+ All Categories
Home > Documents > Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ......

Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ......

Date post: 18-May-2018
Category:
Upload: phamlien
View: 212 times
Download: 0 times
Share this document with a friend
34
© 2010 IBM Corporation 2 nd Berkeley Symposium on Energy Efficient Electronic Systems | Berkeley, 3-4 November, 2011 Nanowire Tunnel FETs M. Björk, H. Schmid, K. Moselund, C. Bessire, H. Ghoneim, S. Karg, E. Lörtscher and Heike Riel IBM Research Zurich
Transcript
Page 1: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2010 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Berkeley, 3-4 November, 2011

Nanowire Tunnel FETs

M. Björk, H. Schmid, K. Moselund, C. Bessire, H. Ghoneim, S. Karg, E. Lörtscher and

Heike Riel

IBM Research – Zurich

Page 2: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

2

Roadmap of Energy Efficient Devices

Adapted from A. Ionescu

?

CNT

Page 3: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

3

Roadmap of Energy Efficient Devices

Supply voltage is biggest lever to address power performance trade-off

Tunnel FETs can achieve S < 60 mV/dec.

Tunnel FETs – the most promising steep slope device.

Page 4: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

4

Outline

All-Si Nanowire Tunnel FETs &

Esaki Diodes

Towards InAs/Si Heterostructure

Tunnel FETs

– InAs/Si Heterostructure Diodes

– First Demonstration of InAs/Si NW Tunnel FETs

Summary

Page 5: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

5

Tunnel FET – The Principle

Source Drain

TFET: Gated p-i-n structure (p-type tunnel FET)

Reverse bias: band-to-band-tunneling (BTBT)

OFF state VDS = negative

VGS = 0V

No current flows

EC

EV

n+

i

p

ON state VDS = negative

VGS = negative

Holes are injected into the channel via BTBT

EC

EV

n+

i p

T. Baba JJAP 1992

Page 6: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

6

Tunnel FET Functionality

Inter-band Tunnel FET requirements:

Steep slope Strong modulation of channel bands by gate (l)

Abrupt doping profile

Optimized source doping level

Ion high Small bandgap at source-channel tunneling point

Ioff low Wide(r) bandgap at drain-channel “contact” point

J. Knoch et al. SSE vol. 51, 2007

J. Appenzeller TED, 2005

BTBT acts as bandpass filter cutting off the tails of

the Fermi distribution

Effectively cooling down the system

S < 60 mV/dec possible Filtering of the

Fermi function

source channel

EC

( )

+ DF - =

G

G WKB

tunneling on E qh

E m T I

3

2 4 exp ~

2 / 3 * l

Needed for

high TFET

performance {

Page 7: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

7

All-Si Nanowire Tunnel FET – Implementation

Vapor-Liquid-Solid (VLS) grown and in situ doped

No high temperature anneal required to activate dopants

n++ (source) phosphorous 1.5x1020 cm-3 (solubility limit)

i (channel) not intentionally doped

p (drain) boron ~5x1018 cm-3

p-segment is tapered due to SiH4/B2H6 reactivity

Wire diameters: 10 - 80 nm

Gate oxide used: SiO2, HfO2, Al2O3

500 nm

Growth direction

p+ shell taper BTBT junction

Si Nanowire Tunnel FET

H. Schmid et al. J. Appl. Phys., 103 (2008)

H. Schmid, et al, Nano Letters, 9, 173 (2009)

Page 8: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

8

All-Si Nanowire Tunnel FET – Results

Ion: HfO2 = 0.1 mA/mm

SiO2 = 0.025 mA/mm

(VDS=-1V, VGS=-2V)

Improves with high-k due to

improved λ

Ioff : ~ 10-7 mA/mm

Avg. slope Point slope

HfO2 = 120 90 mV/dec

SiO2 = 200 60mV/dec

(10-7 to 10-3mA/mm)

5nm HfO2, dNW= 50nm, l=14nm

20nm SiO2, dNW= 40nm, l= 23nm

K. Moselund et al.,

ESSDERC, 2009

Improve:

Doping concentration

High-k gate oxide quality

Thinner wire diameter

Junction abruptness

Page 9: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

9

Proof of Tunnel FETs

Property Observation

(1) Id vs Vds Superlinear

(2) SS vs. T Constant

(3) Ion vs. T Slightly increasing

(4) SS vs. Id Continually increasing

(5) Ion vs Lg Constant

(1)

(2) (3) (4)

Demonstration and proof of working TFETs but Ion and S need improvement

Page 10: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

10

Tunneling – Importance of Doping Level & Interface Abruptness

Grown p-n Junction:

VLS-grown and in-situ doped SiNW p-n junction

Doping levels: NA ~ 5·1018 cm-3 , ND = 1.5·1020 cm-3

Wire diameter: 60 nm

Ideality factor of = 2.3

Very low TUNNELING in reverse direction & no NDR !!

