+ All Categories
Home > Documents > Nanomaterials Nanomaterials Based Nanotechnology to Meet the …. N. Prasad - Nanomaterials...

Nanomaterials Nanomaterials Based Nanotechnology to Meet the …. N. Prasad - Nanomaterials...

Date post: 04-Feb-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
57
Lighting the Way to Lighting the Way to Nano Nano - - Technology through Innovation Technology through Innovation P.N.Prasad Nanomaterials Nanomaterials Based Nanotechnology to Based Nanotechnology to Meet the 21 Meet the 21 st st Century Technical Challenges Century Technical Challenges The Institute for Lasers, Photonics and Biophotonics The Institute for Lasers, Photonics and Biophotonics www.photonics.buffalo.edu
Transcript
  • ““Lighting the Way to Lighting the Way to NanoNano--Technology through InnovationTechnology through Innovation””

    P.N.Prasad

    NanomaterialsNanomaterials Based Nanotechnology toBased Nanotechnology toMeet the 21Meet the 21stst Century Technical ChallengesCentury Technical Challenges

    The Institute for Lasers, Photonics and Biophotonics The Institute for Lasers, Photonics and Biophotonics www.photonics.buffalo.edu

  • Global Government Funding in 2008:

    7.849 B$

    US: 1.821 B$

    China: 0.510 B$

    Russia: 1.076 B$ EU: 2.440 B$

    India: 0.050 B$

    Korea: 0.350 B$ Japan: 1.128 B$

    http://www.cientifica.eu/images/Whitepapers/nor-sample.pdf

    Restof World:0.510 B$

    NANOTECHNOLOGY: A GLOBAL PRIORITY

  • The Institute for Lasers, Photonics and BiophotonicsMultidisciplinary Frontier Research in Lasers, Photonics and Biophotonics

    Extensive Research Facility ($26 million)

    Education and Training Funded by NSF

    Industrial Collaboration : Co-development, Industrial training, advanced testing

    Technology Transfer : 5 spin off companies (Laser Photonics Technology, ACIS, Hybrid Technologies, NanoBiotix and Solexant Inc.)

    International collaboration : Joint research, Student exchange, Joint workshop

    The Institute for Lasers, Photonics and Biophotonics The Institute for Lasers, Photonics and Biophotonics www.photonics.buffalo.edu

    3-D Bar Code

    SOLEXANT CORPORATION

  • Subject of Global Priorities Subject of Global Priorities

    Energy

    Health Care

    ChemicalAnd

    BiodefenseEnvironment

    Information Technology

  • NANOMATERIALSDendrimers

    Prasad & Frechet

    DURINT

    eehν Block Copolymer Morphologies

    Thomas, M.I.T.

    Block-copolymers

    Bates

    Supramolecular

    assembly

    Self-assembly of dendrons

    Percec

    3 nm 7 nm3 nm 7 nm

    Nanoparticles: QDs

    Prasad

    np no

    ne

    ~ 200 nm

    ~ 10 nm

    Nanocomposites

    Prasad

    Liquid Crystal nanodroplets

    QDsPolymer

    Prasad & Suga

    Bridger-DNA

    2D periodic arrays

    Lineararrays

    DNAduplex

    Continuedarrays

    Continuedarrays

    =

    O

    O

    O

    O

    NN

    O

    OO

    O

    O

    O

    HN

    NH

    DNA-NH2

    DURNT KickDURNT Kick--Off Meeting at UB, Nov. 3rd 2001Off Meeting at UB, Nov. 3rd 2001Self-assembly on DNA template

    Self-assembly

  • Fuel CellsSolar Energy

    NanotechnologyNanotechnologyforfor

    EnergyEnergy

    Oil & Gas

    Bio-fuelsHydrogen

    Fuel

    ThermoelectricPower

    Solid StateBatteries

  • Nanotechnology for Solar Energy ConversionOur objective:

    Hybrid nanomaterials‐based next generation flexible 

    solar cells for broad band solar harvesting

    Buffalo TeamProfessor P. N. PrasadProfessor A.N. CartwrightProfessor D. WatsonDr. H.S. OhDr. J. SeoDr. S.J. KimDr. P. RodriguesMr. W.J. KimMr. D.H. Lee

