+ All Categories
Home > Documents > Nanotools for Materials Science

Nanotools for Materials Science

Date post: 16-Jan-2016
Category:
Upload: isaura
View: 40 times
Download: 0 times
Share this document with a friend
Description:
Nanotools for Materials Science. Nicholas D. Spencer Dept. Of Materials, ETH-Z ü rich. Animations by Marc Duseiller. Outline. STM and AFM AFM as a chemical probe: Oxides AFM as a chemical probe: Polymers Designer molecules for Biosensors. Outline. STM and AFM - PowerPoint PPT Presentation
Popular Tags:
59
Nanotools for Nanotools for Materials Science Materials Science Animations by Marc Duseiller Animations by Marc Duseiller Nicholas D. Spencer Nicholas D. Spencer Dept. Of Materials, ETH-Zürich Dept. Of Materials, ETH-Zürich
Transcript
Page 1: Nanotools for Materials Science

Nanotools for Materials Nanotools for Materials ScienceScience

Animations by Marc DuseillerAnimations by Marc Duseiller

Nicholas D. SpencerNicholas D. Spencer

Dept. Of Materials, ETH-ZürichDept. Of Materials, ETH-Zürich

Page 2: Nanotools for Materials Science

•STM and AFM

•AFM as a chemical probe: Oxides

•AFM as a chemical probe: Polymers

•Designer molecules for Biosensors

Outline

Page 3: Nanotools for Materials Science

•STM and AFM

•AFM as a chemical probe: Oxides

•AFM as a chemical probe: Polymers

•Designer molecules for Biosensors

Outline

Page 4: Nanotools for Materials Science

s

y-piezo

z-piezo

x-piezo

tunnel

current

Tipz-displacement

(image)

sample

surface

Inhomogeneity

Scanning Tunneling Scanning Tunneling MicroscopyMicroscopy

j ∝Φ

s⋅V ⋅exp − k ⋅ Φ ⋅s( )

Binnig and Rohrer:

Nobel Prize for Physics, 1986

Page 5: Nanotools for Materials Science

Evac1

Evac2

EF1

EF2

Φ1

Φ2

V

( )D E

( )D E

M1

M2

s

Scanning Tunneling Scanning Tunneling MicroscopyMicroscopy

Page 6: Nanotools for Materials Science

STM: Constant-Height ModeSTM: Constant-Height Mode

Page 7: Nanotools for Materials Science

STM: Constant-Current STM: Constant-Current ModeMode

Page 8: Nanotools for Materials Science

A series of time-lapse STM topographic images at room temperatureshowing a 40nm x 40nm area of Au(111). The time per frame is 8 min,and each took about 5 min to scan. The steps shown are one atomicunit in height. The second frame shows craters left after tip-samplecontact, which are 2 and 3 atoms deep. During a 2h period the smallcraters have filled completely with diffusing atoms, while the largecraters continue to fill.R.C. Jaklevic and L. Elie Phys. Rev. Lett. 60 (1988) 120

Page 9: Nanotools for Materials Science

STM Constant current 50nm x 50nm image of a Cu(111) surface held at4K. Three monatomic steps and numerous point defects are visible.Spatial oscillations (electronic standing waves) with a periodicity of~1.5nm are evident.M.F. Crommie, C.P. Lutz, and D.M. Eigler Nature 363 (1993) 524

Page 10: Nanotools for Materials Science

Plasmid DNA (pUC18) on mica imaged by STM at high resolution. Theinset is a cutout of a zoomed-in image taken immediately after theoverview. R. Guckenberger, M. Heim, G. Cevc, H.F. Knapp, W.Wiegräbe, A. Hillebrand Science 266 (1994) 1538

Page 11: Nanotools for Materials Science

Spatial image of the eigenstates of a quantum corral. 48-atom Fe ringconstructed on a Cu(111) surface. Average diameter of ring is 14.3nm. The ring encloses a defect-free region of the surface.M.F. Crommie, C.P. Lutz, and D.M. Eigler Science 262 (1993) 218

