+ All Categories
Home > Documents > Nanoscale Materials and Devices for Energy Transport and

Nanoscale Materials and Devices for Energy Transport and

Date post: 03-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
83
Nanoscale Transport Research Group Nanoscale Materials and Devices for Enhanced Energy Transport and Conversion An Overview of the Nanoscale Transport Research Group at Purdue
Transcript
Fisher Group OverviewNanoscale Materials and Devices for  Enhanced Energy Transport and Conversion 
An Overview of the  Nanoscale Transport Research Group at Purdue
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 2
• My Background – Born and raised in Aurora, IL  USA
– BS (1991) & PhD (1998), Cornell University, Mechanical Eng. • 19911993, Design Engineer, Motorola Automotive Group
– 19982002, Assistant Professor, Vanderbilt University
– 2002present, Associate Professor and now Professor, Purdue
– JanMay 2008, Visiting Professor, JNCASR
• Special Thanks – Prof. C.N.R. Rao and Prof. G.U. Kulkarni for agreeing to my visit 
and for so kindly making arrangements for me, my family, and  my student (Kyle Smith)
– Faculty and staff of JNCASR for such a warm welcome
– Dr. Pankaj Sharma (Purdue, Discovery Park) for coordinating  activities with JNCASR and other Indian institutions
Background & Acknowledgments
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 3
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 4
Computer Power and Cooling Trends
500
1000
1500
2000
2500
3000
0 PC tower Mini tower μ−tower Slim line Small pc
Sy st em
 V ol um
e  ( c ub
Th er m al  B ud
ge t (
 V ol um
100
250
FM )
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 5
Thermal Contact Resistance in Electronics
• Resistance across a Thermal Interface Material (TIM) comprises a significant  fraction of the total thermal budget in modern microprocessor packages
• Substantial technological progress has been achieved to date in improving  conductivity and process control
• Polymer, hybrid and solder TIM’s have helped accomplish ~10x reduction in  resistance (from 100 mm2K/W to 10 mm2K/W) in the past decade
• Accompanied by major metrology improvements
• nanoTIMs being actively explored to move toward 1 mm2K/W
TIMs
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 6
What is Contact Resistance?
• Contact resistance is resistance to heat transfer across a real interface.
• The interface poses a resistance to the heat flow, which is seen as a temperature drop across the interface.
Source: Williamson & Majumdar, 1992
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 7
Factors that Affect Thermal Contact Resistance • Contact geometry
– Surface roughness and waviness – Flatness of contact
• Thermal/physical properties – Contacting members – Gas gap (or filler material)
• Applied pressure – Elastic or plastic surface asperity 
deformation • Interface temperature
contact spots
Gas gap
filler
filler
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 8
• Hence, total is the sum of the solid spot and the interstitial gap conductances.
Heat Flow Through a Real Interface T2
T1 > T2
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 9
• Thermal contact conductance (TCC) is the ratio of heat flux to the  temperature drop
• Thermal contact resistance (TCR) is just the inverse of TCC,  therefore
• Alternate definition of TCR
Thermal Contact  Conductance / Resistance
Δ Δ = = =
= = Δ Δ
Note that contact resistance at a joint is not physical property of the interface.
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 10
• CNTs are highly conductive – Room temperature thermal conductivity ≈3000 W/mK (8X  copper, Kim et al. 2001)
– Ballistic electron conductor, R =6500 Ω, independent of  length up to ~0.1 μm at RT (Frank et al., 1998)
• CNTs have high aspect ratios – Length more than 1000 x diameter
• CNTs are mechanically resilient – Young’s modulus ~ 1 TPa  (5X steel, Treacy et al. 1996)
• CNTs have strong van der Waals interactions – Increased nanotubesubstrate contact area (Hertel et al.,  1998)
• CNTs are chemically stable in a large temperature  range (in air up to ≈ 450 °C)
Carbon Nanotube (CNT) Interfaces With Faculty: X. Xu, S. Garimella Students: B. Cola, S. Aradhya
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 11
Microwave Plasma CVD
[email protected] Microwave Generator
Dual Wavelength Pyrometer
75 mm of Stage  Translation 
Seki Technotron Corp. AX5200 Series
Process gases: H2 – 1000cm3/min CH4 10cm3/min N2 – 10cm3/min Other – O2, Ar
Substrate Bias: 0 – 600 V; 0 – 1.7 A
Stage Temperature  Control with Heating
up to 1000oC
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 12
• silicon/SiO2
• copper • quartz • sapphire • diamond • stainless steel • iron • nickel • silicon carbide • aluminum • titanium • and more…
Some Growth Substrates for CNT Arrays 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 13
• Full multiwalled CNT coverage  over the sample (macroscopic)
• Uniform CNT layer thickness for  each array  (array heights up to 100μm)
• Strong CNTsubstrate bonding
• Dense and vertically oriented  CNT ‘forest’ – Density ≈ several hundred million to 
more than one billion CNTs/mm2
– MWCNT diameters can range from  5 to 90 nm 
General Characteristics of CNT Arrays Broken stems of CNTs after scratching 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 14
CNT Array Thermal and Electrical Interfaces
Solid 1
Solid 2
Solid 1
Solid 2
Solid 1
Solid 2
Cu foil
CNT/foil interface
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 15
Thermal Interface Results:  Summary
References:
B.A. Cola, J. Xu, C. Cheng, H.  Hu, X. Xu, and T.S. Fisher, J.  Appl. Phys. 101, 054313  (2007).