    International CollaborationProfessor K.S. Lee, KoreaProfessor D.H. Choi, KoreaProfessor L. Akcelrud, BrazilProfessor J. Dutta, ThailandProfessor A. Ho, Hong KongProfessor, A. Gomes, Brazil

  • Nanotechnology for Efficient Harvesting of Solar EnergyNanotechnology for Efficient Harvesting of Solar Energy

    Current technologies need improvement in:• IR conversion• UV conversion

    Carrier multiplicationby UV absorption in quantum dots

    Bi-exciton

    Hot Exciton

    ħωc

    2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Nor

    mal

    ized

    Car

    rier E

    xtra

    ctio

    n

    [Ele

    ctro

    ns/ P

    hoto

    ns]

    Photon Energy/Eg

    Sample #0510073_3Absorption Peak: 1670nmApplied Bias: 3V

    S.J. Kim, P.N.Prasad et al, Appl. Phys. Lett. 92, 031107 (2008)

    Nanophotonics

    solution:3 nm 7 nm3 nm 7 nm

    QD with tunable absorption

    Photon Harvestingby IR absorbing QDs

    Facilitated Charge separationBy conjugation to SWNT

    Enhanced charge collection by high mobility organics

    Quantum dotsfor harvestingIR photons

    Cho, Prasad et al.,Adv. Mater. 19, 232 (2007)

  • Nanotechnology for UV Light HarvestingChallenges:

    Extracting charge generated by MEGShort (ps) exciton lifetime vs. long (ns) charge transfer

    timeSurface recombination by traps and defects on QDsControlling phonon dynamics and charge transferUV transparency of matrix for Quantum Dots (QDs)

    Our Approaches:

    Lateral patterning of QDs for perpendicular junction formation using t-BOC ligandsSurface modification to minimize defects and trapsFundamental investigation of charge transfer dynamics between QDs and other materials using spectroscopic studyLigand exchange to reduce charge transfer barriersIncorporation of Transparent Conducting Oxides

    τET

    = 0.84 μs

  • electroelectro

    dede

    λ

    = 1.34 μm

    ++++ N)(

    glassglassITOITO

    pentacene PbSe

    QD PVK

    Example of IR Example of IR PhotodetectionPhotodetection Enhancement :Enhancement :Case of Case of PentacenePentacene as a coas a co--constituentconstituent

    •• Soluble precursor to pentacene

    • Dramatic enhancement of photoconductive efficiencyFrom 3% to 8%

    Max EQE ~ 8% Max EQE ~ 8% in the IRin the IR

    Choudhury, et al., Appl. Phys. Lett. 89, 051109 (2006).

  • Infrared Sensitization for PhotovoltaicsChallenges

    :

    Photon harvesting in IR: Small absorption coefficient Need for a compatible low bandgap polymer matrixDevice Optimization: Low bandgap Low VocCreating environmentally friendly nanocrystals to

    replace PbSe and PbSPhoto-enhanced oxidation of QDs: Short cell lifetime

    Our Approaches

    :

    Plasmonic enhancement using metallic nanostructures and binary metal:semiconductor nanostructures

    increase absorption Low bandgap polymers for better band alignment to QD

    bandgapOptical Tuning of QDs combined with multi-junction solar

    cell structuresNew “Green” IR absorbers (e.g., Cu2S)Oxygen free processing combined with encapsulation

    PbSe

    QDs

    400 500 600 700 800 900 1000 1100 1200 1300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Abs

    orba

    nce

    (a.u

    .)