Page 12: Nanotools for Materials Science

Atomic Force Atomic Force MicroscopyMicroscopy

Page 13: Nanotools for Materials Science

AFM: Photodiode detectionAFM: Photodiode detection

Page 14: Nanotools for Materials Science

AFM: Attractive and AFM: Attractive and Repulsive Force CurvesRepulsive Force Curves

Page 15: Nanotools for Materials Science

AFM: TappingModeAFM: TappingModeTMTM

Page 16: Nanotools for Materials Science

The compound eye of a housefly (Musca domestica), seen by TappingMode AFM. The detail image reveals channel-like

features on the surface. 60µm scan courtesy P. Gorostiza, I. Diez, F. Sanz, Universitat de Barcelona, Spain.

Page 17: Nanotools for Materials Science

AFM: Phase-Contrast ModeAFM: Phase-Contrast Mode

Page 18: Nanotools for Materials Science

TappingMode AFM Phase image of a PMMA-b-polybutylacrylate-b-PMMA symmetric triblock copolymer partly covering a mica substrate. The PMMA component forms cylindrial microdomains (located 40 nm apart) that

appear as cones on the phase image. 1.5µm scan courtesy P. LeClere and R. Lazzaroni, Universite de

Mons-Hainaut, Belgium.

Page 19: Nanotools for Materials Science

AFM: Lateral Mode (LFM)AFM: Lateral Mode (LFM)

Page 20: Nanotools for Materials Science

AFM as NanoindenterAFM as Nanoindenter

Page 21: Nanotools for Materials Science

"The world's smallest turbine." Densely packed assembly of proton driven rotors of the chloroplast ATP synthase imaged in

buffer solution. Rotors are incorporated in both orientations with respect to the membrane plane. At a lateral resolution

better than 1nm, the fourteen subunits of the wide connector end (diameter ~7.6nm) can be seen. 70nm scan courtesy of H.

Seelert, A. Poetsch, N. Dencher, A. Engel, H. Stahlbert and D.J. Müller, Max-Planck-Institute of Molecular Cell Biology and

Genetics, Dresden, Germany.

Page 22: Nanotools for Materials Science

TappingModeTM AFM image of CD surface

Page 23: Nanotools for Materials Science

Contact mode AFM of cholera toxin oligomers bound to lipid bilayer under buffer. Note that a clear pentameric

structure is resolved for many of the cholera toxin oligomers, while others appear hexameric or

unstructured. 80 nm scan size. Courtesy of Shao lab, University of Virginia.

Page 24: Nanotools for Materials Science

Normal and sickled human red blood cells. Sample preparation consisted of a standard smear on a glass slide. The rigid contour of the sickled cell

(center) contrasts with the normal red blood cells; note the sickled cell has indented the softer red blood cell. Three spicules (top left of cell),

approximately 0.5 to 1.0µm long, project out from the sickled cell, denoting rearrangement of intracellular hemoglobin molecules. Sample

courtesy of Sansum Medical Clinic, Santa Barbara, CA.

Page 25: Nanotools for Materials Science

•STM and AFM

•AFM as a chemical probe: Oxides

•AFM as a chemical probe: Polymers

•Designer molecules for Biosensors

Outline

Page 26: Nanotools for Materials Science

Spatial Resolution Range of Imaging Surface Methods Spatial Resolution Range of Imaging Surface Methods

for Insulating Samplesfor Insulating Samples

1Å1Å 1nm1nm 10nm10nm 100nm100nm 1µm1µm 10µm10µm 100µm100µm

SpatialSpatial ResolutionResolution

Chemical

Morphological

iXPSiXPS

SAMSAM

ToF-SIMSToF-SIMS

SEMSEM

STMSTM

AFMAFM

InformationGap

Page 27: Nanotools for Materials Science

Experimental SetupExperimental Setup

Si3N4 tip

+++++++++++1 mM NaCl solutionSampleliquid cellFnFlatFlat

Page 28: Nanotools for Materials Science

Effect of pH on Force CurvesEffect of pH on Force Curves

SiSi33NN44 tip, Si/SiO tip, Si/SiO22 Sample Sample

pH 4 pH 8.5

Tip-Sample Separation [nm]

a)