Too low doping and / or not sharp enough doping profile

p-n Junction

100 nm

Page 11: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

11

Tunneling – Importance of Doping Level and Interface Abruptness

p-n Junction:

VLS-grown in-situ n-doped Si nanowire

on p-Si <111> substrate

Wire diameter: 60 nm

Doping levels: NA ~ 1·1020 cm-3

ND ~ 1·1019 cm-3

Improved tunnel junction

n+ SiNW

p+

Au tip

Peak-to-valley-ratio

(PVCR) 1.9 – 4.1

forward reverse

Si Nanowire Diode Fabrication

Page 12: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

12

Influence of p-type doping:

Strong dip (negative differential resistance, NDR)

Esaki diodes!

All SiNW diodes grown under identical conditions

Forward and reverse current density increase with

doping level in the substrate

NDR indicates high doping level and abrupt profile

Record high PVCR indicates near ideal

tunnel junctions

~ 9x1019cm-3

~ 6x1019cm-3

Fabricated ‘beautiful’ SiNW Esaki tunnel diodes

p-doping ~1.2x1020cm-3

Tunneling – Importance of Doping Level and Interface Abruptness

Page 13: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

13

Si Nanowire Diode Properties

Author Year Method PCD PVCR

Franks ‘65 Alloying 1000 3.9

Jorke ‘93 MBE - 2.0

Rommel ‘98 MBE 3200 1.5

Duschel ‘95 MBE 80 2.7

Thompson ‘09 MBE 1500 2.5

Oehme ‘09 MBE 7 3.9

Oehme ‘10 MBE 4 5.1

This work ‘11 VLS 2500 3.8

SiNW based Esaki diodes have excellent device properties

Large reverse current important figure for TFETs

High PVCR = low trap density, required to get steep slope characteristics

ID rev ~ 100 kA/cm2 at 0.4V

NA= 6, 9 and 12x1019cm3 Simulations show that ND at the junction is higher than in the wire:

ND ~ (5-10)×1019 cm-3 at the nanowire side of the junction

Page 14: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

14

Summary of Published Si TFET Performance

Reference Technology tox tchannel Local SS

[mV/dec]

SS over

min. 2

decs

Ion

[mA/mm] Ion/Ioff Year

W. M. Reddick and G. A. J. Amaratunga, Applied Physics Letters, 1995, Vol. 67, pp. 494-496

P-well, planar 24nm SiO2 ∞ >600 >600 ~0.001 105 1995

P.-F. Wang et al., Solid-State Electronics, 2004, Vol. 48, pp. 2281–2286. C-TFET, planar non-defined

non-

defined ~300 ~300 ~3 10

5 2004

K. K. Bhuwalka et al, Japanese Journal of Applied Physics, 2006, Vol. 45, No. 4B, pp. 3106-3109.

MBE SiGe,

vertical 4.5nm SiO2

non-

defined >400 >400 ~1 10

6 2006

W. Y.Choi, J. D. Lee, and B. Park, Japanese Journal of Applied Physics, 2007, Vol. 46, pp. 2622-2625.

SOI, Mesa, planar

3nm SiO2 non-

defined ~130 ~130 ~0.1 ~10

3 2007

W. Y. Choi, B. Park, J. D. Lee, and T. K. Liu, Electron Device Letters, 2007, Vol. 28, No. 8, pp. 743-745.

SOI, Mesa,

planar 3nm SiO2 70nm 52.8 <60 12.1 10

4 2007

M. T. Björk et al.. Applied Physics Letters, 2008, Vol. 92, No. 193504. VLS, Si NW 20nm SiO2 60nm ~800 ~800 ~0.01 >10

3 2008

F. Mayer et al.., IEDM, 2008, pp. 163-166. SixGe1-xOI 3nm HfO2 20nm x=1: 42

x=0: ~500

x=1: 60

x=0: ~500

x=1: 0.01

x=0: 1

x=1: 104

x=0: 102

2008

T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, IEDM, 2008, pp. 947-949. Strained Ge, DG