    Wavelength (nm)

    New IR absorbing nanoparticles

  • Optical and electrochemical properties of PCPDTBT

    NSN

    Br BrSS

    NSN

    n

    PCPDTBT(Blue solid)

    SS

    +

    Bu3Sn SnBu3

    Polymerization(Stille coupling)

    400 500 600 700 800 900

    0.0

    0.1

    0.2

    0.3

    Abs

    orba

    nce

    Wavelength (nm)

    PCPDTBT film

    Molecular weight Abs. max. HOMO LUMO Band gap

    Mn = 26 kDaMw = 50 kDa

    720 nm (film) -4.96 eV -3.60 eV

    1.36 eV (EC)1.53 eV (OP)

    NIR absorption

    Development of efficient NIR polymer;Synthesis of the low-band gap polymer (PCPDTBT)

    We can modify the polymer structures to obtain various polymer structures with tunable band gap(700-1000 nm)

    NX

    N

    NY

    N

    RmSS n

    R = Aromatic group (m=1,2) X = Y = S or Se

  • PCPDTBT:PCBM

    ITOPEDOT

    LiF/Al

    500 600 700 800 9000.0

    0.1

    0.2

    0.3

    0.4

    0.0

    0.1

    0.2

    0.3

    0.4

    Absorbance

    Spe

    ctra

    l res

    pons

    ivity

    (A/W

    )

    Wavelength (nm)

    PCPDTBT:PCBM (1:3.6)

    Photovoltaic performance (preliminary result)

    -0.2 0.0 0.2 0.4 0.6 0.8-10

    -8

    -6

    -4

    -2

    0

    2

    4

    Cur

    rent

    den

    sity

    (mA

    /cm

    2 )

    Voltage (V)

    AM 1.5G AM 1.5G through 715 nm long pass filter

    Voc Jsc FF PCE

    AM1.5G

    0.65 8.17 0.37 1.96

    Filter 0.62 2.69 0.40 0.68

    NIR contribution: ~34.6%

  • CdSe multipod CdTe QD PbSe QD CdSe QD

    Photo-patternable

    Nanocrystal

    Quantum Dots and Multipods

    Current-voltage curves (a) at r.t. for an array of CdTe

    NCs

    in the dark and during excitation with white light. MSM device structure (b) for photoconductivity measurement.

  • Typical structure  and components of DSSC

    1. Absorption

    2. Electron Injection

    3. Regeneration

    Reaction at Cathode

    Reactions at Anode

    4. Re‐reduction of electron donor

    Dye Sensitized Solar Cells (DSSC)

    Operation Cycle

    Counter Electrode

    TCO Coating (FTO)

    Pt

    Glass

    Glass

    Electrolyte

    Transparent Conducting Oxide Coating (FTO)

    Photo-Electrode

    Courtesy J. Dutta

  • Technical Challenges1.

    Light Harvesting by QDSSCs2.

    Electron injection between QDs

    and the metal oxide substrate; hole injection from electrolytes (or hole transporting layers) to QDs.

    3.

    Charge-collection efficiencies of QDSSCs

    and the problem of bulk electron transfer processes.

    4.

    Photostablity

    and Longevity of QDSSC.

    Our Strategy1.

    High surface loading of QDs; near IR absorbing nanocrystals; plasmonic

    enhancement of photoexcitation.

    2.

    Optimize interfacial charge transfer by surface functionalization

    and better interconnectvity.

    3.

    Improve electron transport by using nanowires and hole transport

    by using medium with high hole mobility.

    4.

    Surface functionalization

    and protective coating.

    Quantum Dot Sensitized Solar Cell Challenges

  • 0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6

    -0.020

    -0.015

    -0.010

    -0.005

    0.000

    Abs

    orba

    nce

    chan

    ge

    Time (s)

    CdS-S-(CH2)15-CO2-TiO2 CdS-S-(CH2)5-CO2-TiO2 CdS-S-(CH2)2-TiO2

    Distance‐dependent electron injection

    Optimizing Charge Transfer in Composite SystemsMaterials assembly: modification of ligands

    CdS(e)

    TiO2R

    O

    OH + TiO2RO

    O TiO2S R

    O

    OCdS(e)

    AHSHSHO

    H2O

    B

    Electron injection

    Dibbell, R.S.; Soja, G.R.; Hoth, R.M.; Watson, D.F. Langmuir 2007, 23, 3432-3439 Mann, J.R.; Watson, D.F. Langmuir 2007, 23, 10924-10928

    400 500 600 700 800

    -0.020

    -0.015

    -0.010

    -0.005

    0.000

    Abs

    orba

    nce

    chan

    ge

    Wavelength (nm)

