+ All Categories
Home > Documents > NASA’s Deep Impact Mission - Institute for Astronomy · is totally unknown. ... Moving to top of...

NASA’s Deep Impact Mission - Institute for Astronomy · is totally unknown. ... Moving to top of...

Date post: 01-Apr-2018
Category:
Upload: nguyenhuong
View: 217 times
Download: 1 times
Share this document with a friend
49
NASA NASA s Deep Impact Mission s Deep Impact Mission K. J. K. J. Meech Meech , , Session #30 Session #30 Wed 1/19/05 Wed 1/19/05
Transcript

NASANASA’’s Deep Impact Missions Deep Impact Mission

K. J. K. J. MeechMeech,,

Session #30 Session #30 –– Wed 1/19/05 Wed 1/19/05

CometaryCometary Dichotomies Dichotomies

Comets have the most primitive,Comets have the most primitive,accessible SS materialaccessible SS material

Comets must become dormantComets must become dormant

There must be many dormantThere must be many dormantcomets among the comets among the NEAsNEAs

More chemical & physical know-More chemical & physical know-ledge than for other small bodiesledge than for other small bodies

Coma abundances: used to inferComa abundances: used to inferproto-planetary disk icesproto-planetary disk ices

Comets break apart under smallComets break apart under smallstressesstresses

We do not know what is hiddenWe do not know what is hiddenbelow the evolved surfacebelow the evolved surface

Is the ice exhausted or sealedIs the ice exhausted or sealedin?in?

We can not recognize dormantWe can not recognize dormantcomets among comets among NEAsNEAs

We donWe don’’t know how to use theset know how to use thesedetails to constrain models ofdetails to constrain models ofnucleinuclei

Abundances in the coma differAbundances in the coma differsignificantly but in unknownsignificantly but in unknownways from nuclear abundancesways from nuclear abundances

Variation of strength with scaleVariation of strength with scaleis totally unknownis totally unknown

Nuclear Models DisagreeNuclear Models Disagree

Benkhoff-Huebner model

density increasing monotonically from surface to 10’s of meters.

Prialnik-Mekler model

dense H2O-ice surface layer

lower density material below

Differences Among NucleiDifferences Among Nuclei

ESO ESO GiottoGiotto –– 1P/Halley 1P/Halley –– March 1986 March 198615.3 x 7.2 x 7.22 km15.3 x 7.2 x 7.22 km

Deep Space 1 Deep Space 1 –– 19P/Borrelly 9/22/01 19P/Borrelly 9/22/01Flyby 3417 kmFlyby 3417 km

8 km radius, 8 km radius, AlbedoAlbedo 0.009-0.03 0.009-0.03

Stardust Stardust –– 81P/Wild 2 12/31/03-1/04/04 81P/Wild 2 12/31/03-1/04/04Flyby 236 kmFlyby 236 km

5 km diameter5 km diameter

Surface features imply strengthSurface features imply strength

Comet MissionsComet Missions

GiottoGiotto Halley Halley 1986 1986

FlybyFlyby

Deep Space 1Deep Space 1 9/01 9/01FlybyFlyby

StardustStardust 1/04 1/04Sample returnSample return

CONTOURCONTOUR 3/12 3/12Tour 3 cometsTour 3 comets

Deep ImpactDeep Impact 4/05 4/05Active ExperimentActive Experiment

Rosetta(ESARosetta(ESA)) 2015 2015Orbit/LanderOrbit/Lander

Simple but Challenging, 33 yrs agoSimple but Challenging, 33 yrs ago

“ It [an asteroid] was racing past them at almost thirtyIt [an asteroid] was racing past them at almost thirtymiles a second; they had only a few frantic minutes inmiles a second; they had only a few frantic minutes inwhich to observe it closely. The automatic cameraswhich to observe it closely. The automatic camerastook dozens of photographs, the navigation radar'stook dozens of photographs, the navigation radar'sreturning echoes were carefully recorded for futurereturning echoes were carefully recorded for futureanalysis - and there was just time for a single impactanalysis - and there was just time for a single impactprobe. The probe carried no instruments; none couldprobe. The probe carried no instruments; none couldsurvive a collision at such cosmic speeds. It wassurvive a collision at such cosmic speeds. It wasmerely a small slug of metal, shot out from Discoverymerely a small slug of metal, shot out from Discoveryon a course which should intersect that of the asteroid.on a course which should intersect that of the asteroid.