0 20 40 0 20 40-5

0

5

10N

orm

al Fo

rce [

nN

]

A. Marti, G. Hähner, and N.D. Spencer, A. Marti, G. Hähner, and N.D. Spencer, LangmuirLangmuir 1111 (1995) 4632-5 (1995) 4632-5

Page 29: Nanotools for Materials Science

Lateral Force for SiLateral Force for Si33NN44/SiO/SiO22 and Si and Si33NN44/Al/Al22OO33

3 4 5 6 7 8 9 10 11pH

Late

ral Fo

rce [

arb

. un

its]

tip Si3N4Al 2O3

SiO2

G. Hähner, A. Marti, and N.D. Spencer, G. Hähner, A. Marti, and N.D. Spencer, Tribology Letters Tribology Letters 33 (1997) 359-65 (1997) 359-65

Page 30: Nanotools for Materials Science

Chemical Imaging with pH-Dependent AFM/LFM—1Chemical Imaging with pH-Dependent AFM/LFM—1

G. Hähner, A. Marti, and N.D. Spencer, G. Hähner, A. Marti, and N.D. Spencer, Tribology Letters Tribology Letters 33 (1997) 359-65 (1997) 359-65

Page 31: Nanotools for Materials Science

Friction pH 8.2 5 μm Friction 3.8pH 5 μm > pH pKs < pH pKs S COOH S CH3 -Si wafer Au - 3CH terminated -COOH terminated Height 5 μm 0 30 nm 0 5 nm

Chemical Imaging with pH-Dependent AFM/LFMChemical Imaging with pH-Dependent AFM/LFMSelf-assembled MonolayersSelf-assembled Monolayers

No height difference observableNo height difference observableµCP-generatedµCP-generatedthiol patternthiol pattern

Chemical (frictional) contrast in the lateral force image can be changed Chemical (frictional) contrast in the lateral force image can be changed by modifying pH, due to a pKa value of 4-5 of the -COOH groups.by modifying pH, due to a pKa value of 4-5 of the -COOH groups.

A. MartiA. MartiG.HähnerG.HähnerETH-LSSTETH-LSST

Page 32: Nanotools for Materials Science

•STM and AFM

•AFM as a chemical probe: Oxides

•AFM as a chemical probe: Polymers

•Designer molecules for Biosensors

Outline

Page 33: Nanotools for Materials Science

AFM of Polyesterurethane Block CopolymerAFM of Polyesterurethane Block CopolymerSpin-Coated from a 1% NMP Soln. onto a Si-WaferSpin-Coated from a 1% NMP Soln. onto a Si-Wafer

K. Feldman - ETH-LSSTK. Feldman - ETH-LSST

Page 34: Nanotools for Materials Science

Polymers used in this StudyPolymers used in this StudyPSPS

PolystyrenePolystyrene

Avg. MW=250,000Avg. MW=250,000

TTgg = 100°C = 100°CPolyacrylonitrilePolyacrylonitrile

Avg. MW=200,000Avg. MW=200,000

PANPAN

TTgg = 87°C = 87°C

Poly(acrylic acid)Poly(acrylic acid)

Avg. MW=150,000Avg. MW=150,000

PAAPAA

TTgg = 102°C = 102°C

Poly(methyl methacrylate)Poly(methyl methacrylate)

Avg. MW=150,000Avg. MW=150,000

PMMAPMMA

TTgg = 102°C = 102°C

Poly(vinylidene fluoride)Poly(vinylidene fluoride)

Avg. MW=534,000Avg. MW=534,000

PVDFPVDF

TTgg = 38°C = 38°C

FEPFEP

Avg. MW=50,000Avg. MW=50,000

FEPFEP

Isotactic PolypropyleneIsotactic Polypropylene

TTgg = 22°C = 22°C

Avg. MW=250,000Avg. MW=250,000

iPPiPP

Increasing Increasing H-bonding H-bonding InteractionInteraction

Non-PolarNon-Polar PolarPolar

Page 35: Nanotools for Materials Science

Comparison of Force Comparison of Force Curves, Pull-On, and Pull-Curves, Pull-On, and Pull-