    CdS CdS-S-(CH2)2-CO2H CdS-S-(CH2)2-CH3 + TiO2 CdS-S-(CH2)2-CO2-TiO2

    λpump

    = 415 nm (6-8 ns)τdelay

    = 160 ns1:1 THF:EtOH

    Nanosecond transient absorption spectra

    Dibbell, R.S.; Watson, D.F. J. Phys. Chem. C 2009, 113, 3139-3149

  • Nano‐wire

    CB

    VB

    Eg

    ee

    CdSQD

    Cu2

    SQD

    Direct and Fast transport electron in DSSC by using Nanowires

    Bandgap

    Alignment 

    for Carrier Cascade 

    QD‐sensitized nanowires: directional charge transport

    Collaboration: Prof. J. Dutta

    (Thailand), Prof. A. Ho (Hong Kong), Prof. A. Gomes (Brazil)

  • 400 450 500 550 600 650

    0.0

    0.5

    1.0

    1.5

    Abs

    orba

    nce

    Wavelength (nm)

    Novelty:•

    Heterolayers

    of QDs

    via in situ

    precipitation or

    surfactant‐mediated 

    self‐assemblyObjectives:•

    Enhanced light‐harvesting efficiency 

    (LHE)•

    Cascading interfacial electron transfer

    Heterolayer

    QD‐sensitized solar cells

    CdS‐TiO2

    : optimizing fabrication, LHE 400 450 500 550 600 6500.0

    0.5

    1.0

    1.5

    Abs

    orba

    nce

    Wavelength (nm)

    TiO2 TiO2-CdS(6) TiO2-CdS(6)-CdSe(4)

    In situ

    precipitation

    Heterolayer

    QD‐sensitized solar cells

    0.0 0.1 0.2 0.3 0.4 0.5 0.6-8

    -6

    -4

    -2

    0

    Cur

    rent

    den

    sity

    (mA

    cm

    -2)

    Voltage (V)

    TiO2 TiO2-CdS(6) TiO2-CdS(6)-CdSe(4)

    Jsc

    = ‐6.4 mA

    cm ‐2

    Voc = 0.522 VFF = 0.41PCE = 1.4%

  • Removal of CO2

    from Natural Gas

    High porous matrix(proprietary materials)

    Nanoparticle coated porous matrix

    Dip c

    oatin

    g

    CO2

    storage platform

    CO2

    Nanoparticle CO2

    scavenger(proprietary chemistry)

    CO2

    A Commercial Opportunity

  • Cancer

    Aging Obesity

    Addictions

    InfectiousDiseases

    Genetic Disorders

    Current and Future Health Care Challenges

  • Health and Wellness through Life Span to Increase the “Quality of Life”

    Disease PreventionEarly detection of disease Effective therapy (personalized)Post therapy/surgical assessmentCapacity to monitor therapeutic efficacy

    Nanotechnology solution:NANOMEDICINE

  • Tailoring of Nanoparticle Platform

    • Chemical “make-up” (inorganic; organic; hybrid)Single or multimodal imaging

    • Shape (dots; rods; multipods)Spectral characteristics (controlled excitation/ emission)

    • Size (1- 100 nm)Spectral characteristics, circulation control, biodistribution

    • Porosity controlLoading/release of payloads

    • Surface charge (positive, negative, neutral)Targeting agent coupling site, payload stability

    • Surface characteristics (hydrophilic; hydrophobic)circulation control; payload stability

    • Surface coating (organic; protein; nucleic acid)Biotargeting; circulation control; biodistribution; payload stability, controlled release

  • Nanotechnology-

    based In Vitro Diagnostics

    TORCH* Infections

    Malaria

    Influenza(Bird Flu)

    Tuberculosis

    HIV, HPV, Hepatitis B

    Meningitis

    *TORCH: Toxoplasmosis, Other agents (eg. Chicken pox, human parvovirus), Rubella, Cytomegaloviruse, Herpes simplex virus or HIV

