+ All Categories
Home > Documents > nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01...

nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01...

Date post: 20-May-2018
Category:
Upload: nguyenthuan
View: 220 times
Download: 2 times
Share this document with a friend
42
TITLE: nanoSOM TM NS01 hardware description ID No: THW990-2 REV.: 1.0 PAGE: 1/42 The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved. Technical data subject to change. Copyright © 2017 EXOR All Rights Reserved. EXOR Confidential & Proprietary File: THW990-2.doc- nanoSOM™ NS01 Hardware description History Rev Date Description By 1.0 10-02-2017 Preliminary S.Fazlagic 1.1 19-07-2017 Inserted support for TPM, ULL support and minor changes S.Fazlagic 1.2 13-09-2017 Inserted inversion for RTS5,CTS5 & RTS6,CTS6 S.Fazlagic Reference Cross Reference Filename Description [1] Author: Date: Approved U.T.: Date:
Transcript
Page 1: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 1/42

The reproduction, transmission or use of this document or its contents is not

permitted without express written authority. Offenders will be liable for

damages. All rights, including rights created by patent grant or registration

of a utility model or design, are reserved. Technical data subject to change.

Copyright © 2017 EXOR All Rights Reserved.

EXOR Confidential & Proprietary

File: THW990-2.doc-

nanoSOM™ NS01

Hardware description

History

Rev Date Description By

1.0 10-02-2017 Preliminary S.Fazlagic

1.1 19-07-2017 Inserted support for TPM, ULL support and minor changes

S.Fazlagic

1.2 13-09-2017 Inserted inversion for RTS5,CTS5 & RTS6,CTS6 S.Fazlagic

Reference

Cross Reference

Filename Description

[1]

Author: Date:

Approved U.T.: Date:

Page 2: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 2/42

EXOR Confidential & Proprietary

File: THW990-2.doc

TABLE OF CONTENTS

1. Introduction ........................................................................................... 3 2. nanoSOM™ technology ........................................................................ 4 3. Dimensions ........................................................................................... 6 4. Pin out .................................................................................................. 6

4.1. Left connector external ........................................................................ 9 4.2. Top connector external ...................................................................... 10 4.3. Right connector external .................................................................... 11 4.4. Bottom connector external ................................................................. 12 4.5. Left connector internal ....................................................................... 14 4.6. Top connector internal ....................................................................... 14 4.7. Right connector internal ..................................................................... 15 4.8. Tamper pins ....................................................................................... 15

5. Description .......................................................................................... 16 5.1. IMX6UL and main circuits .............................................................. 18

5.1.1. Single Core ARM Cortex A7 ........................................................ 18 5.1.2. Embedded memory controller (DDR3L) ....................................... 18 5.1.3. eMMC .......................................................................................... 18 5.1.4. USB support ............................................................................... 18 5.1.5. CAN1 and CAN2 .......................................................................... 19 5.1.6. UART1, UART5 and UART6 ........................................................ 20 5.1.7. SPI1, SPI2, SPI3 and SPI2 .......................................................... 20 5.1.8. Audio OUT ................................................................................... 21 5.1.9. I2C................................................................................................ 21 5.1.10. SD card ...................................................................................... 22 5.1.11. Display interface (parallel RGB) ................................................. 22 5.1.12. Ethernet ..................................................................................... 23 5.1.13. GPIO and A/D ........................................................................... 24

5.2. AUX Circuits ...................................................................................... 24 5.2.1. RTC ............................................................................................ 24 5.2.2. SEEPROM .................................................................................. 24 5.2.3. Additional I2C 8 bits port .............................................................. 24

5.3. Power supplies .................................................................................. 26 5.4. Internal and External Pads (“Connectors”) ......................................... 27 5.5. Board View ........................................................................................ 30 5.6. Support for IMX6ULL ......................................................................... 32

6. Building carrier board pattern for hosting nanoSOM™ NS01 .............. 33 6.1 One Important addition for internal pads ............................................. 36 6.2 Some specific signals ......................................................................... 38 6.3 Using FRAM with nanoSOMTM ............................................................ 40 6.4 Using TPM module with nanoSOMTM .................................................. 41

Page 3: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 3/42

EXOR Confidential & Proprietary

File: THW990-2.doc

1. Introduction

This document is hardware presentation of nanoSOM™ NS01.

The document can help user quickly understand module interface specifications, electrical and mechanical details.

nanoSOM™ NS01 is member of EXOR’s nanoSOM™ family, very small, but powerful PCB

board, without connectors.

Practically, user can consider nanoSOM™ (NS01) as “a component”, which can be

soldered directly in users, custom carrier board.

nanoSOM™ NS01 is based at IMX6UL processor (package 9 mm x 9 mm) and full

features, described in this document, suppose using this processor. In addition to IMX6UL, nanoSOM™ NS01 can support also IMX6ULL processor with

some reduced features.

See in chapter 5.6 for details.

Page 4: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 4/42

EXOR Confidential & Proprietary

File: THW990-2.doc

2. nanoSOM™ technology

nanoSOM™ is one ultra-compact SOM, that introduces new connection, technical

similar to chip scale package of IC, that allows soldering to the main carrier board the same way as other IC SMD components.

nanoSOM™ adapts connection technique Flat no-leads packages with external 131

contacts 0,7mm QFN (quad-flat no-leads). It is a surface-mount technology that connect ICs to the surfaces of PCB without through-holes and without expensive

connectors. nanoSOM™ NS01, adds also 28 + 10 contacts (pads) more (named internal

contacts).

Pads at package at bottom side provide electrical connections to external PCB (named

carrier board).

The nanoSOM™ has very compact size (see drawing below) and is not invasive in the

design of the carrier board. The nanoSOM™ has specially thickness of only 2.2 mm max,

almost like the normal IC package, allowing user to create industrial products with very compact and incredible thin profile.

Carrier boardNano SOM with

on board parts

2.2 mm total

nano SOM

module

thickness

Block diagram of nanoSOM™ NS01 is presented below.

Page 5: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 5/42

EXOR Confidential & Proprietary

File: THW990-2.doc

DD

R3

L

Me

mo

ry

eM

MC

Fla

sh

Dis

k

Po

we

r

Ma

na

ge

me

nt

PF

30

00

EE

PR

OM

Lo

ca

l

Po

we

r Su

pp

lies

3.3

V/2

.5V

/1.8

V

1.3

5V

/1.2

V

RT

C

SD

(2) H

ost

US

B 2

.0

CA

N

1

I2C

I2C

3.3

Vo

lt

Su

pp

ly

Na

no

SO

M

Au

dio

I/O I2

S

Vb

att.