.....They were aiming at a hundred-foot-diameter target,.....They were aiming at a hundred-foot-diameter target,from a distance of thousands of miles... Against thefrom a distance of thousands of miles... Against thedarkened portion of the asteroid there was a sudden,darkened portion of the asteroid there was a sudden,dazzling explosion of light. ...dazzling explosion of light. ...””

Arthur C. Clarke, 1968. In Arthur C. Clarke, 1968. In 2001: A Space Odyssey2001: A Space Odyssey. Chapter 18. Chapter 18

The Deep Impact MissionThe Deep Impact Mission

Primary GoalPrimary Goal

Differences between interiorDifferences between interior

and surfaceand surface

Pristine Solar SystemPristine Solar System

materialmaterial

Secondary GoalSecondary Goal

Distinguish extinction fromDistinguish extinction from

dormancydormancy

Other GoalsOther Goals

CrateringCratering physics physics

Assess comet impact hazardAssess comet impact hazard

Calibrate crater recordCalibrate crater record

Comet evolutionComet evolution

An artificial meteoriteAn artificial meteoriteimpactimpact

360 kg @10.2 km / s360 kg @10.2 km / s

100m crater, few 100 s100m crater, few 100 s

Unlike SL9 at Jupiter,Unlike SL9 at Jupiter,we know everythingwe know everythingabout about impactorimpactor

2 spacecraft2 spacecraft

Smart Smart impactorimpactorTargeting & imagingTargeting & imaging

FlybyFlyby

Fly together on 6 moFly together on 6 motrajectorytrajectory

Spacecraft OverviewSpacecraft Overview

InstrumentsInstrumentsMRI, ITS, HRIMRI, ITS, HRI

•• ITS ITS

•• HRI HRI

•• CCD imaging at 0.4 CCD imaging at 0.4””/pix/pix

•• 1-5 micron spectroscopy 1-5 micron spectroscopy

•• MRI MRI

•• CCD imaging through filters CCD imaging through filters

ImagersImagers

744 @ 1.04 744 @ 1.04 µµmm

209 @ 2.6 209 @ 2.6 µµmm

385 @ 4.8 385 @ 4.8 µµmm

//

1.05-4.8 1.05-4.8 µµmm

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

2.5 3.0 3.5 4.0 4.5 5.0

Wavelength (microns)

Su

rface B

rig

htn

ess (

kR

)

150 K

145 K

140 K

135 K

CO Requirement

Pre-Impact

3.5 um Requirement

CO

CO2

H2CO

H2O

SpectrographSpectrograph

17.517.517.517.53535f/#f/#

0.20.2

[20 km][20 km]

771.41.4m/pix @ 700m/pix @ 700

kmkm

0.3-1.00.3-1.00.3-1.00.3-1.00.3-1.00.3-1.0 [ [µµm]m]

10103030Diameter [cm]Diameter [cm]