B.A. Cola, X. Xu, and T.S.  Fisher, Appl. Phys. Lett. 90,  093513 (2007).
J. Xu and T.S. Fisher, Int. J.  Heat Mass Trans. 49, 1658  (2006).
J. Xu, T.S. Fisher, IEEE Trans.  CPT, 29, 261 (2006). 
silicon/copper substrates at room temperature
Stateoftheart commercial materials (nonbonded interfaces)
Projected performance range 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 16
Resolving Component Resistances:  OneSided
• Resolution enabled by  photoacoustic measurement
B.A. Cola et al., J. Appl. Phys. 101, 054313 (2007)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 17
Results: Twosided CNT Interfaces silicon/copper substrates at room temperature
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 18
Resolving Component Resistances:  TwoSided
• Resolution enabled by PA measurement B.A. Cola et al., J. Appl. Phys. 101, 054313 (2007)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 19
Recently measured, nonlinear bulk modulus, B, of CNF arrays 
predicted well by adapted wool theory 
Contact Conductance Model: CNT Array Mechanics
CNT arrays deform similarly to wool fibers C.M. Van Wyk, J. Textile Inst. 37, T285 (1946)
c – constant that depends on  CNT orientation, quality, aspect  ratio, and packing density
E – Young’s modulus
t – CNT array height
A – substrate area
= −
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 20
aluminum
silicon
aluminumaluminum
siliconsilicon
force
silicon
aluminum
siliconsilicon
aluminumaluminum
force
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 21
Contact Conductance Model for CNT Array  Interfaces
CNT growth substrate (Si)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 22
• For steady, continuum heat flow, the critical characteristics are  thermal conductivity (k) and contact spot size (a)
• Thermal conductivity can be expressed as k =  C vg λ/3, where – C is the volumetric heat capacity of the energy carriers
– vg is the group velocity of the energy carriers
– λ is the mean free path of the  energy carriers
Diffusive Heat Flow
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 23
• When the carrier mean free path becomes comparable to the contact spot  size, subcontinuum effects become significant
• As a result, the Knudsen number (Kn = λ/a) becomes an important parameter,  in addition to k and a alone
Ballistic Heat Flow
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 24
Phonon Ballistic Transport 
• Contact size a < λ, phonon  ballistic transport – λ, phonon mean free path
– vg, frequency independent  phonon group velocity
– Cv, Debye volumetric specific  heat
– Γ, average transmissivity
4 2221211121 gvgv vTCvTC
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 25
Thermal Constriction  Resistance:  Total
as PBT 0R → and as expected,
Total diffusive PBT≈ +R R R
210Kn ∼if (typical of nanocontacts)
then 2
:
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 26
Preliminary Results
Points: Experimental Data
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 27
Electrical CNT Interfaces to Thermoelectrics
0
5
10
15
20
25
30
35
R es
is ta
nc e
TE film
MWCNT array
Faculty: T. Sands Student: H. Mishra
Mishra et al., MRS Fall Meeting (2007)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 28
Boiling chamber
OxygenFree  Copper Block
Faculty: Issam Mudawar Students: Sebastine Ujereh,  Vikash Khanikar
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 29
Patterned CNT Arrays on Si
12.7
12.7
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 30
Pool Boiling from an Si Substrate with FC72
Δ Tsat (oC) 0 20 40 60
0
5
10
15
20
CHF
Incipience
S. Ujereh Jr., T.S. Fisher, I. Mudawar,  Int. J. Heat Mass. Transfer, 50, 4023 (2007).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 31
heated substrate
vapor embryo
heated substrate
growing bubble
ΔTsat = 9.8 K
q” = 1.3 W/cm2
ΔTsat = 26.5 K
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 32