(2V

-5.5

V)

JT

AG

RE

S_O

UT

*,

Po

w_g

oo

d

US

B

HU

B

Vid

eo

IN

8/1

2/1

6 b

its

OT

G

US

B 2

.0

Sin

gle

co

re

Co

rtex

A7

IMX

6_

UL

Re

se

t_in

*

Vid

eo

Ou

t

24B

it LC

DV

id. P

WM

& c

on

trol

RM

II Po

rt

10,1

00M

b

RM

II Po

rt

10

,10

0M

b C

AN

2

SP

I

1 S

PI

2

SP

I

3

SP

I

4

UA

RT

5U

AR

T

1

UA

RT

6

8 b

its

I2C

po

rt

4 b

its

I2C

po

rt

Sh

are

dS

ha

red

Sh

are

d

GP

IO

PW

M (3

)A

na

log

Inp

uts

(3)

Page 6: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 6/42

EXOR Confidential & Proprietary

File: THW990-2.doc

3. Dimensions

23.50

23

.50

25

.40

25.40

Drawing above shows dimension of nanoSOM™ NS01. Dimensions are in mm.

4. Pin out

Page 7: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 7/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Bottom Edge

nanoSOM Top view

Top Edge

Le

ft E

dg

e

Rig

ht E

dg

e

Origin

1

34

3

34 34

341

nanoSOM Rear viewOrigin

4

Le

ft

(View “through” board)

Rig

ht

Top1 1

4 4

1 20

Tamper 8

Tamper 2

Tamper 3

Tamper 7

Tamper 9

Tamper 5

Tamper 0

Tamper 4

Tamper 6

Tamper 1

Picture above shows TOP side view (side of components) and BOTTOM side. Although also BOTTOM side contains components, there are much more components at TOP side.

Page 8: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 8/42

EXOR Confidential & Proprietary

File: THW990-2.doc

BOTTOM side contains mainly some capacitor filters and some minor components, which

due to various reasons, must be located at bottom side.

Note that carrier board for supporting nanoSOM™ NS01 must have HOLE in

central board area.

See below:

nanoSOM NS01

Carrier for nanoSOM Carrier for nanoSOM

Top side of

nanoSOM

Bottom

side of

nanoSOM

Hole in carrier

board

Solder Pads Solder Pads

.

nanoSOM™ NS01 is built around:

Four external (edge)”connectors” (total 131 pins).

Three internal (edge) “connectors” (total 28 pins)

Ten rounded pins for connecting to Tamper pins of CPU at bottom side

Really, these “connectors” are not true connectors, but simple soldering PADS,

with pitch 0.7mm for external and 1mm for internal pads.

Due to intentionally asymmetric shape (TOP LEFT angle is inclined), some pins are “lost”

to have 4x34 =136 pins, so total number of external pins is 131 pins (31 + 32 + 34 +

34).

Internal pads are: 4 (Left) + 20 (Top) +4 (Right) pads.

There are also ten rounded pads connected to Tamper pins 0-9 of CPU.

Note that these pins (tamper pins) are located in one “protected“ area (out of HOLE).

After soldering nanoSOM to carrier, these pins will be “invisible”.

Next chapters shows all pins, located at external and internal “connectors”.

Note that nearly all pins of IMX6UL have more functions. In order to build schematic and PCB, it is selected one default pin mapping, which in the best way covers most of Exor’s

needs. User can select some other using-pin out (for example to have more UARTS, less

SPI, to have Camera input and other combinations). Of course, this change must be followed by support in firmware and BSP. User can change this default pin out, using

PINMUX tool by Freescale and one must be familiar with this, in case of changing.

Some signals (have name GPIO in column) are true GPIO, without some special using.

Page 9: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 9/42

EXOR Confidential & Proprietary

File: THW990-2.doc

All signals can be used also as simple GPIO.

All signals are direct LVCMOS/LVTTL (+3V3) compatible (of course expect

special like USB pairs for example).