Unknown ≥ 5nm

~10nm (DG

~5nm)

~50 ~60 300 105 2008

M. Fulde et al. INEC, 2009 Complementary, fin TFET, SOI

1.6nm HfSiON 1.9nm SiOMN

Wfin=30nm

210 ~250 0.04 ~103 2008

Kim et al. Symp. VLSI Tech. 2009, pp. 178-179. Ge-source, Si

channel SOI 3nm SiO2 70nm ~40 ~60 0.4 >10

6 2009

K. E. Moselund et al., DRC 2009. VLS, Si NW 20nm SiO2 40nm <60 ~100 ~0.3 107 2009

K. E. Moselund et al., ESSDERC 2009. pp. 448-451 VLS, Si NW 5nm HfO2 50nm ~90 ~100 ~0.3 107 2009

D. Kazazis et al., Applied Physics Letters 94, no.

263508, 2009. Ge-OI 6nm HfO2 ~60nm 469 >400 ~2 <10

2 2009

C. Sandow et al. Solid-State Electronics, Vol. 53, 10, 2009

Thin SOI 3.5, 4.5nm

SiO2 20nm 300 ~300 ~0.05 ~10

4 2009

Z. X. Chen et al. Electron dev. Lett. Vol. 30, pp.754--

756, 2009

Eched vertical

SiNW 4.5nm SiO2 200nm ~70 ~70 53 ~10

7 2009

Nah et al. (Tutuc) GeSixGe1-x core-

shell NW 5.5nm HfAlO2 36nm ~370 ~370 5 ~10

3 2010

D. Leonelli et al. ESSDERC 2010, p.170-173 Thin SOI 2nm HfO2 on

1nm SiO2 65nm ~100 ~100 46 (pTFET) >10

6 2010

K. Jeon et al. VLSI, pp. 121-122 SOI, with NiSi +

pocket (gFET)

0.9nm EOT

(HfO2) 40nm 46 ~46 1.2 ~7x10

7 2010

Gandhi, R et al. IEEE Electron Device Letters, 2011, 32, 437-439

Si vertical etched NW

4.5nm thermal SiO2

20-200 30 50 0.02 ~105 2011

Not all in one device yet

Point slope does not help

Si alone may not make it

Page 15: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

15

Further Optimization of Tunnel FETs

Parameter Means of Improvement

l Electrostatics: GAA geometry,

Materials (high-k) & abrupt junction,

Small body thickness.

EG Source: SiGe or InAs, III-V

heterostructures, (strain), CNT

m* Small effective tunnel mass, SiGe,

III-V, CNT

Si In(Ga)As

D S G

Si Ge

D S G

P-TFET

N-TFET

Target:

• S < 60 mV/dec over many decades

• High Ion (~100 m A/mm) and low Ioff

• Low V (<0.5 V) ( )

+ DF - =

G

G WKB

tunneling on E qh

E m T I

3

2 4 exp ~

2 / 3 * l

Page 16: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

16

InAs Source on Silicon Tunnel FET

Advantages:

III-V source: small bandgap high currents

A. Verhulst et al. IEEE EDL, 29,

1398, 2008

Page 17: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

17

InAs Source on Silicon Tunnel FET

Advantages:

III-V source: small bandgap high currents

Intrinsic Si channel: best dielectric interface

(less Dit than III-V)

Si drain: established Si platform

Grown wires:

– on doped substrates enable formation

of tunnel junctions

– allow for strain accommodation and

material combinations

– provide gate-all-around architecture

Targeted TFET structure

Page 18: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

18

InAs Source on Silicon Tunnel FET

Advantages:

III-V source: small bandgap high currents

Intrinsic Si channel: best dielectric interface

(less Dit than III-V)

Si drain: established Si platform

Grown wires:

– on doped substrates enable formation

of tunnel junctions

– allow for strain accommodation and

material combinations

– provide gate-all-around architecture

Challenges:

Integration of InAs on Si with defect-free interface

(Lattice mismatch InAs/Si 11%)