Ionic Winds for Electronics Cooling
• Macroscale corona discharges require high voltages (>2 kV)  • Field emission in microgaps require much lower voltage (~100V) 
– Nanostructured carbon field enhancement shows potential of lowering  voltage to ~10V→ suitable for microelectronics
emitted electrons
eeee e
ionized air
upstream of ionic wind
wind
~10μm
D.B. Go et al., J. Appl. Phys. 102 053302 (2007)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 33
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 34
SWCNT Transistors ftp://download.intel.com/technology/silicon/
Javey et al., Nano Lett, 5, 2005
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 35
• Placement and addressability
• In situ ohmic contact metallization • Lithography (photo or electron beam)
• Focused ion beam
Challenges in SWCNT Device Fabrication
Kong, J., et al. Appl. Phys. A 69, 305308 (1999) Choi, W.B., et al. Adv. Func. Mat. 13, 8084 (2003)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 36
Templated Vertical Growth of SWCNT Devices
• Start with Fe (SWCNT catalyst) embedded in Al film  stack
SWCNT  Catalyst (Fe)
Faculty: Tim Sands, David Janes Students: Aaron Franklin, Matt Maschmann
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 37
Templated Vertical Growth of SWCNT Devices
• Film anodized to create porous anodic alumina (PAA),  exposing Fe catalyst within pores
PAA
A. D. Franklin, et al. J. Vac. Sci. Technol. B 25, 343 (2007) 
Hydrogen  plasma  treatment  penetrates  alumina  barrier,  exposing Ti
Si
Ti
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 38
Templated Vertical Growth of SWCNT Devices
• SWCNTs grown from Fe catalyst using 
microwave plasmaenhanced CVD
Maschmann, et al. Nanotechnology 17, 3925 (2006) 
Si
Ti
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 39
• Pd electrodeposited into pores, contacting SWCNTs  with Pd nanowires
Contacting SWCNTs in situ
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 40
Gating/Device Approach
Selective etchback of Al2O3 and deposition of gate  metal to coat dielectric pillars
Gate metal etch to define channel length Passivation layer deposition (Al2O3), planarization  and top contact definition
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 41
Interesting ByProduct: Pd Nanoclusters on SWCNTs
• Pd nanowires contact SWCNTs, adding them to the cathodic electrode during  electrodeposition
• Defect sites have been shown to serve as nucleation points for contact metals  Fan, Y., et al. Nat. Mat. (2005)
200nm 150nm
Faculty: K.S. Choi
A.D. Franklin et al., J Phys Chem C 111, 13756 (2007).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 42
Addressable ‘Fields’ of Templated SWCNTs
Franklin et al., Appl. Phys Lett, 92 013122 (2008)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 43
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 44
Ligand (Biotin-SH)
Pd crystals on CNTs
Bright Field Image Fluorescence Image
Manuscript in preparation 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 45
Biosensing with MWCNT Arrays
ti on
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 46
GlucoseGlucose Oxidase Reaction • Three electrode cell
– Ag/AgCl electrode  (reference)
– Platinum electrode  (counter)
– CNT/CNF substrate  (working)
• Cyclic Voltammetry: Initial  potential 0V, switching  potential 800mV, final 0V
• Scan rate of 100mV/sec
0.0
1.0x10-8
2.0x10-8
3.0x10-8
4.0x10-8
C ur
re nt
p er
C N
T A
re a
[A /m
m 2 ]
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 47
• Reduction of sensor size and detection time
• Elimination of target labeling/signal amplification and  complicated/expensive fabrication protocols
• Optimization of CNT array sensors – Correlation of growth conditions to nanostructure
– Influence of quality and morphology of CNTs/CNFs on degree  of enzyme adsorption • More defect sites  better adsorption of enzyme?