4.1. Left connector external

Pin Signal Name Type IMX6UL (Pin name) Pin Comment

3 +3V3S Supply

Supply +3V3, 5%

4 +3V3S Supply

5 +3V3S Supply

6 +3V3S Supply

7 +3V3S Supply

8 GND

9 SCL UART2_TX_D L16 I2C main channel

10 SDA UART2_RX_D K16

11 DIMM/PWM NAND_WP* D6 Video OUT AUX sign, 12 EN_BL UART3_RX_D K15

13 EN_VDD UART3_TX_D K17

14 GND

15 LCD_DATA0 LCD_DATA00 D11 Video OUT data

signals 16 LCD_DATA1 LCD_DATA01 B12

17 LCD_DATA2 LCD_DATA02 D10

18 LCD_DATA3 LCD_DATA03 B11

19 GND

20 LCD_DATA4 LCD_DATA04 A11

Video OUT data signals

21 LCD_DATA5 LCD_DATA05 D12

22 LCD_DATA6 LCD_DATA06 D13

23 LCD_DATA7 LCD_DATA07 C12

24 GND

25 LCD_DATA8 LCD_DATA08 B13 Video OUT data

signals 26 LCD_DATA9 LCD_DATA09 A13

27 LCD_DATA10 LCD_DATA10 D14

28 LCD_DATA11 LCD_DATA11 C13

29 GND

30 LCD_DATA12 LCD_DATA12 C14 Video OUT data

signals 31 LCD_DATA13 LCD_DATA13 A14

32 LCD_DATA14 LCD_DATA14 B14

33 LCD_DATA15 LCD_DATA15 A16

34 GND

Page 10: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 10/42

EXOR Confidential & Proprietary

File: THW990-2.doc

4.2. Top connector external

Pin Name Type IMX6UL (Pin name) Pin Comment

4 GND

5 GND

6 GND

7 GND

8 RMII1_ERROR ENET1_RX_ER G14 RMII port 1 9 RMII1_CRS_DV ENET1_RX_EN G16

10 RMII1_RD0 ENET1_RX_D0 G17

11 RMII1_RD1 ENET1_RX_D1 F16

12 GND

13 RMII1_TXEN ENET1_TX_EN F15 RMII port 1 14 RMII1_TXCLK ENET1_TX_CK G15

15 RMII1_TX0 ENET1_TX_D0 E16

16 RMII1_TX1 ENET1_TX_D1 F13 17 GND

18 RMII2_ERROR ENET2_RX_ER H13 RMII port 2 19 RMII2_CRS_DV ENET2_RX_EN D16

20 RMII2_RD0 ENET2_RX_D0 E17

21 RMII2_RD1 ENET2_RX_D1 D17

22 GND

23 RMII2_TXEN ENET2_TX_EN E15 RMII port 2 24 RMII2_TXCLK ENET2_TX_CK H14

25 RMII2_TX0 ENET2_TX_D0 E14

26 RMII2_TX1 ENET2_TX_D1 F14

27 ENET_MDIO GPIO1_IO6 N15 RMII control MDC/MDATA 28 ENET_MDC GPIO1_IO7 N14

29 SPI2_CS0* UART4_RX_D H17

SPI2 channel 30 SPI2_MOSI UART5_TX_D K13

31 SPI2_MISO UART5_RX_D J13

32 SPI2_CLK UART4_TX_D J16

33 GND

34 SPI4_CS0* NAND_DATA7 B8 SPI4 channel

Page 11: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 11/42

EXOR Confidential & Proprietary

File: THW990-2.doc

4.3. Right connector external

Pin Name Type IMX6UL (Pin name) Pin 1 SPI4_MOSI NAND_DATA5 A6

SPI4 channel 2 SPI4_MISO NAND_DATA6 B9 3 SPI4_CLK NAND_DATA4 C8 4 GPIO2/PWM2 GPIO1_IO9 P16

GPIO 5 GPIO1/PWM1 GPIO1_IO8 P14 6 GPIO3 GPIO1_IO5 P15 7 GND 8 BOOT_MODE1 (*) BOOT_MODE1 U8

Some special signals (see below)

9 BOOT_MODE0 (*) BOOT_MODE0 T8 10 BOOT_MODE_CT (*) 11 POW_GOOD (*) 12 RESET_OUT* (*) 13 RES_IN* (*) 14 VBB (*) 15 GND 16 SPI3_CS1* NAND_ALE D8

SPI3 channel

17 SPI3_CS0* NAND_RDY* E9 18 SPI3_MOSI NAND_CE1* B6 19 SPI3_MISO NAND_CLE B7 20 SPI3_CLK NAND_CE0* E8 21 GND 22 SPI1_CS0* CSI_DATA5 B3

SPI1 channel 23 SPI1_MOSI CSI_DATA6 A3 24 SPI1_MISO CSI_DATA7 C2 25 SPI1_CLK CSI_DATA4 C4 26 GND 27 CAN2_TX UART2_CTS J17

CAN2 28 CAN2_RX UART2_RTS J14 29 CAN1_TX UART3_CTS H16

CAN1 30 CAN1_RX UART3_RTS H15 31 GND 32 RTS6 CSI_HSYNC D2

UART6 33 CTS6 CSI_VSYNC D3 34 RX6 CSI_PIXCLK D5

Page 12: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 12/42

EXOR Confidential & Proprietary

File: THW990-2.doc

4.4. Bottom connector external

Pin Name Type IMX6UL (Pin name) 1 LCD_DATA23 LCD_DATA23 C17

Video OUT data signals

2 LCD_DATA22 LCD_DATA22 B16

3 LCD_DATA21 LCD_DATA21 C16

4 LCD_DATA20 LCD_DATA20 B17

5 GND 6 LCD_DATA16 LCD_DATA16 A15

Video OUT data signals

7 LCD_DATA17 LCD_DATA17 D15 8 LCD_DATA18 LCD_DATA18 B15 9 LCD_DATA19 LCD_DATA19 E12 10 GND 11 LCD_CLK LCD_CLK C11

Video OUT control

signals

12 LCD_ENAB LCD_ENABLE A10 13 LCD_HSYNC LCD_HSYNC B10 14 LCD_VSYNC LCD_VSYNC C10 15 LCD_RST LCD_RESET E10 16 GND 17 SD_CLK SD1_CLK C5

SD card

18 SD_CMD SD1_CMD C6 19 SD_D0 SD1_D0 A5 20 SD_D1 SD1_D1 A4 21 SD_D2 SD1_D2 B5 22 SD_D3 SD1_D3 B4 23 GND

24 SD_WP* UART1_CTS L15 SD card AUX

25 SD_CD* UART1_RTS K14 26 BUZZER/PWM5 NAND_DQS E6 27 TX5 CSI_DATA0 C3

UART5 28 RX5 CSI_DATA1 D4 29 CTS5 CSI_DATA2 B2 30 RTS5 CSI_DATA3 D1 31 GND 32 TX1 UART1_TX_D L15

UART1 33 RX1 UART1_RX_D L17 34 TX6 CSI_MCLK C1 UART6

(*) These signals are system control I/O.

BOOT_MODE0 and BOOT_MODE1 are two pins of CPU, responsible for BOOT procedure.

Page 13: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 13/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Drawing above shows three BOOT mode signals and correlation between them.

Really, BOOT_MODE_CTRL is only one control signal to provide in assembly or

reparation time access to boot from serial downloader (USB). In normal (application)

mode CPU will always BOOT from mode 00. (BOOT_MODE_CTRL will be high). Note that BOOT_MODE0 and BOOT_MODE1 after finishing BOOT mode can be used as

normal GPIO. Really, it means that using these two signal only as outputs has some

meanings. Using these pins as inputs of course can lead to uncontrollable BOOT procedure.

Page 14: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 14/42

EXOR Confidential & Proprietary

File: THW990-2.doc

POW_GOOD is control out from nanoSOM™ NS01. Signal is generated high when all local supplies inside nanoSOM™ NS01are OK. User should use this signal to enable

supply for I/O peripherals at carrier board. See in the rest of documents more

description for this signal.

RESET_OUT* is system reset, coming from circuits inside nanoSOM™.

Also CPU IMX6UL can generate RESET_OUT* pulling pin RST_OUT_L located in AUX I2C

expander (see in the rest of document in chapter “Some specific signals”).

RES_IN* is (optionally) external RESET input signal (including reset KEY).

(See in the rest of document in chapter “Some specific signals”).