    Collaboration with Center for Disease Control, Atlanta

    A Commercial

    Opportunity

  • Semiconductor nanoparticles

    with unique, tunable optical properties•

    Highly photostable•

    Narrow, symmetric emission spectra•

    Ease of bioconjugation•

    Ability for multiplexed analysis

    Quantum Dots: New generation Diagnostic probes

    lysine

    Size tunable emission following illumination with UV Light

    3 nm 7 nm3 nm 7 nm

    Y

    Y

    Y

    Y

    Antibody forbiorecognition PEG for enhanced

    colloidal stability

    J. Qian, P.N.Prasad et al, J. Phys. Chem. B. 2007, 111 (25), 6969.

    ApplicationsIn vitro ImagingIn-vitro DiagnosticsTargeted Drug deliveryTheranostics

  • InIn--VitroVitro Imaging Using Imaging Using NanoemittersNanoemitters

    for Early Detection of Diseasesfor Early Detection of DiseasesUsing Cellular SignaturesUsing Cellular Signatures

    Technical Challenges Our Approach

    Optical TransparencyNear-IR emitting Nanoparticles

    Surface Functionalization

    for aqueous dispersions, while retaining high quantum yield

    Core-Shell Structures, Surface functionalization

    and coating

    CdTe

    ZnTe Cysteine

    Reduction of Cellular Toxicity

    Surface Functionalization

    and Biocompatible Coating

    Targeting group

    PEG group

    CdTe ZnTe

    Process Control for Uniformity and Scalability, Green Chemistry

    New Aqueous SynthesisCadmiumPrecursor

    TelluriumPrecusor

    Stabilizing ligand

    ↑100°C

  • In Vitro NIR Imaging using CdTe

    QDs

    In vivo

    NIR-NIR optical bioimaging data: Ex = 975 nm, Em = 800 nm

    In Vitro NIR Imaging using up‐conversion nanoparticles

    Confocal microscopy 

    image of live cancer cells 

    treated with NIR QDs. 

  • Immunomicrobeads

    captureanalytes

    (soluble proteins)

    Flow Flow CytometryCytometry: Rapid, multiplexed detection of trace amounts : Rapid, multiplexed detection of trace amounts of diseased cells/ protein biomarkers from biological samplesof diseased cells/ protein biomarkers from biological samples

    (2) Lasers illuminate the dyes generating fluorescence

    (1) Beads travel in a very narrow stream (thousands per sec) (4) Results are analyzed

    (3) Multiple Signals are collected/detected/digitized

    Microbeads

    coated withcapture antibody

    Bead A

    Bead B

    Bead C

    QD-detection antibodieslabel the capture analytes

    A Commercial

    Opportunity

  • Technical challengesTechnical challengesEnhanced tissue penetration by light

    Delivery across biological barriers (e.g. blood-brain barrier, liver, lung, etc.) andreduced nanotoxicity

    and inflammatory response

    Biodegradation and excretion of nanoparticles

    Our strategiesOur strategies

    Multimodal Imaging (e.g. PET, SPECT/CT, MRI and luminescence)

    Reduction of hydrodynamic size of nanoparticles; modification of surface of nanoparticles

    with long circulation “biocompatible”

    polymer coating; conjugation of targeting biomolecules

    to the nanoparticles.

    Engineering biocompatible, stable, non-heavy metal based, and PEGylated

    nanoparticles

    (e.g. silicon).

    Challenges and Solutions for In Vivo Nanotheranostics

    Use of light in the biological window of optical transparency (~650 –

    900 nm)

    Molecular cellular morphological imaging and analysis

  • Near infrared phosphorescent polymeric nanomicelles: efficient optical probes for in vivo tumor imaging and detection

  • Biocompatible Silicon Quantum Dots as Biological Fluorescent Labels

    Silicon nanoparticlesproduced by Laser-Driven

    Pyrolysis

    Process

    Etching with

    HF/HNO3

    Etching with

    HF/HNO3

    Etching with

    HF/HNO3

    Hydrogen terminated

    Silicon particles

    Diff

    eren

    t co l

    ors

    of p

    hoto

    l um

    ines

    cenc

    e

    Erogbogbo, Prasad et al. ACS Nano

    2008, 2(5), 873-876.