Off Forces Off Forces Between a SiOx Probe Between a SiOx Probe and a PMMA Surface in and a PMMA Surface in

Different MediaDifferent Media

Page 36: Nanotools for Materials Science

Israelachvili’s Approximation to Lifshitz’ Theory Israelachvili’s Approximation to Lifshitz’ Theory for Calculation of the Non-Retarded Hamaker Constantfor Calculation of the Non-Retarded Hamaker Constant

ATotal = Aν=0 + Aν> 0 ≈3

4kT

ε 1 − ε3( )ε 1 + ε3( )

ε 2 −ε 3( )ε 2 + ε3( )

+3 hνe

8 2

n12

− n32( ) n2

2− n3

2( )

n12

+ n 32( )

1 / 2n22

+ n32( )

1 / 2n12

+ n32( )

1 / 2+ n 2

2+ n3

2( )1/ 2

[ ]

HamakerHamakerConstantConstant

dipole-dipole anddipole-dipole anddipole-induced-dipole dipole-induced-dipole

componentscomponents(from dielectric constants)(from dielectric constants)

dispersion (London) componentdispersion (London) component(from refractive indices)(from refractive indices)

Work of Adhesion, W, calculated fromWork of Adhesion, W, calculated fromW≈AW≈ATotalTotal / (12D / (12Doo

22), ), where Dwhere Doo=0.165nm=0.165nm

is the commonly used value for the cut-off separationis the commonly used value for the cut-off separation

== ++

Page 37: Nanotools for Materials Science

2.98±0.16 nN

2.07±0.15 nN

0.62±0.20 nN

0.18±0.08nN

PS

iPP

PVDF

FEP

Non-Polar Polymer Adhesion is Due to London Interaction OnlyNon-Polar Polymer Adhesion is Due to London Interaction Only(all measurements under perfluorodecalin)(all measurements under perfluorodecalin)

(Lifshitz Theory)(Lifshitz Theory)

Yields tip radius of 50 nm,assuming JKR Theory holds

(confirmed by FESEM)

K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, LangmuirLangmuir 1414(1998)372(1998)372

Page 38: Nanotools for Materials Science

Towards a Force Spectroscopy of PolymersTowards a Force Spectroscopy of Polymers

K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, LangmuirLangmuir 1414(1998)372(1998)372

Silica TipSilica Tip Gold TipGold Tip

Page 39: Nanotools for Materials Science

HEIGHTFRICTIONHEIGHTFRICTION

Chemical Imaging of PS:PMMA Blend (1:10)Chemical Imaging of PS:PMMA Blend (1:10)(Spin-coated from toluene, 2 wt.% total) (Spin-coated from toluene, 2 wt.% total)

Plasma-CleanedPlasma-CleanedSiSi33NN44 Tip Tip

Plasma-CleanedPlasma-CleanedAu TipAu Tip

K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, K. Feldman, T. Tervoort, P. Smith, N.D. Spencer, LangmuirLangmuir 1414(1998)372(1998)372

Page 40: Nanotools for Materials Science

•STM and AFM

•AFM as a chemical probe: Oxides

•AFM as a chemical probe: Polymers

•Designer molecules for Biosensors

Outline

Page 41: Nanotools for Materials Science

Biosensors, ProteomicsBiosensors, Proteomics

Challenge: Challenge:

How to immobilize proteins How to immobilize proteins in an active, well-defined state?in an active, well-defined state?