4.5. Left connector internal

Pin Name Type IMX6UL (Pin name) Pin Comment 1 JTAG_RST* JTAG_TRST/ P13

JTAG signals 2 JTAG_MODE JTAG_MOD R13

3 CCM_CLK1_N CCM_CLK1_N U16 Differential

CCM_CLK 4 CCM_CLK1_P CCM_CLK1_P T16

4.6. Top connector internal

Pin Name Type IMX6UL (Pin name) 1 TDO JTAG_TDO R16

JTAG signals 2 TDI JTAG_TDI P17 3 TMS JTAG_TMS R14 4 TCK JTAG_TCK R17 5 GND 6 USB0_OTG_VBUS

USB OTG Port 0 7 USB_OTG_ID GPIO1_IO0 M14 8 USB_OTG_DM USB_OTG1_DN R11 9 USB_OTG_DP USB_OTG1_DP P11 10 GND 11 USB1_DP

USB Host Port1

(Via USB HUB)

12 USB1_DM 13 USB1_EN 14 USB1_OC* 15 GND 16 USB2_DP

USB Host Port2

(Via USB HUB)

17 USB2_DM 18 USB2_EN 19 USB2_OC* 20 GND

Page 15: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 15/42

EXOR Confidential & Proprietary

File: THW990-2.doc

4.7. Right connector internal

Pin Name Type IMX6UL (Pin name) Pin Comment 1 I2C_IO1

GPIO based at I2C 2 I2C_IO2 3 I2C_IO3

4 I2C_IO4

4.8. Tamper pins

At bottom side we have also ten tamper pins. These tamper pins are located in

“forbidden area” in order to hide these tamper pins (if customer prefers it). Position of CPU tamper pins is not linear with tamper pads in PCB. The next table shows

position for all tampers pins.

Pad Name Type IMX6UL (Pin name) 1 Pad 1(first towards TOP) Tamper 1 P6

Tamper pins

2 Pad 2 (NEXT) Tamper 6 R7 3 Pad 3 (NEXT) Tamper 4 P7 4 Pad 4 (NEXT) Tamper 0 R8 5 Pad 5 (NEXT) Tamper 5 P8 6 Pad 6 (NEXT) Tamper 9 P9 7 Pad 7 (NEXT) Tamper 7 N9 8 Pad 8 (NEXT) Tamper 3 P10 9 Pad 9 (NEXT) Tamper 2 N10 10 Pad 10 (first towards BOTTOM) Tamper 8 N8

PAD1

PAD10

Page 16: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 16/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5. Description

nanoSOM™ NS01 is built around SOC (System on chip) ARM A7 single core, Freescale

FBGA 272 pins IMX6UL (case 9 mm x 9 mm).

In next page is presented BLOCK diagram of nanoSOM™ NS01, which contains (main

parts):

1) IMX6UL

2) AUX CIRCUITS (peripherals on board)

3) Power supplies 4) External and internal PADs (“connectors”)

IMX6UL is heart of nanoSOM™ NS01 and with single core ARM A7 processor and

provides (contains cores):

Interface towards DDR3L

Interface towards eMMC USB interface (one OTG channel and two HOST connected to local HUB)

Two Ethernet ports (10/100Mb)

A lot of peripherals (UARTs, SD, CAN, I2C, Audio I2S, Video Out RGB, Video In, SPI…

Simple GPIO /PWM pins

Page 17: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 17/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Page 18: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 18/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.1. IMX6UL and main circuits

5.1.1. Single Core ARM Cortex A7

nanoSOM™ NS01 is based at IMX6UL, single core ARM Cortex-A7, located in SOC, which

operates at speed up to 528 MHz.

5.1.2. Embedded memory controller (DDR3L)

IMX6UL includes embedded memory controller with support for various memory types.

In nanoSOM™ NS01 is used DDR3L (1V35) in 16 bits mode. The footprint for DDRAM3 supports 2 Gb, 4 Gb and 8 Gb packages.

5.1.3. eMMC

IMX6UL supports eMMC (embedded MMC). It is used high speed Nand port in 4 bits

mode for eMMC. In nanoSOM™ NS01 embedded eMMC is used as main OS memory.

Due to reduced space, it is used smaller (153 balls) chip. In the past this package was used up to max. 8GB, but in last time this restriction is overridden.

Attention: eMMC signals are local signals, inside board (not visible at “connectors”).

Table below shows assigning Nand port signals to eMMC memory.

Signal name Signal Name (CPU) Pin

EMMC_D0 NAND_DATA0 D7

EMMC_D1 NAND_DATA1 A9

EMMC_D2 NAND_DATA2 C9

EMMC_D3 NAND_DATA3 C7

EMMC_CLK NAND_RE* D9

EMMC_CMD NAND_WE* A8

Attention: eMMC is connected in 4 bit mode. Although, of course IMX6UL can

support 8 bits mode, due to reduced numbers of pins, is concluded that better

solution is to have one SPI/four GPIO more.

5.1.4. USB support

USB section of IMX6UL contains two OTG controllers with incorporated PHY. In order to maximally use existing USB features, nanoSOM™ NS01 provides the next

structure:

Page 19: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 19/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Two ports

USB HUB

USB2422

IMX

6U

L

US

B O

TG

1U

SB

OT

G2

Load

switchOC*

EN

+5V

VBUS

USB+,USB-,

IDUSB0 port (OTG)

USB1 port (HOST)

USB2 port (HOST)

USB+.USB-,OC*,EN

USB+.USB-,OC*,EN

EX

T. p

ins

EX

T. p

ins

EX

T. p

ins

EN

Practically, USB OTG Port1 is used directly as OTG port (adding some external circuits).

To use this, user doesn’t need to add anything to carrier board

USB Port 2 is used with external (located at nanoSOM™ NS01) dual ports HUB. Of

course, user must to add only external load switch and power supply.

This way, nanoSOM™ NS01 is equipped with:

One OTG port

Two HOST ports (via local HUB)

5.1.5. CAN1 and CAN2

nanoSOM™ NS01 contains two CAN channels.