    Si only

    Si-RGD

    Erogbogbo, Prasad et al. Under review in PNAS (USA). 2009

    Tumor targeting with silicon NPs

  • ORMOSIL based multimodal nanoparticle platform

  • In-Vivo DiagnosticsMultimodal Nanoplatforms

    for Medical Imaging

    PET124I labeled-ORMOSIL

    MRIGd-doped Nanophosphor

    OpticalGd-doped Nanophosphor

    M. Nyk, P.N.Prasad et al, Nano Letters, 2008, 8(11):3834; R. Kumar, P.N.Prasad et al. Avd. Func. Mater. (In Press, 2008)

    SPECT/CT125I labeled-ORMOSIL

  • Nature Defense Mechanisms

    Biological Barriers

    SkinProtects against

    environmental insult and microbial invasion

    Mucosal barriersProtects surfaces against

    environmental insults (chemical, bacterial and

    particles)

    Blood Brain BarrierProtects brain by

    regulating the entrance of chemical and micro/nano

    materials

    Reticulo-Endothelial Barrier (RES)

    Captures foreign materials for removal by liver and spleen

  • Time dependent liver clearance of PEGylated

    ORMOSIL nanoparticles

    Liver

    AbdominalCavity

    Day 0 Day 3 Day 7

    Day 7(Dissected mouse)

    Liver

    Intestine

    Stomach

    Liver

    Spleen

    Dissected Mouse

    Day 0 Day 7

    Strategies for overcoming RES barrier

    Encapsulating molecules within ultrafine nanoparticles

    (diameter below 50 nm)

    Modulation of surface charge of nanoparticles: Neutral or moderately negative surface charge favors RES escape

    Coating nanoparticle surface with PEG or any other inert polymer

  • UPPER LAYERBLOOD END

    DAY1 DAY2 DAY3 DAY4

    DAY1 DAY2 DAY3 DAY4

    LOWER LAYERBRAIN END

    Gold nanorod

    (GNR) –

    fluorescent siRNA

    Nanoplex:Optical tracking of time dependent transport across BBB

    Confocal images showing enhanced staining of cells with time,thus indicating BBB transport

  • QR-RGD

    QR only

    In vivo diagnostics: Early detection of cancerTumor targeted delivery of RDG peptide conjugated QRs

    following systemic injection

    Tumor

    Tumor

    Yong, Prasad et al. Under review in ACS Applied Materials and Interfaces. 2009

  • PEGylatedPhospholipid molecule

    Biodegradable PLGA molecule

    Doxorubicin

    Biodegradable Nanoparticles

    in Imaging and Drug delivery

  • Cancer nanotechnologyTargeted delivery ●

    Controlled release ●

    Multimodal therapy ●

    Real time monitoring

    With Uttam

    Sinha, M.D.Univ. of Southern California

    Gene TherapyHead & Neck, Lung cancer

    Gold NanorodGold Nanorod

    With McMaster Univ.

    Neutron capture therapyBrain, prostate cancer

    NaYF4: Tm/GdNaYF4: Tm/Gd

    With Anirban

    Maitra, M.DJohns Hopkins Univ. Medicine

    ChemotherapyPancreatic, Prostate cancer

    lysine

    YY

    YYlysine

    YY

    YYlysinelysine

    YY

    YYlysine

    YY

    YYlysine

    YY

    YYlysinelysine

    YY

    YY

    Magnetic therapy

    US patent No. 6,514,481

    Nanoclinic

    Breast & Oral cancer

    With Ravi K Pandey, Ph.D.Roswell Park Cancer Institute

    PSPSSi

    O

    OO

    I

    SiO OI

    ORMOSIL nanoparticle

    SiO

    OO I

    PSPSSi

    O

    OO

    I

    SiO OI

    ORMOSIL nanoparticle

    SiO

    OO I

    Photodynamic therapyCervical, skin cancer

  • 3 product familiesnanoTherapeutics30nm silica based Source Indication

    nanoMag

    nanoPDT

    nanoXRay

    • MRI

    • Lasers

    • X-Ray

    Local treatment forsuperficial & cavity cancer

    Local treatmentin the irradiation area

    Local treatment and potentially whole body

    A new dimension in cancer care

    Paris, France http://www.nanobiotix.com/

  • Nanoplex

    Gene delivery using nanoparticles

    •Electrostatic gene condensation•Efficient cellular entry•Non-toxicity•High gene expression/silencing