Appropriate doping levels in source, channel, and drain

High-k metal gate stack with low Dit

Processing of vertical devices with scaled dimensions

Targeted TFET structure

Page 19: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

19

InAs Nanowire Growth (MOCVD) on Si <111>

InAs nanowires epitaxially grown on Si <111>

NW structure essential for material composition,

because of 11% lattice mismatch

Patterned SiO2 mask used for selective NW growth

Precursors: Trimethylindium [TMIn]

Tertiarybutylarsine [TBA]

Temperature: 520°C

n-type behavior (as grown ~5·1017cm-3)

200 nm diameter InAs wires with

hexagonal cross-section.

n-type InAs NW on p-type Si wafer

Page 20: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

20

Diode Processing

(1) Deposition of spacer polymer

(2) Back-etch of spacer polymer(3) Deposition of photo- resist

(4) Exposure and development of photo-resist

(5) Evaporation of Ti/Al (6) Lift-off of photo-resist

InAs-Si pn-junction forms between NW and bulk wafer

Contact pad

Nanowire

InAs/Si pn-junction forms between NW and bulk wafer

Diode characteristics to elucidate band line-up & tunneling mechanism

Page 21: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

21

InAs-Si Heterojunction Tunnel Diodes

Effect of Silicon substrate doping:1×1016 cm-3, 1×1019 cm-3, 4×1019 cm-3, 1×1020 cm-3

InAs wire diameter d ~ 145 nm

Small Eg,eff = 220meV

Esaki Diode:

Forward direction

- NDR for high substrate doping

- PVCR up to 2.44

High quality pn-heterojunction

- Ipk up to ~ 10 kA/cm2

Reverse direction

- JD up to 250 kA/cm2 @ 0.5V

Björk et al. APL 2010

Forward Reverse

p-Si concentration

NDR signature of high quality heterojunction

High tunnel current densities achieved, similar to all III-V junctions

Low defect junctions and high currents are crucial for Tunnel FETs

Eg,eff = 220 meV

Page 22: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

22

InAs/Si Interface Characterization – HRTEM

FIB preparation &

HR TEM analysis

InAs is ZB with stacking

faults

Lattice mismatch is 11.6 %

Abrupt interface

Tilted view shows in-plane

dislocation network at

InAs/Si interface with 36Å

periodicity

InAs

Si

Tilted along <111>

Geometric phase analysis

Courtesy of:

K. Reuter and F. Ross, IBM YKT

Page 23: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

23

Tunneling at the InAs/Si Interface

InAs/Si interface quality is critical for tunneling

Certain variability in PVCR observed from device to device

Low temperature transport measurements of Si / InAs tunnel diodes performed to

– get insight into tunnel process

– investigate the interface quality

Temperature dependence:

– Excess current decreases with lower Temp.

– Higher PVCR at 4K due

to lower excess current

– Rs changes

Page 24: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

24

InAs/Si Interface Characterization

Low-T Electrical Characterization

Peaks in d2I/dV2 at low voltage indicate

trap-assisted tunneling via dislocations and

point defects at the interface

Peaks disappear for biases > ~100 mV

reverse bias

– One-sided junction

– With increasing reverse bias the

generation rate shifts into InAs,

away from the interface.

Traps exist at interface but may be less

critical as tunneling occurs in InAs

reverse forward

Page 25: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

25

InAs-Si Nanowire Fabrication for Tunnel FETs

Key fabrication steps:

Channel:

Si epiwafer

MBE epilayer of i -Si on p+ Si

thickness 150 nm

Source:

InAs nanowire growth in mask

openings by MOCVD at 520 °C.

Diameter = 100 to 150 nm,

Height = 600 to 700 nm

Drain:

InAs NW acts as self-aligned

mask for Si channel and drain

during DRIE etching

p

i

Page 26: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

26

InAs-Si Nanowire TFET Fabrication

Final Planarization step

Source contact fabrication

Structural analysis by cross sectioning (FIB/SEM/TEM)

400 nm

Page 27: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

27

Transfer and Output Curves of InAs-Si Nanowire TFET

Transfer characteristics of single devices

with varying VDS and of several devices

with normalized current density.