Signal name Signal Name (CPU) Pin

CAN1_TX UART3_CTS H16

CAN1_RX UART3_RTS H15

CAN2_TX UART2_CTS J17

CAN2_RX UART2_RTS J14

Page 20: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 20/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.1.6. UART1, UART5 and UART6

IMX6UL contains up to 8 Uarts (some of them only RX, TX pair)

In nanoSOM™ NS01, due to PIN MUXING, only some UARTS are default provided:

UART 1 (RX,TX) UART 5 (RX,TX,CTS,RTS)

UART 6 (RX,TX,CTS,RTS)

There is also UART3 which can be shared with SPI3

Signal name Signal Name (CPU) Pin

RX1 UART1_RX_D L17

TX1 UART1_TX_D L15

RX5 CSI_DATA1 D4

RTS5 CSI_DATA3 D1

CTS5 CSI_DATA2 B2

TX5 CSI_DATA0 C3

RX6 CSI_PIXCLK D5

RTS6 CSI_HSYNC D2

CTS6 CSI_VSYNC D3

TX6 CSI_MCLK C1

5.1.7. SPI1, SPI2, SPI3 and SPI2

IMX6UL contains total 4 SPI controllers.

Unfortunately, no all available features of SPI can be used. All SPI have up to 4 CS*, but mainly (due to PIN MUXING) only one CS* can be used (see below).

In some special configuration, of course, more CS* can be used, reducing other

peripherals.

Practically, available SPI resources (default) in nanoSOM™ NS01 are:

SPI1 (One CS*) SPI2 (One CS*)

SPI4 (One CS*)

SPI3 (Two CS*)

Attention: Momentary SPI3 is shared with UART3 (TBD in final version)

Signal name Signal Name (CPU) Pin

SPI1_CLK CSI_DATA4 C4

SPI1_CS0* CSI_DATA5 B3

SPI1_MOSI CSI_DATA6 A3

SPI1_MISO CSI_DATA7 C2

Page 21: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 21/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Signal name Signal Name (CPU) Pin

SPI2_CLK UART4_TX_D J16 SPI2_CS0* UART4_RX_D H17 SPI2_MOSI UART5_TX_D K13

SPI2_MISO UART5_RX_D J13

Signal name Signal Name (CPU) Pin

SPI3_CLK NAND_CE0* E8

SPI3_CS0* NAND_RDY* E9

SPI3_CS1* NAND_ALE D8

SPI3_MOSI NAND_CE1* B6

SPI3_MISO NAND_CLE B7

Signal name Signal Name (CPU) Pin

SPI4_CLK NAND_DATA4 C8

SPI4_CS0* NAND_DATA7 B8 SPI4_MOSI NAND_DATA5 A6 SPI4_MISO NAND_DATA6 B9

5.1.8. Audio OUT

nanoSOM™ NS01 contains more Audio OUT I2S channels.

Due to PIN MUXING nearly all of them are not available in default state. Fortunately,

JTAG port can be used also for this purpose (I2S).

Signal name Signal Name (CPU) Pin

AUDA_TX_BCLK JTAG_TDI P17

AUDA_RX_DATA JTAG_TCK R17

AUDA_TX_DATA JTAG_TRST P13

AUDA_TX_SYNC JTAG_TDO R16

AUDA_MCLK JTAG_TMS R14

5.1.9. I2C

IMX6UL supports up to 4 I2C controllers, but in nanoSOM™ NS01 is used I2C port 4 as system

nanoSOM™ NS01 I2C controller. Note that also UART1 (RX, TX) can be used. It is I2C port 3.

Signal name Signal Name (CPU) Pin

SCL UART2_TX_D L16

SDA UART2_RX_D K16

Page 22: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 22/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.1.10. SD card

nanoSOM™ NS01 contains one SD controller for external SD card access.

Signal name Signal Name (CPU) Pin

SD_CLK SD1_CLK C5

SD_CMD SD1_CMD C6

SD_D0 SD1_D0 A5

SD_D1 SD1_D1 A4

SD_D2 SD1_D2 B5

SD_D3 SD1_D3 B4

SD_CD* UART1_RTS K14

SD_WP* UART1_CTS L14

5.1.11. Display interface (parallel RGB)

nanoSOM™ NS01 incorporates eLCDIF sysbsystem. The eLCDIF is a general purpose display controller used to drive a wide range of display devices, varying in size

and capability. The eLCDIF is designed to support dumb (synchronous 24-bit Parallel

RGB interface) and smart (asynchronous parallel MPU interface) LCD devices. Parallel video out controller 24bits use LCD_DATA0-LCD_DATA23 lines. This controller supports

8, 16, 18 or 24 bits width.

Table below shows video out (LCD) bits mapping

Bit position Pin Color 16 bits Color 18 bits Color 24 bits

LCD_DATA0 D11 B0 B0 B0

LCD_DATA1 B12 B1 B1 B1

LCD_DATA2 D10 B2 B2 B2

LCD_DATA3 B11 B3 B3 B3

LCD_DATA4 A11 B4 B4 B4

LCD_DATA5 D12 G0 B5 B5

LCD_DATA6 D13 G1 G0 B6

LCD_DATA7 C12 G2 G1 B7

LCD_DATA8 B13 G3 G2 G0

LCD_DATA9 A13 G4 G3 G1

LCD_DATA10 D14 G5 G4 G2

LCD_DATA11 C13 R0 G5 G3

LCD_DATA12 C14 R1 R0 G4

LCD_DATA13 A14 R2 R1 G5

LCD_DATA14 B14 R3 R2 G6

LCD_DATA15 A16 R4 R3 G7

LCD_DATA16 A15 R4 R0

LCD_DATA17 D15 R5 R1

LCD_DATA18 B15 R2

LCD_DATA19 E12 R3

Page 23: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 23/42

EXOR Confidential & Proprietary

File: THW990-2.doc

LCD_DATA20 B17 R4

LCD_DATA21 C16 R5

LCD_DATA22 B16 R6

LCD_DATA23 C17 R7

In addition to standard Data signals, video controller is followed with some additional

control signals:

Signal name Signal Name (CPU) Pin

LCD_ENAB LCD_ENAB A10

LCD_HSYNC LCD_HSYNC B10

LCD_VSYNC LCD_VSYNC C10

LCD_CLK LCD_CLK C11

LCD_RST LCD_RST E10

EN_VDD (*) UART3_TX_D K17

EN_BL (**) UART3_RX_D K15

DIMM (***) NAND_WP* D6

(*) Signal used as enable display supply.

(**) Signal used as backlight enable signal. (***) Signal used as PWM adjustment signal for backlight (dimming).