    Nucleus

    Endosome

    Protein

    Nanoplex

    Nucleus

    Endosome

    Protein

    Nanoplex

    Gene Augmentation e.g. CFTR gene in Cystic Fibrosis Gene Silencing e.g. Oncogene in Cancer

    Nucleus

    Endosome

    Protein

    Nanoplex

    Nucleus

    Endosome

    Protein

    Nanoplex

  • Nanoparticle mediated gene silencing: Implications in drug addiction therapy

    Gene silencing efficiency of gold nanorod(GNR)-siRNA

    nanoplex

    is higher than that obtained using commercial agent (siPORT)

    0

    20

    40

    60

    80

    100

    siPROT-neg control siRNA(200pM)

    GNR 640-DARPP-32 siRNA(200pM)

    siPROT-positive controlDARPP-32 siRNA (200pM)

    % C

    hang

    e in

    DA

    RPP

    -32

    expr

    essi

    on

    A.C. Bonoiu, P.N. Prasad, et al. Submitted to Proceedings of The National Academy of Sciences of USA, (2008) Collaboration with Stanley M Schwartz, M.D., Buffalo General Hospital

  • Slow Release of active principles

    For Maximizing Efficacy

    Nanofibers

    for ImprovedTopical Formulations

    Nanotechnology for Cosmetics Nanocosmetics

    *

    *US nanocosmetic

    market in 2001 19 $B was extended at 58 $B in 2008

    Deep Skin Penetration of

    Anti-aging nanocosmetics

    Nano-stabilized Botanicals Enabling

    New Class of Cosmaceuticals

    Nanoencapsulated

    ScentsFor Long Lasting perfume

  • NanotechnologyFor

    Information

    Communication:

    Reconfigurable Photonic

    Crystals

    3D Plasmonic

    Guiding and Routing

    Network

    Displays(Organic Displays:

    OLED, PLED)Storage:•

    3D Two-Photon Storage•

    Holographic Storage

    Processing:•

    Electro-optic Processing Using Supramolecular

    Structures

    and Nanocomposites

    Electrically and Optically Switchable

    Photonic Crystals

  • Nanotechnologyfor

    Environment

    Rapid in-field and remotemonitoring

    Nanoporous

    membranetechnology for

    decontaminationand purification

    Nanoparticle basedcapture platform

    Nanostructured

    sensorand device platforms

  • Nanotechnologyfor

    Chem/Bio Defense

    Rapid in-field and remote detection

    Nanomedicine

    based

    rapid medical responseNanostructured

    capture anddetoxification platform

    Rapid disseminationof information

    Nanostructuredsensor platforms

  • Fundamental and Technical Challenges for Nanotechnology

    Fundamental Understanding of Physics at Nanoscale

    (Electronic, Photonic, Magnetic)

    New Physical and Chemical Processes

    Manipulation of Excitation & Dynamics on Nanoscale

    Control of Interfacial Interactions

    Device Integration of Nanostructures

    Nano-toxicity

  • NanotechnologyNanotechnology

    • A new Multidisciplinary Scientific Research Frontier

    • Ripe for Technological Innovation and Commercial Opportunities

    • Destined to create Immense Societal Impact

  • Acknowledgements

    Prof. A.CartwrightDr. K.TramposchDr. E.J. BergeyDr. G.S.HeDr. H. PudavarDr. K.T. YongDr. T. OhulchanskyyDr. I. RoyDr. S. KimMr. J. QianDr. H. DingDr. A. KachynskiDr. A. KuzminDr. A. PlissDr. A. BonoiuDr. D. BharaliDr. R.KumarDr. S. MahajanDr. J.W. SeoMr. S.J. KimMr. S.S. Kim

    AFSOR (Dr. Charles Lee)National Cancer InstituteNational Science FoundationAFRL (Dr. Augustine Urbas)OISHEI FOUNDATION

