22 +

    +++

    ++

    +++

    +

    dxdxdyyA

    b

    ax ∫2

    12 ÷øö

    çèæ+= p

    dydydxyA

    c

    dx ∫2

    12 ÷÷ø

    öççè

    æ+= p

    dxdxdyxA

    b

    ay ò ÷øö

    çèæ+=

    212p

    dydydxxA

    c

    dy ò ÷÷øö

    ççè

    æ+=

    2

    12p

  • (16030186) -7- T900(E)(N24)T

    Copyright reserved

    dududy

    dudxyA

    u

    ux

    222

    12 ÷

    øö

    çèæ+÷

    øö

    çèæ= ò p

    dududy

    dudxxA

    u

    uy

    222

    12 ÷

    øö

    çèæ+÷

    øö

    çèæ= ò p

    dxdxdy1S

    2ba ÷ø

    öçèæ+= ∫

    dydydx1S

    2dc ÷

    ÷ø

    öççè

    æ+= ∫

    dududy

    dudxS

    222u1u ÷ø

    öçèæ+÷

    øö

    çèæ= ∫

    dxQeyeQPydxdy PdxPdx ∫ ∫∫∴ ==+

    211 ≠ rrBeAey xrxr 2+=

    21)( rrBxAeyrx =+=

    ibarbxBbxAey ax ±=+= ]sincos[

    dxd

    dxdy

    dd

    dxyd q

    q÷øö

    çèæ=2

    2


Recommended