– Biofunctionalization of CNTs for different assays
– Effects of tethered vs. immobilized receptors
Important Issues in Biosensing with  CNT Arrays
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 48
• Motivation – Measuring the temperature is 
nanostructures is extremely difficult,  yet critically important to many  applications
– Noise thermometry offers the  possibility of a selfcalibrating,  primary thermometer
• Applications – Atomicscale thermal interface 
resistances
– Convective boiling processes
( ), 2 coth (7) 2 θ
+ ∞
= +
Modification to include selfheating  (T  QRθ + T∞)
Student: Bob Sayer Manuscript in review
PAA
SWCNT Pd
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 49
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 50
• Motivation – More efficient atomistic  simulation tools are needed to  address problems at practical  scales
– Include effects of bulk contacts  through selfenergy matrices
– Suitable for ballistic transport • Low temperature and/or very small  dimensions (~10 nm)
• Required inputs – Equilibrium atomic positions  – Interatomic potentials – Contact temperatures
Atomistic Green’s Function (AGF)  Modeling of Phonon Transport
Faculty: Jayathi Murthy, Natalio Mingo (UCSC) Students: Zhen Huang, Dhruv Singh
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 51
The AGF Algorithm
Calculate device G and phonon transmission (Ξ)
Integrate (Ξ) over phonon frequencies and k|| to obtain the thermal conductance
Uses decimation algorithm
interatomic potential parameters
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 52
Results for Simple Atomic Chains
Homogeneous chain density of states Homogeneous vs heterogeneous
“heavy” device
“light” device
W. Zhang, T.S. Fisher, N. Mingo, Numerical Heat Transfer: Part B, 51, 333 (2007). 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 53
Contacted Si Nanowire
W. Zhang, N. Mingo, T.S. Fisher, Phys Rev B,  76, 195429 (2007).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 54
Effect of Diameter
Thin film results
W. Zhang, N. Mingo, T.S. Fisher, Phys Rev B, 76, 195429 (2007).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 55
Electron Green’s Functions: Modeling of the  Nottingham Effect
Electron Emission: Electrons cross over vacuum barrier
(thermionic emission) or tunnel  through barrier (field emission)
Cooling Mechanism: Emitting electrons carry net energy  from emitter to collector (heat sink)
EF
rc e
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 56
Cooling by Vacuum Electron Emission? Compare to Thermoelectric Refrigeration • Theory indicates possibility of large local cooling  rates ( > 100 W/cm2)
• No lattice thermal conductivity 
• Vacuum gap must be small 
• Emission area must be large enough to produce  necessary current
H ea
Heat flow
G. D. Mahan, J. Appl. Phys. 76, 4362 (1994). Y. Hishinuma, T. H. Geballe, B.Y. Moyzhes and T.W. Kenny, Appl. Phys.  Lett. 78, 2572 (2001); J. Appl. Phys. 94, 4690 (2003). N. M. Miskovsky and P. H. Cutler, Appl. Phys. Lett., 75, 2147 (1999). T. S. Fisher and D. G. Walker, J. Heat Tran. 124, 954 (2002).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 57
NonEquilibrium Green’s Function Model
• Vacuum discretized with a oneband  effective mass model 
• Energy levels described by a  Hamiltonian matrix [H]
• Coupling at interfaces described by  selfenergy matrices [Σi]
1, 2i i i ii + = Γ = Σ − Σ
[ ] 1 21
Cathode
Theory based on work of S. Datta: S. Datta. Electronic Transport in  Mesoscopic Systems (Cambridge  University Press, 1995); S. Datta.  Superlattices and Microstructures  28, 253 (2000).
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 58
• Not practical in a cooling device
• Need a lower work function, φ
Flat Plate Cooling
• NEGF simulation yields accurate  results
• WKB approximation overpredicts cooling
• Maximum cooling density ≈ 80 W/cm2
• But, COP ~ 0.001, Electronic  Coefficient of Performance (cooling  power to power input ratio)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 59
Effect of Gap Spacing
COP = Electronic Coefficient of Performance (ratio of cooling power to electrical power input)
Westover and Fisher, Phys. Rev. B, accepted
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 60
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 61
Thermionic Power Generation
• Alluring direct power  generation scheme because  vacuum separation minimizes  parasitic thermal losses.
• At a surface, excited electrons  may escape the material if  their energy exceeds a  surface potential barrier, or  work function φ. 
• Additional potential barriers  exist due to space charge  and/or generated voltage, qV0 = μ2 μ1. For these cases, the  sum of all such barriers and  the work function is denoted  by Φ. 
Electron motive diagram for a thermionic  power generation diode, with T1 > T2. 