    Outside Collaborators

    Prof. R. PandeyProf. A. OseroffProf. M. StachowiakProf. K.S. LeeProf. M. SamocProf. P. KnightDr. P. WallaceDr. A. MaitraDr. S. SchwartzDr. U. SinhaProf. J. DuttaProf. A. Ho Prof. A. Gomes

    The Institute for Lasers, Photonics and Biophotonics The Institute for Lasers, Photonics and Biophotonics www.photonics.buffalo.edu

  • ““Lighting the Way to Lighting the Way to NanoNano--Technology through InnovationTechnology through Innovation””

    P.N.Prasad

    NanomaterialsNanomaterials Based Nanotechnology toBased Nanotechnology toMeet the 21Meet the 21stst Century Technical ChallengesCentury Technical Challenges

    The Institute for Lasers, Photonics and Biophotonics The Institute for Lasers, Photonics and Biophotonics www.photonics.buffalo.edu

  • Theory: multiscale

    modeling (molecular, nanoscopic, bulk )

    Synthesis and materials characterization•

    Synthesis and surface functionalization

    of nanoparticles•

    Synthesis of functional organic monomers, oligomers, and polymers•

    Assembly of nanoscopic

    components into hybrid materials

    Comprehensive characterization of relevant physical and chemical

    processes•

    Characterization of materials and surfaces•

    Spectroscopy on multiple timescales•

    Femtosecond-to-picosecond: electron injection dynamics•

    Nanosecond-to-microsecond: electron injection yields, charge-

    separated-state lifetimes

    Device fabrication & characterization:

    I-V measurements, short-circuit photocurrent action spectra

    Nanotechnology for Solar Energy Conversion

    Our capabilities:

  • A NEW APPROACH:Optical IR to visible up-conversion in RE nanoparticles

    for solar cells

    500 750 1000 1250 1500 1750 20000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    [A.U

    ]

    Wavelength [nm]

    Solar Spectrum Polymer absorption

    (P3HT/PCBM)

    Reusable Energy by up-convertgin

    Device Structure usingReflection Hologram

    hνhν’

    Photovoltaic Cell

    TPA Up‐Converting Layer

    Reflection Hologram

    Visible Abs. & IR Trans.

    Up‐converting using IR

    Reflection for IR & hν’

    Upconverting

    nanoparticle layer

    980 nm

    Excitation

    Yb,Tm:NaYF4Yb,Er:NaYF4

    ChloroformWater

    50 nm

    Up-converting nanoparticles

  • Engineering Fabrication and Integration of Nanostructures

    A Commercial Opportunity

    Photopatterning of Nanoparticles (Prasad, Propriety Technology)

    Glass substrate Spin casting of NCs Photopatterning the film through a mask

    UV

    Develop the patterned filmUsing proper solvent

    Photomask

    NC

    NC

    Photopatterned

    QDsGlass substrate Spin casting the NCs Photopatterning

    the film Develop the patterned film

    W.J. Kim, P.N. Prasad et al, Nano Lett., 2008, 8, p. 3262

    UV

    Photomask

    100 μm 100 μm

    Near IR

    Up-conversion

    Security Card

    Security Application

  • Collagen

    Gold nanorods/MMP’s

    inhibitors

    Collagen Type IIIBasal expression

    Gold nanorods/siRNA

    Castaneda L. et all.2008 Prasad et all. 2009 unpublished data

    Gold nanoparticles/peptides

    Personalized skin treatment with biocompatibile materials

    Collagen Cross-Linking with Au Nanoparticles

    Collagen Type IIIRecovered

  • Nanocosmetics present and future

    •Skin Surface protection

    • Skin surface penetrationRehydratation

    /remodelation

    •Skin treatment deep dermal/transdermal

    deliver of therapeutic agents

    The skin model ‘in vivo’In vitro skin model for testing

    nanocosmetics

    “Lighting the Way to Nano-Technology through Innovation”Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Nanotechnology for Efficient Harvesting of Solar EnergySlide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Nanoparticle mediated gene silencing:�Implications in drug addiction therapySlide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51“Lighting the Way to Nano-Technology through Innovation”Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57


Recommended