5.1.12. Ethernet

nanoSOM™ NS01 supports two RMII channels (10/100Mbit) and includes also two additional signals ENET_MDIO and ENET_MDCLK for PHY control.

Signal name Signal Name (CPU) Pin

RMII1_ERROR ENET1_RX_ER G14

RMII1_CRS_DV ENET1_RX_EN G16

RMII1_RD0 ENET1_RX_D0 G17

RMII1_RD1 ENET1_RX_D1 F16

RMII1_TXEN ENET1_TX_EN F15

RMII1_TXCLK ENET1_TX_CK G15

RMII1_TX0 ENET1_TX_D0 E16

RMII1_TX1 ENET1_TX_D1 F13

RMII2_ERROR ENET2_RX_ER H13

RMII2_CRS_DV ENET2_RX_EN D16

RMII2_RD0 ENET2_RX_D0 E17

RMII2_RD1 ENET2_RX_D1 D17

RMII2_TXEN ENET2_TX_EN E15

RMII2_TXCLK ENET2_TX_CK H14

RMII2_TX0 ENET2_TX_D0 E14

RMII2_TX1 ENET2_TX_D1 F14

ENET_MDIO GPIO1_IO6 N15

ENET_MDC GPIO1_IO7 N14

Page 24: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 24/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Table above shows signals included in RMII interface.

5.1.13. GPIO and A/D

Various GPIO are provided, using GPIO pins from IMX6UL.

Under GPIO we consider various generic input/output signals. These signals are available to user as GPIO and are not dedicated to some special interfaces, presented

above. Note that also these “special” interfaces could, in one custom design, be used

also as GPIO. For example, if user has not need for Video input, he could all these pins of Parallel video input use for GPIO, in case of lack of GPIO pins.

Unfortunately, only three GPIO pins remained really free for customer using (not

included in any peripheral above).

Signal name Signal Name (CPU) Pin

GPIO3 GPIO1_IO5 P15

GPIO1/PWM1 GPIO1_IO8 P14

GPIO2/PWM2 GPIO1_IO9 P16

Attention: All these three GPIO can be used also as Analog inputs, connected to

embedded in IMX6UL A/D converter.

Attention: Also tamper pins can be used as GPIO (no analog inputs).

5.2. AUX Circuits

nanoSOM™ NS01 contains some additional circuits.

5.2.1. RTC

For nanoSOM™ NS01 for RTC purpose is used M41T83 RTC chip, although IMX6UL has

own RTC. Solution with M41T83 RTC is much better in power OFF (battery) mode. Chip is supplied (standby mode) with Vbb (Vbattery). Vbb can be in range 2-5.5 V.

Consumption in standby mode is about 400 nA.

5.2.2. SEEPROM

nanoSOM™ NS01 contains one standard I2C SEEPROM (X24C04) with address 0x50.

5.2.3. Additional I2C 8 bits port

Due to lack of GPIO pins, nanoSOM™ NS01 is equipped with one eight bits I2C expander.

Page 25: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 25/42

EXOR Confidential & Proprietary

File: THW990-2.doc

IMX

6U

L

RST_OUT

To generate

RESET_OUT

P0

EX

T. p

ins

P1

P2

P3

P4

P5

P6

P7

PMIC_INT

INT from

PMIC

To generate

RED LED(FAULT)

To generate

GREEN LED(DL)

Simple

GPIO

PCA6408

SCL

SDA

COMM_INT

SCL

SDA

INT

Four pins are used for local, on board activities (P0, P1, P6 and P7)

Four pins (P2-P5) are connected to external pins as simple GPIO for customer using. In schematic these pins are named I2C_I/O1 - I2C_I/O4.

Note that I2C expander contains also output interrupt, connected to one GPIO pin of IMX6UL, so via expander we can control also external interrupts. Signal COMM_INT is

connected to GPIO1_IO3 (pin N16) of IMX6UL.

Signals P6 and P7 are used as standard ERROR and RUN leds (see drawing above)

Signals I2C_IO1 – I2C_IO4 are general purpose I/O. These signal can be used (for

example) as RMII interrupts, coming from PHY. Note that INT* output of PCA6408 (COMM_INT*) goes to GPIO1_IO3 pins of CPU and can be used as interrupt to

CPU.

Page 26: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 26/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Signal P1 (PMIC_INT*) is input, connected to PMIC_INT* pin of PMIC (PF3000).

RST_OUT_L is output with one special feature. It is one optionally RESET_OUT control bit. Via this bit is possible announce external RESET for peripherals (no

power up RESET).

5.3. Power supplies

Power supply for nanoSOM™ NS01 is based at PF3000, power supply companion chip for

IMX6UL.

Input voltage is +3V3, +-5%.

Page 27: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 27/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.4. Internal and External Pads (“Connectors”)

This and next page show “connectors” for:

Internal connectors (pads) with included tamper pins1s

External connectors (pads)

These drawings port the same info as tables, presented before, and goal of these

drawings is only to give user one compact view and position of signals.

Page 28: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 28/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Internal connectors (pads)

External connectors (pads)

Page 29: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 29/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Page 30: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 30/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.5. Board View

The next two pictures below show TOP and BOTTOM (REAR) side of nanoSOM™ NS01.

Picture above shows TOP side of nanoSOM™ NS01.

Picture below shows BOTTOM side of nanoSOM™ NS01.

Attention: It is board through view (from TOP side view, where TOP side is transparent).

Page 31: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 31/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Take attention to external (at board edges) and internal I/O pads.

Page 32: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 32/42

EXOR Confidential & Proprietary

File: THW990-2.doc

5.6. Support for IMX6ULL

nanoSOM™ NS01 is basically based at IMX6UL and above described peripherals and

features refers to mounted IMX6UL in area of CPU inside board.

In addition to IMX6UL, nanoSOM™ NS01 supports also IMX6ULL processor with some power reduction.

IMX6ULL processor, although pin compatible with IMX6UL, has some constraints (simple some peripherals are not provided).

In other words, version nanoSOM™ NS01 with mounted IMX6ULL doesn’t provide all

features.

Table below depicts differences with mounted MCIMX6Y1CVK05AA (industrial version of

IMX6ULL) respecting standard IMX6UL.