Ion < 0.4 mA/mm at 1VDS

SS > 220 mV/dec

Significant shift in the transfer curves

observed

Output curves of an InAs-Si TFET showing

superlinear behaviour in ID vs. VDS

Indication of an additional series resistance

(barrier)

Electrical results: Transfer Characteristics Several Devices

Page 28: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

28

Temperature-Dependent Measurements

Temperature-dependent transfer

characteristics shows strong variation of

drain current

SS increases with T

Arrhenius plot of ID. The slope corresponds

to an activation energy of 80 meV

Results suggests the presence of non-ideal

(source) contacts

-1.5 -1.0 -0.5 0.0 0.5 1.0

10-13

10-12

10-11

10-10

10-9

10-8

10-7

VDS

= 1V

T= 300K

T= 150 K

I D [

A]

VGS

[V]

First InAs-Si TFET fabricated and measured

Non ohmic contacts are likely limiting device performance

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

10-10

10-9

10-8

I D a

t V

GS=

-1V

[A

]1/Temperature [1/K]

EA

~0.080eV

VDS= 0.5 V

VDS= 1 V

EA= 80 meV

Page 29: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

29

Improved Top Contact

Improved contact increases current: Ion ~ 2 μA/μm (VGS=VDS=1V)

Ion less T-dependent indication of reduced potential barrier

Minimum SS (2 dec. of current) ~100mV/dec. compared to 220mV/dec. before.

InAs-Si Tunnel FET demonstrated

Optimization on-going (doping, oxide quality, wire diameter, …)

Page 30: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

30

Summary

All-Si Nanowire Tunnel FETs with decent average S of 120 mV/dec demonstrated.

High quality Si Esaki diodes based on nanowires demonstrated.

InAs/Si Esaki tunnel diodes demonstrated.

– NDR with PVCR of 2.44 indicates abrupt, high quality heterojunction

– Tunnel current of 250 mA/cm2 at 0.5 V reverse direction achieved

– Dislocations at heterointerface present but seem not to influence current at high

reverse bias one-sided tunnel junction

1st vertical InAs/Si Nanowire Tunnel FET demonstrated

Page 31: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

31

Acknowledgements

Nanoscale Electronics Team:

B. Gotsmann, P. Das Kanungo, F. Menges, P. Mensch, P. Nirmalraj, A. Rey,

F. Schwarz, G. Signorello, M. Tschudy

ZRL S&T Department:

M. Richter, W. Riess, D. Webb, D. Widmer, U. Drechsler, …

TEM: K. Reuter, F. Ross, L. Gignac, C. Breslin

Teams at IBM Watson Research Center: W. Haensch et al.

Andreas Schenk, ETHZ

EU Funding: FP6 NODE, FP7 Steeper

Thank you for your attention

Page 32: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

32

Vertical SiNW TFET

Vertical, etched Si NW TFET

Minimum SS 30 mV/dec

Ca 50 mV/dec over 3 order of magnitude

Wire diameter critical for small SS

Ion/Ioff 105

Low-T dopant-segregated silicidation to achieve high

and abrupt doping

Gandhi et al. IEEE EDL online, 2011

Diameter-dependence of SS

Smaller diameter:

better electrostatics

More efficient dopant segregation

higher doping and more abrupt

Page 33: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

33

Undoped InAs on p-type Si (1×1016 cm-3)

NW diameter ~150 nm

Ideality factor: 2-2.4

Temperature Dependence:

Reverse direction

• Shockley-Read-Hall generation at low voltages

• Impact ionization at higher voltages

Goal: Identify the band-lineup in the

InAs/Si heterodiode

InAs-Si Heterojunction Diodes – InAs on Low Doped Si

Reverse Direction

Page 34: Nanowire Tunnel FETs - Energy-Efficient Electronic ... · All-Si Nanowire Tunnel FETs & ... hei@zurich.ibm.com 5 ... of Applied Physics, 2007, Vol. 46, pp. 2622-2625. SOI, Mesa, planar

© 2011 IBM Corporation

2nd Berkeley Symposium on Energy Efficient Electronic Systems | Heike Riel – [email protected]

34

Temperature Dependence:

Forward direction

• Barrier height ΦB derived from Arrhenius plot

• Bias-dependent barrier height ΦB (V) observed

Zero bias barrier ΦB ~ 275 meV

• Valence band offset of ΔEV ~130 meV

(assuming InAs doping is 5×1017 cm-3)

Effective bandgap: Eg,eff = 220 meV

InAs-Si Heterojunction Diodes – InAs on Low Doped Si

Forward Bias

M

. B

joe

rk e

t a

l. A

PL

20

10

Small effective bandgap High tunnelling probability


Recommended