ITSITSMRIMRIHRIHRIParameterParameter

Approach & EncounterApproach & Encounter

Tempel-1Nucleus

Shield ModeAttitude through

Inner Coma

Science and Autonav Imaging to

Impact + 800 sec

ITM-1 StartE-88 min

ITM-2E-48 min

ITM-3E-15 min

Impactor ReleaseE-24 hours

TCA +TBD sec

AutoNav EnabledE-2 hr

Flyby S/CDeflection Maneuver

E-23.5 hr

2-wayS-band

Crosslink

500 km

Flyby S/C Science

Data Playback at 175 kbps*

to 70-meter DSS

Flyby Science

Realtime Data

at 175 kbps*

* data rates without Reed-Solomon encoding

Flyby S/C Science And Impactor Data

at 175 kbps*

64kbps

Spacecraft ImagesSpacecraft Images

Launch January 12, 2005Launch January 12, 2005

Launch window 2 weeksLaunch window 2 weeks

Encounter July 4, 2005, 6:10 UTEncounter July 4, 2005, 6:10 UT

Current Status 1/5/05Current Status 1/5/05

Installing 3Installing 3rdrd stage motor stage motor

Moving to top of launch vehicle pad 17BMoving to top of launch vehicle pad 17B

Installing a pro-Installing a pro-

tectivetective cover on cover on

the spacecraftthe spacecraft

before transportbefore transport

Launch 1/12/05Launch 1/12/05

Deep Impact First LightDeep Impact First Light

Image of DI from Palomar,Image of DI from Palomar,1/13/051/13/05

First light on MRI & HRIFirst light on MRI & HRI

Moon calibration on MRIMoon calibration on MRI

Time of Impact Time of Impact –– 6:10 UT 6:10 UTVisible for major observatories (Chile, Hawaii)Visible for major observatories (Chile, Hawaii)

Radio tracking (Radio tracking (s/cs/c data uplink/downlink) data uplink/downlink)

Coordinate with HSTCoordinate with HSTOrbit not known until couple months outOrbit not known until couple months out

+/- 45 min+/- 45 min

Probably later (SSA)Probably later (SSA)

EncounterEncounter

Impact 6:10 UTImpact 6:10 UT7/04/057/04/05

12:5012:508:308:308:058:051.4; day1.4; dayAustraliaAustralia

7:557:5512:5012:5012:2512:256.0 Rising; day6.0 Rising; dayChinaChina

19:3519:3518:2018:2017:5017:50SetSetWise [Israel]Wise [Israel]

23:1023:1021:4521:4521:2021:20SetSetLa PalmaLa Palma

3:403:4023:2023:2022:5522:55SetSetCTIO/ESOCTIO/ESO

5:185:184:154:153:503:502.6 Setting; dark2.6 Setting; darkKPNOKPNO

5:355:354:404:404:104:102.3 Setting; dark2.3 Setting; darkPalomarPalomar

8:448:446:296:295:595:591.17 Twilight1.17 TwilightMKOMKO

X = 2X = 2ATwiATwi End EndATwiATwi Beg BegX @ 6UTX @ 6UTLocationLocation

CrateringCratering Physics Physics

Gravity control expectedGravity control expectedSize & time sensitive to comet propertiesSize & time sensitive to comet properties

Size ~ (Size ~ (impactorimpactor mass) mass)1/31/3; insensitive to other properties; insensitive to other properties

EjectaEjecta speed, jets speed, jets –– sensitive to other properties sensitive to other properties

Compression control possibleCompression control possibleScaling relationships not knownScaling relationships not known

Mechanism used to explain Mechanism used to explain MathildeMathilde’’ss craters craters

Split NucleusSplit Nucleus

Strength control possibleStrength control possibleSize (& Size (& ejectaejecta speed) depends on speed) depends on impactorimpactor density density

Smaller crater than gravity controlSmaller crater than gravity control

Greater depth/diameterGreater depth/diameter

Details sensitive to Details sensitive to impactorimpactor shape shape

AerogelAerogel capture, shattering, transit capture, shattering, transit

Distinguish mode by Distinguish mode by ejectaejecta morphology & size morphology & size

CrateringCratering Physics Physics

UnknownsUnknowns

Equation of stateEquation of state

Shock release depends onShock release depends onporosityporosity

ImpactorImpactor shape determines shape determinesvaporization patternvaporization pattern