Differences IMX6UL IMX6ULL

1 LCD/CSI (video input-output) Yes (available) No (not available)

2 CAN CAN 1 and CAN 2 Only CAN 1

3 Ethernet Ethernet 1 and Ethernet 2 Only Ethernet 1

4 ADC ADC 1 and ADC 2 Only ADC 1

5 Security Basic and advanced Only Basic

Page 33: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 33/42

EXOR Confidential & Proprietary

File: THW990-2.doc

6. Building carrier board pattern for hosting nanoSOM™ NS01

This chapter shows building nanoSOM™ NS01 pattern (footprint, shape) at carrier board,

where nanoSOM™ NS01 will be soldered.

Building shape is fairly simple because pin positions (IO PADS) are mainly full symmetric

respecting board edges and virtual board center.

Shortly, user must:

Create shape outline for virtual nanoSOM™ NS01 (25.4mm x 25.4 mm) and board hole inside (21.6mm x 21.6mm).

Really TOP_LEFT angle is inclined, so LEFT and TOP edges are 23.50mm.

Create External IO PADS at board edges (TOP 31 + RIGHT 34 + BOTTOM 34 and

LEFT 32). Create Internal IO PADS at hole edges (4 + 20 +4)

Create 10 TAMPER PADS

We strongly suggest to follow this procedure in order to build appropriate

carrier shape for nanoSOM™ NS01:

1) Outline: Draw (outline) rectangle 25.40 mm x 24.50 mm (dimensions of

nanoSOM™), having in mind that TOP-LEFT angle is inclined.

2) TOP ext. connector (pads T4-T34): Place 31 rectangle PADS 0.508mm x 1.041mm (20mil x 41 mil) with distance 0.7mm between them. First PAD center

is 3.25mm right from LEFT edge and 0.075 mm lower of TOP edge of outline.

3) RIGHT ext. connector (pads R1-R34): Place 34 rectangle PADS 1.041mm x

0.508 (41mil x 20 mil) with distance 0.7mm between them. First PAD center is

1.15mm lower of TOP edge and 0.075 mm left from RIGHT edge of outline.

4) BOTTOM ext. connector (pads B1-B34): Place 34 rectangle PADS 0.508mm x

1.041mm (20mil x 41 mil) with distance 0.7mm between them. First PAD center

is 1.15mm left from LEFT edge and 0.075 mm above BOTTOM edge of outline.

5) LEFT ext. connector (pads L3-L34): Place 32 rectangle PADS 1.041mm x

0.508 (41mil x 20 mil) with distance 0.7mm between them. First PAD center is 2.55mm lower of TOP edge and 0.075 mm right from LEFT edge of outline.

6) LEFT int. connector (pads IL1-IL4): Place 4 rectangle PADS 1.0mm x 0.7mm (39.4mil x 27.6 mil) with distance 1mm between them. First PAD center is 1.4mm

right from LEFT edge and 3.20mm lower of TOP edge of outline.

7) TOP int. connector (pads IT1-IT20): Place 20 rectangle PADS 0.7mm x 1.0mm (27.6mil x 39.4 mil) with distance 1mm between them. First PAD center is

3.20mm right from LEFT edge and 1.4 mm under TOP edge of outline.

Page 34: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 34/42

EXOR Confidential & Proprietary

File: THW990-2.doc

8) RIGHT int. connector (pads IR1-IR4): Place 4 rectangle PADS 1.0mm x

0.7mm (39.4 mil x 27.6 mil) with distance 1mm between them. First PAD center is 1.40mm left from RIGHT edge and 3.20 mm under TOP edge of outline.

9) TAMPER pads (Tamper 1-10). Place 10 circle PADS, D=30mil (0.762mm) with

distance 1mm between them. First PAD is located: 1.20mm from LEFT edge and 10.83 mm from TOP edge of outline.

10) PCB hole: Provide PCB hole 21.60mm x 21.60mm. Note that PCB hole is full symmetric in X and Y axis, respecting virtual board center. TOP side of

carrier (under microSOM™) can be used for routing (of course where is

available).

11) Provide some arrow at silk screen near LEFT TOP angle for board

orientation (origin).

For external, internal and tamper IO pads:

Make Solder mask shape 4 mils bigger of PAD (all PADS). Make Solder past shape the same as PAD.

Page 35: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 35/42

EXOR Confidential & Proprietary

File: THW990-2.doc

0.075mm

0.075mm

3.25mm

0.7mm

1.0mm

1.4

mm

1.0

mm

0.7

mm

2.5

5m

m

3.20mm

1.4mm

3.2

0m

m

T4

IT1

IL1

L3

0.075mm

0.7mm 1.15mm

T34

R1

1.1

5m

m0

.7m

m

IT20

IR10.075mm

3.20mm

1mm

1.4

mm

3.2

0m

m

1m

m

1.4mm

Page 36: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 36/42

EXOR Confidential & Proprietary

File: THW990-2.doc

Two drawings above are detailed drawings for building internal and external pins (except

TAMPER pads). It is presented LEFT_TOP angle as specific one (some PADS are missing) and

TOP_RIGHT angle. Other two angles are not presented because are full symmetric with

TOP_RIGHT angle (only different orientation).

Really these two drawings are only for some additional verification. If customer strongly follows procedure presented above (1-11). Shape creation shouldn’t be any problem.

Building TAMPER PADS is also very simple. Customer should start with first TAMPER PAD (see dimensions and position above) and simple add adjacent PADS with pitch 1mm.

6.1 One Important addition for internal pads

Procedure above, presents building all PADS for nanoSOM™ NS01 as simple TOP only SMD pads. Initial idea was not to complicate creation immediately with special shapes

for internal PADS. Really, internal PADS are not so simple.

Practically, customer must take special attention to internal PADS only (not external and not Tamper) and this chapter explains it.

Practically, due to more reasons simple only TOP SMD PADS for internal PADS (total 4 + 20 + 4) must be modified:

Reason 1. There is no sufficient space at carrier board for access to internal PADS

via using normal VIAs Reason 2. Creating these PADS with metallization offers possibility to better

control soldering of these internal PADS.

Drawing below shows in which way internal PADS must be modified.

TOP layer holds original dimensions and position (0.7mm x 1.0 mm) with adding ARC at hole edge

All other signal layers must have “COOPER” and ARC like TOP layer, but can be

really smaller respecting TOP PAD. For example 0.5 mm x 0.7 mm is one good

choice. Customer can hold all signal layers the same as TOP layer, but there is no any sense to lose precious PCB space.