Students: Tyler Westover, Vance Robinson Faculty: Ron Reifenberger, Chuck Lukehart (Vanderbilt)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 62
0
0.2
0.4
0.6
0.8
1
Energy (eV)
In te
ns ity
(a . u
600C w/ K 700C w/ K 750 C w/o K
Thermionic Electron Energy Distributions from  Nanomaterials
• Experiments on arrays of graphitic carbon nanofibers with  and without potassium intercalation
intercalation
Robinson et al., Appl. Phys. Lett., 87, 061501 (2005) Li et al., Nanotechnology, 18, 325606 (2007)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 63
• Basic (highly idealized) theory  predicts ultrahigh efficiency (Ross,  Nozik, J Appl Phys 53 3813 (1982))
• Concentrated solar irradiation  provides some photoemission,  perhaps amplified by CNTinduced  field concentration and low  scattering rates in CNTs
• Solar energy that does not directly  produce photoemission heats the  CNT absorber, promoting thermionic  emission 
• New modeling tools are needed that  incorporate quantum considerations  and accurate electronphonon  scattering models to explain  measured performance
Concept for Solar Thermionics
Concentrated simulated solar irradiation from LS1000 and
parabolic concentrator
Water-cooled anode
Coolant water
Possible alkali metal source
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 64
Subjects Heat, mass and charge transfer 
at small scales
Transfer 
CNTbased  Thermal and Bio 
Sensors
CNTbased  Electron 
Emission for  Energy 
Chemical Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 65
• Specific energy: 6 wt% H2 or 2 kWh/kg  Energy density: 0.045kgH2/L or 1.5 kWh/L  Cost: $133/kgH2 or $4/kWh
• These are for the system: fuel + tank + BOP • Storage system for a compact car
– Hydrogen: 5.6 kg – System weight: 93.3 kg – System volume: 124.4 liters – Cost: $745  – Fueling rate: 1.5 to 2.0 kg H2/min
US DoE 2010 Targets for Hydrogen Storage
Source: U.S. Department of Energy, Office  of Basic Energy Sciences, 2003, Basic  Research Needs for the Hydrogen Economy,  http://www.sc.doe.gov/bes/hydrogen.pdf
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 66
• Compressed gas and liquid hydrogen – 700 bar, 300K: 143.5 liters 
– LH2: 78.9 liters (fuel only)
• Materialbased storage (adsorption or absorption) – Hydrogen itself can occupy much less space
– Adds extra volume and weight from additional chemical  species
– Complex system: Useful hydrogen + material + tank + thermal  management subsystem + BOP 
• So far, no system has been demonstrated to meet the  2010 targets
Storage Approaches
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 67
• Reviewed heat transfer in onboard hydrogen storage  technologies using compressed H2, LH2, chemical hydrides and  metal hydrides – Zhang et al., J. Heat Transfer 127 1391 (2005)
• Sodium borohydride (SBH) systems – Heat of reaction measurements – Kinetics measurements – Subscale (1kWe) system design, construction and tests – Subscale (1kWe) system modeling
• Highpressure metal hydride systems – Subscale (1/50) system design, construction and tests – Subscale (1/50) system modeling – Vehiclescale facilities and testing
Purdue Research
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 68
Hydrogen Storage Using NaBH4
NaBH +2H O NaBO +4H→
(U.S. DOE, Office of Basic Energy Science, 2003, Basic  Research Needs for the Hydrogen Economy)
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 69
Heat of Reaction for SBH Hydrolysis
Zhang et al., Int J Hyd Energy 31 2292 (2006).
– Commonly accepted: 300 kJ/mol NaBH4
– Measured:  210 kJ/mol ± 11 kJ/mol
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 70
Schematic of a 1 kWe NaBH4 System 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 71
Effects of Flow Rate
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 72
Students: Jinsong Zhang, Varsha Velagapudi, Kyle Smith, Avanthi Boopalan, Scott Flueckiger, Andrew Steiner, Yen Yu, Casey Porta, Tyler Voskiulen, Aaron Sisto
Faculty: Issam Mudawar, Timothee Pourpoint, Yuan Zheng
Funding: General Motors
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 73
Chaffee Hall
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 74
• Most important rule at the Hydrogen Systems Lab:
“Safety comes first.”