Protein

Analyte/Antigen

Linker species

Active site

Denaturing Interactions

Page 42: Nanotools for Materials Science

Poly-l-lysine (PLL)-g-polyethylene glycol (PEG)

PLL backbonePLL backbone• MW: 20,000 to 350,000MW: 20,000 to 350,000• Positively charged at pH<10 Positively charged at pH<10

(R= –NH (R= –NH33++))

• Approximate length of backbone: Approximate length of backbone: 90 to 1000 nm90 to 1000 nm

PEG side chainPEG side chain• MW: 2000 to 5000MW: 2000 to 5000• Adsorbs water and has properties Adsorbs water and has properties

similar to watersimilar to water• Protein resistantProtein resistant• Approximate length of side Approximate length of side

chain:20chain:20 nm nm

J. Hubbell, D. Elbert, Chem Biol 5: (3) 177-183 (1998)

j

CH

CH2

CH2

CH2

CH2

C NH

O

CH C NH

O

CH2

CH2

CH2

CH2

NH2

CH C NH

O

CH2

CH2

CH2

CH2

CH C OH

O

CH2

CH2

CH2

CH2

H2

N

NH2

CH3

O

CH2

CH2

O

CH2

CH2

CO

NH

m≈100

NH2

k

PLL PLL backbonebackbone

PEG side PEG side chainchain

Page 43: Nanotools for Materials Science

PEG PEG side side chainchainss

PLL PLL back-back-bonebone

Oxide Oxide surfacesurface

Attachment of the Comb-like Co-Polymer Attachment of the Comb-like Co-Polymer to a Negatively Charged Surfaceto a Negatively Charged Surface

HydrophilicHydrophilic

UnchargedUncharged

Flexible chainsFlexible chains

High water contentHigh water content

Steric repulsionSteric repulsion

BiocompatibleBiocompatible

Positive chargePositive charge

High coverageHigh coverage

Kinetic inertnessKinetic inertness

pH dependencepH dependence

Page 44: Nanotools for Materials Science
Page 45: Nanotools for Materials Science

MMONITORING ONITORING BBIOMOLECULE IOMOLECULE AADSORPTIONDSORPTIONMMONITORING ONITORING BBIOMOLECULE IOMOLECULE AADSORPTIONDSORPTION

Waveguide

Bulk

Protein layer

• refractive index and thickness of adlayer can be calculated refractive index and thickness of adlayer can be calculated

• highly sensitive (~1 ng/cmhighly sensitive (~1 ng/cm22))

• 3-second time resolution3-second time resolution

• refractive index and thickness of adlayer can be calculated refractive index and thickness of adlayer can be calculated

• highly sensitive (~1 ng/cmhighly sensitive (~1 ng/cm22))

• 3-second time resolution3-second time resolution

00 100100 200200

Time [min]Time [min]

1.60761.6076

1.57221.5722

1.57261.5726

1.57301.5730

1.57341.5734

1.57381.5738

1.57421.5742

1.60721.6072

1.60681.6068

1.60641.6064

Eff

ec

tive

re

fra

cti

ve i

nd

ex T

EE

ffe

cti

ve r

efr

ac

tive

in

dex

TE

Effe

ctive

refra

ctive

ind

ex T

ME

ffec

tive re

frac

tive in

dex

TM

Antigen

Antibody

Buffer

Buffer

Page 46: Nanotools for Materials Science

Optical grating couplerOptical grating coupler

SiOSiO22/TiO/TiO22 waveguide waveguide

Full human serum Full human serum

HEPES bufferHEPES buffer

Without (bare oxide)Without (bare oxide) and with adlayer of and with adlayer of PLL-PEG PLL-PEG

Surface Modification with PLL-PEG – Effect on Serum AdsorptionSurface Modification with PLL-PEG – Effect on Serum Adsorption

G.L.Kenausis,J.Vörös,D.L.Elbert,N.Huang,R.Hofer,L.Ruiz,M.Textor J.A.Hubbell, and N.D.Spencer, J.Phys.Chem.B 104 (2000)3298-3309

Page 47: Nanotools for Materials Science

Osteoblast attachment to Osteoblast attachment to untreated SiOuntreated SiO22/TiO/TiO22 surface surface

Osteoblast attachment to SiOOsteoblast attachment to SiO22/TiO/TiO22

surface treated with PLL-surface treated with PLL-gg-PEG-PEG

Cell Attachment on PLL-PEG-coated Optical WaveguidesCell Attachment on PLL-PEG-coated Optical Waveguides