Simple

SMD

PAD

Modified

SMD

PAD

Modified

SMD PAD(other signal layers)

(TOP layer)

Hole edge

1m

m

1m

m

0.5

mm

0.7mm 0.7mm 0.7mm

Page 37: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 37/42

EXOR Confidential & Proprietary

File: THW990-2.doc

It is very important that “ARC” side of PADS is metalized.

This way, we have:

1) PADS connection to all layers without classic hole.

2) Possibility of (optionally) manual resoldering if there is need.

This chapter describes procedure for building this complex PAD in PCAD6 tool.

(PCAD6 doesn’t allow directly built this type of PAD, but with some explanation for PCB manufactures it can be resolved).

Some newest tools probably provides direct this way of PADS building.

1) Create normal “through hole” PADS with rectangle shapes (explained above)

with rectangle 0.7mm x 1mm at TOP layers for 20 pin horizontal internal PADS

and 1mm x 0.7 mm for total 8 vertical internal PADS also at TOP layer. For other signal layers create “smaller” PADS 0.7mm x 0.5 mm (0.5mm x 0.7mm).

2) Create these PADS with “virtual” hole 1mils in PAD center.

3) In production file (GBR) inform PCB manufacturer to change “virtual” hole

1mm with real hole D=27mils and to move them 29mils toward board center.

4) After metallization process and removing central rectangle hole from board, we

will have these complex PADS, where part of ARC (see drawing below) will be

metallized.

Page 38: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 38/42

EXOR Confidential & Proprietary

File: THW990-2.doc

6.2 Some specific signals

This chapter describes some specific signals (system signals), important in carrier board

building. Drawing below shows typical using these signals:

nanoSOM™ NS01 is supplied by +3V3S (system) supply (+3V3 +- 5 %)

Used for carrier

circuits supply

DC/DC

24V/3V3

Pow_good

+3V3

In Load switch

Or P-CH

mosfet

+3V3S nanoSOM

supply

Out

DC/DC

24V/3V3

PFAIL

Detection

(optionally)

PFAIL_IN*INT

RESET_IN

circuits

(optionally)

RESET_inRes_in*

Res_out*

(optionally)

(optionally)

SYS_RESET_OUT*(optionally)

Battery or

Super CAPVbb

2V-5.5V

24V

na

no

SO

M

(active HIGH)

1) VBB is input for connecting to some Battery source, used for RTC. Typical are

used Lithium battery, Lithium rechargeable or Super CAP. Range is 2V-5.5V.

In case of using rechargeable battery or Super CAP, user must provide additional circuits at carrier board.

2) RES_OUT* is standard RESET_OUT* signal for resetting external circuits, located

at carrier board. See picture below. Note that RES_OUT* follows

local on board main reset (signal CPU_RST). In addition, also CPU (IMX6UL) can

independently create RES_OUT* via signal RST_OUT_L (see chapter 5.2.3 –Adding I2C 8 bits port).

3) RES_IN* is optionally RESET_IN* (Max +3V3, active 0) signal for whole system, coming from carrier board. For example can be used external standard CPU

supervisors, or simple manual RESET key. Using external circuits is optional,

because nanoSOM™ NS01 contains embedded power on RESET circuits.

4) PFAIL_IN* is optionally PFAIL_INTERRUPT*, for interrupting CPU in case of early

power supply power detection. Really, there is not dedicated PFAIL_IN* pin in

nanoSOM™ NS01. It is only presented one idea for using any of available INT

Page 39: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 39/42

EXOR Confidential & Proprietary

File: THW990-2.doc

(really GPIO). It could be important for backup some critic application, where

early power down event can be used for file or application closing. Typical using for this is connecting this signal to some comparator which controls

main power supply.

5) POW_GOOD is one mandatory signal (out from nanoSOM™ NS01, active high) to enable supply auxiliary circuits at carrier board. nanoSOM™ NS01 is supplied

by +3V3S (system) from carrier board, but supply for circuits at carrier must be

controlled by this signals to respect power up procedure for CPU at nanoSOM™ NS01.

External circuits, connected to I/O pins of nanoSOM™ NS01 shouldn’t be supplied before POW_GOOD is asserted (see drawing above).

Drawing below show RESET*_OUT and RES_IN* circuits in nanoSOM™ NS01.

Drawing below shows connection for some specific signals.

Page 40: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 40/42

EXOR Confidential & Proprietary

File: THW990-2.doc

6.3 Using FRAM with nanoSOMTM

nanoSOM™ NS01 doesn’t contain FRAM (on board), but due to fact that FRAM can

be often used, it is reserved SPI channel for direct support at user’s carrier board.

It means that user must connect FRAM always in this way (see below) in order to

have direct FRAM support. By the way, the same connection is applied in Evaluation board for nanoSOM™ NS01.

It is used SPI3 channel. Note that SPI3 channel is with two CS*. CS0* is reserved for FRAM and CS1* is free for user (see bottom using TPM

module). This way, SPI3 channel remains free (using CS1*) for user.

See two drawings below.

Page 41: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 41/42

EXOR Confidential & Proprietary

File: THW990-2.doc

6.4 Using TPM module with nanoSOMTM

In case that nanoSOM™ NS01 is used for Trusted zone application, good solution is

using with TPM (Trusted Platform Module) SLB9670. Module SLB9670 exists in version TPM 1.2 and TPM 2.0, which are fully compatible with

hardware view point.

The best solution is to connect to, above mention SPI3 channel, using free CS1*.

Practically, using FRAM and TPM module SLB9670 SPI3, channel is full occupied for

these two system functions.

Picture below shows using TPM SLB9670 module with nanoSOM™ NS01:

It is provided also interrupt from SLB9670. Solution for interrupt can be to use one of

four free I2C I/O, In this case I2C extender behaves exactly as one simple interrupt

controller.

Of course, it is possible also use some of free GPIO as interrupt destination, but in some

complex boards these inputs will probably be occupied by its natural peripherals.

Page 42: nanoSOM™ NS01 Hardware description - EXOR …File/nanosom_THW990-2.pdfTITLE: ID No: nanoSOMTM NS01 hardware description THW990-2 REV.: 1.0 PAGE: 2/42 EXOR Confidential & Proprietary

TITLE:

nanoSOMTM NS01 hardware description

ID No: THW990-2 REV.: 1.0

PAGE: 42/42

EXOR Confidential & Proprietary

File: THW990-2.doc


Recommended