• Significant effort placed on: – Training:
• High Pressure Lab procedures and safety training followed by all students  involved in project
• Linde Gas training on high pressure systems
– Procedures:
• Careful development of test procedures for safe and repeatable testing
– Safety:
• Safety measures and evacuation procedures developed with the Purdue Fire and  Safety Department
• Emergency alarm system: – 3 sirens (122 dB at 10 feet) with amber flashing lights installed to notify all 
personnel in ZL1 of an emergency situation
– To be activated in case of uncontrolled fire, catastrophic test article failure
• Event tree developed to assess and solve emergency situations
Safety
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 75
• Introduction – Reversible metal hydrides used for hydrogen storage  generate a large amount of heat (2030 kJ/mol H2) during the  hydrogen absorption process
– Practical onboard hydrogen refueling rate of  2 kg H2/min leads to extremely high heat release rates (Q ≈ 0.5 MW over 3 minutes)
• Key Technical Issues – High heat release rates require active convective cooling – Highpressure systems for gases and coolants – Low thermal conductivity of nanoparticulate hydride bed – Adequate storage capacity and reversibility
Heat Transfer Systems for Metal Hydrides
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 76
• Design and implement a heat exchanger with an integrated  metal hydride containment system ensuring  thermostructural integrity of the tank and its contents
• Modular design for flexibility of scaling: scale range extends  from 1/50th to fullsize vehiclescale metal hydride  hydrogen storage tank
• Measure fillingdependent thermal performance of a well instrumented subscale tank
• Verify thermodynamic model  with operation of vehiclescale  reacting system at desired  hydriding and dehydriding rates 
Experimental Objectives
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 77
Pressure Vessel and Tank Inlet  Connections
Coolant Loop
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 78
Test Article Installed in Pressure Vessel
Preliminary Experimental Results
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 79
• Conduction is  most significant  contributor to  heat dissipation 
• Reaction  progress and  conduction are  coupled due to  temperature  dependent  kinetics
• Conduction  limits reaction  progress for  kinetically good  materials
40 45 50 55 60 65 70
-4
-2
0
2
4
6
8
10
12
14
16
Contribution of volumetric energy rates as a function of time
Sensible Energy Gas Compression Conduction Reaction Generation
( ) qTk t p
t TC eff +∇+
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 80
Conduction Modeling
Nanoscale  constrictions at 
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 81
Conclusions • Many opportunities exist for improved understanding of energy and 
charge transfer processes at the nanoscale • Spatial confinement may enable the engineering of higherefficiency 
energy transfer and conversion processes in carbon nanotubes • Promising results for early ‘benchtop’ CNT applications
– Weldlike heat transfer with ‘thermal velcro’ – Ideal boiling behavior – Exceptional electrical transistor behavior – Large work function reduction of carbon nanofibers for direct energy conversion, 
possibly solar – Major breakthroughs needed in hydrogen storage, thermal issues paramount
• Progress generally requires coordinated efforts in a variety of  disciplines and skills – Material synthesis and scaleup – Transport property characterization – Systemlevel scaling/engineering – Health, safety, and environmental impact
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 82
• Collaborators – As listed in the slides
• Funding – General Motors – Cooling Technologies Research Center – National Science Foundation – US Air Force Research Laboratory – NASA – Creare – Intel Corp. – Nanoconduction, Inc.
Acknowledgments
Nanoscale Transport Research Group T.S. Fisher, Feb08 Slide 83
THANK YOU
Nanoscale Materials and Devices for Enhanced Energy Transport and Conversion An Overview of the Nanoscale Transport Research Group at Purdue
Background & Acknowledgments
What is Contact Resistance?
Thermal Contact Conductance / Resistance
Carbon Nanotube (CNT) Interfaces
General Characteristics of CNT Arrays
CNT Array Thermal and Electrical Interfaces
Thermal Interface Results: Summary
Resolving Component Resistances: One-Sided
Results: Two-sided CNT Interfaces
Resolving Component Resistances: Two-Sided
CNT Array Contact Mechanics
Diffusive Heat Flow
Ballistic Heat Flow
Phonon Ballistic Transport
Summary of Pool Boiling from CNT Arrays
Patterned CNT Arrays on Si
Pool Boiling from an Si Substrate with FC-72
Enhancement Hypothesis
Outline
Contacting SWCNTs in situ
Addressable ‘Fields’ of Templated SWCNTs
Outline
Noise Thermometry with CNTs
The AGF Algorithm
Contacted Si Nanowire
Effect of Diameter
Cooling by Vacuum Electron Emission?
Non-Equilibrium Green’s Function Model
Flat Plate Cooling
Concept for Solar Thermionics
Storage Approaches
Purdue Research
Schematic of a 1 kWe NaBH4 System
Effects of Flow Rate
High-Pressure Metal Hydride Research
Experimental Objectives
Heat Conduction and Reaction Rate
Conduction Modeling

Recommended