J. Vörös, G. Kenausis - ETH-LSSTJ. Vörös, G. Kenausis - ETH-LSST

Page 48: Nanotools for Materials Science

OOURUR A APPROACHPPROACH TOTO B BIOAFFINITYIOAFFINITY S SENSINGENSINGOOURUR A APPROACHPPROACH TOTO B BIOAFFINITYIOAFFINITY S SENSINGENSING

Controlled Controlled orientation and orientation and concentrationconcentration

Controlled Controlled orientation and orientation and concentrationconcentration

RECEPTORRECEPTORIMMOBILIZATIONIMMOBILIZATION

RECEPTORRECEPTORIMMOBILIZATIONIMMOBILIZATION

Biosensor surfaceBiosensor surface

Optimum Optimum sensitivity,sensitivity,

low non-specific low non-specific adsorptionadsorption

Optimum Optimum sensitivity,sensitivity,

low non-specific low non-specific adsorptionadsorption

ANALYTE ANALYTE DETECTIONDETECTIONANALYTE ANALYTE

DETECTIONDETECTION

Biosensor surfaceBiosensor surface

INITIAL SENSOR INITIAL SENSOR SURFACESURFACE

INITIAL SENSOR INITIAL SENSOR SURFACESURFACE

Passive:Passive:resistant to non-resistant to non-specific bindingspecific binding

Passive:Passive:resistant to non-resistant to non-specific bindingspecific binding

Biosensor surfaceBiosensor surface

Page 49: Nanotools for Materials Science

SSTARTING TARTING SSENSOR ENSOR SSURFACEURFACESSTARTING TARTING SSENSOR ENSOR SSURFACEURFACE

Biosensor surface

TODAYTODAYTODAYTODAY

Bioactive:Bioactive:nonspecific nonspecific bindingbinding

Bioactive:Bioactive:nonspecific nonspecific bindingbinding

Biosensor surface

OUR OUR APPROACHAPPROACH

OUR OUR APPROACHAPPROACH

Passive:Passive:resistant to resistant to nonspecific nonspecific bindingbinding

Passive:Passive:resistant to resistant to nonspecific nonspecific bindingbinding

Page 50: Nanotools for Materials Science

IIMMOBILIZATIONMMOBILIZATION OF OF RRECEPTOR ECEPTOR MMOLECULESOLECULESIIMMOBILIZATIONMMOBILIZATION OF OF RRECEPTOR ECEPTOR MMOLECULESOLECULES

Controlled Controlled orientation and orientation and concentrationconcentration

Controlled Controlled orientation and orientation and concentrationconcentration

Biosensor surface

Page 51: Nanotools for Materials Science

The “Glue”: BIOTIN-STREPTAVIDINThe “Glue”: BIOTIN-STREPTAVIDIN

Page 52: Nanotools for Materials Science

Control of Non-specific Adsorption and Specific InteractionsControl of Non-specific Adsorption and Specific Interactions

PL

L-P

EG

oxideoxide

= Specific binding functionality

PLL(20)-g[3.5]-PEG(2)/PEGbiotin(3.4)

NH

HN

NH

HN

NH

HN

NH

HN

NH

OHO

O

O

O

O

O

O

O

O

O

NH

NH2

NH2

NH2

NH

NH2

NH2

NH2

NH

O

OCH3

OO

O

O

O

O

OCH3

O

14

nm

NH2

H2N

n

HN

O

S

NHHN

O

Page 53: Nanotools for Materials Science

MODEL SYSTEM: BIOTIN - STREPTAVIDINMODEL SYSTEM: BIOTIN - STREPTAVIDIN

Specific binding of Specific binding of streptavidin to the streptavidin to the

biotinylated PLL-biotinylated PLL-gg-PEG-PEG

Specific binding of Specific binding of streptavidin to the streptavidin to the

biotinylated PLL-biotinylated PLL-gg-PEG-PEG

A protein-resistant surface A protein-resistant surface with streptavidin binding with streptavidin binding

sitessites

A protein-resistant surface A protein-resistant surface with streptavidin binding with streptavidin binding

sitessites

biotibiotinnbiotibiotinnPLL-PLL-PEGPEGPLL-PLL-PEGPEG

streptavidistreptavidinnstreptavidistreptavidinn

Biosensor surfaceBiosensor surface Biosensor surfaceBiosensor surface

Page 54: Nanotools for Materials Science

Specific binding of streptavidin on a Specific binding of streptavidin on a PLL-g-PEG-biotin surfacePLL-g-PEG-biotin surface

Specific binding of streptavidin on a Specific binding of streptavidin on a PLL-g-PEG-biotin surfacePLL-g-PEG-biotin surface

Mass

of

Pro

tein

s [n

g/c

mM

ass

of

Pro

tein

s [n

g/c

m22]]

Mass

of

Pro

tein

s [n

g/c

mM

ass

of

Pro

tein

s [n

g/c

m22]]

BUFFERBUFFERBUFFERBUFFERSERUMSERUMSERUMSERUM

BUFFERBUFFERBUFFERBUFFER

BUFFERBUFFERBUFFERBUFFER

STREPTAVIDINSTREPTAVIDINSTREPTAVIDINSTREPTAVIDIN

PLL-PLL-gg-PEG-PEG50% biotin50% biotinPLL-PLL-gg-PEG-PEG50% biotin50% biotin

400400400400

300300300300

200200200200

100100100100

0000

Time [min]Time [min]Time [min]Time [min]

100100100100 1801801801800000 120120120120 140140140140 16016016016080808080606060604040404020202020

J. Vörös - ETH-LSSTJ. Vörös - ETH-LSST

Page 55: Nanotools for Materials Science

AAPPROACHINGPPROACHING AA R REALEAL D DETECTIONETECTION S SYSTEMYSTEMAAPPROACHINGPPROACHING AA R REALEAL D DETECTIONETECTION S SYSTEMYSTEM

11stst step step11stst step step

Specific binding of Specific binding of streptavidin to biotinylated streptavidin to biotinylated

PLL-PLL-gg-PEG-PEG

Specific binding of Specific binding of streptavidin to biotinylated streptavidin to biotinylated

PLL-PLL-gg-PEG-PEG

Biosensor surfaceBiosensor surface

22ndnd step step22ndnd step step

Using streptavidin to Using streptavidin to immobilize biotinylated immobilize biotinylated

receptor moleculesreceptor molecules

Using streptavidin to Using streptavidin to immobilize biotinylated immobilize biotinylated

receptor moleculesreceptor molecules

Biosensor surfaceBiosensor surface

Page 56: Nanotools for Materials Science

Ad

sorb

ed

Mass [

ng

/cm

Ad

sorb

ed

Mass [

ng

/cm

22]]

Ad

sorb

ed

Mass [

ng

/cm

Ad

sorb

ed

Mass [

ng

/cm

22]]

500500500500

400400400400

300300300300

200200200200

100100100100

0000100100100100 200200200200 300300300300 4004004004000000

Time [min]Time [min]Time [min]Time [min]

BUFFERBUFFERBUFFERBUFFER

PLL-PLL-gg-PEG-biotin-PEG-biotinPLL-PLL-gg-PEG-biotin-PEG-biotin

StreptavidinStreptavidinStreptavidinStreptavidin

biotin-aIgGbiotin-aIgGbiotin-aIgGbiotin-aIgG

IgGIgGIgGIgG

TTYPICALYPICAL E EXPERIMENTXPERIMENT FORFOR B BIOAFFINITYIOAFFINITY A ASSAYSSAYTTYPICALYPICAL E EXPERIMENTXPERIMENT FORFOR B BIOAFFINITYIOAFFINITY A ASSAYSSAY

J. Vörös, N. Huang - ETH-LSSTJ. Vörös, N. Huang - ETH-LSST

Page 57: Nanotools for Materials Science

Bioaffinity Assay ApproachBioaffinity Assay Approach

Page 58: Nanotools for Materials Science

Biosensors

STM/AFM

AFM and Oxides

HEIGHTFRICTIONHEIGHTFRICTION

AFM and Polymers

Page 59: Nanotools for Materials Science

Oberstdorf, September, 2001


Recommended