Depth of vaporizationDepth of vaporizationdepends on layeringdepends on layering

Comet physicalComet physicalparametersparameters

Porosity, density, layering,Porosity, density, layering,compositioncomposition

Science GoalsScience Goals

Learn about physicalLearn about physical

properties of targetproperties of target

Flash spectroscopy Flash spectroscopy –– relative relative

abundancesabundances

Changes in Changes in outgassingoutgassing

chemistrychemistry

Contact & CompressionContact & Compression

Shocks in target & projectileShocks in target & projectile

T & P jump behind shockT & P jump behind shock

Jetting into vacuum Jetting into vacuum

luminous flashluminous flash

Timescale ~ Timescale ~ DiamDiam / v ~ 0.01 s / v ~ 0.01 s

ExcavationExcavation

Shock melts or vaporized targetShock melts or vaporized target

((EqnEqn of state) of state)

Release of shock Release of shock excavation excavation

flowflow

EjectaEjecta launched on ballistic launched on ballistic

trajectorytrajectory

Timescale ~ few x (D/g)Timescale ~ few x (D/g)0.50.5 ~400 s ~400 s

ModificationModification

CollapseCollapse

Timescale few x (D/g)Timescale few x (D/g)0.50.5

CrateringCratering

Formation Time ScalingFormation Time Scaling

T ~ m1/6

T ~ c-2/3

T ~ Rc-2/3

800-sec observing

window provides large

margin for extreme

cometary properties,

even down to bulk

density 0.1 g/cc

Most important thing is to know impactor properties

Different Cometary Bulk Densities(Affects Gravitational Acceleration)

Impactor Mass (kg)

Cra

ter

Fo

rma

tio

n T

ime

(s

)

Surface Density = 0.3 g/cc

150

200

250

300

350

400

450

50

550

100 200 400 600 1000

Bulk Density = 0.3 g/cc

Bulk Density = 0.8 g/cc

Ames Vertical Gun FacilityAmes Vertical Gun Facility

Cu sphere @ 4.5 km/sCu sphere @ 4.5 km/s

Target: porous pumiceTarget: porous pumice

(1 g/cc)(1 g/cc)

500 frames / sec500 frames / sec

6060oo impact angle impact angle

Gravity controlGravity control

Experiments: P. SchultzExperiments: P. Schultz

EjectaEjecta Plume Simulations Plume Simulations

Strength dominatedStrength dominated

Cone detachesCone detaches

Volatiles Volatiles –– drive drive

ejectaejecta, fill in cone, fill in cone

Gravity dominatedGravity dominated

Expected scenarioExpected scenario

Sim

ula

tions:

J.

Ric

hard

son

Sim

ula

tions:

J.

Ric

hard

son

Flyby SimulationsFlyby Simulations

MRI (-30 to +13.5 min)MRI (-30 to +13.5 min) HRI (-30 to +13.5 min)HRI (-30 to +13.5 min)

Simulations: J. Richardson, Shape Model: N. Simulations: J. Richardson, Shape Model: N. MastrodemosMastrodemos

ModellingModelling Mass / Density Mass / Density

CanCan’’t use t use s/cs/c trajectory trajectory

Subsurface flybySubsurface flyby

Viewing time 800 sViewing time 800 s

Use velocity to Use velocity to estest M M

Large blocks Large blocks –– lookbacklookback

Simulations: J. RichardsonSimulations: J. Richardson

Nucleus CharacterizationNucleus Characterization

–– Where are We? Where are We?

Size / Size / AlbedoAlbedo (Keck/SIRTF) (Keck/SIRTF)

RRNN = 3.4 +/- 0.2 = 3.4 +/- 0.2

a/b = 3.0 +/- 0.2a/b = 3.0 +/- 0.2

14 x 5 x 5 km14 x 5 x 5 km

PvPv=0.035 +/- 0.005=0.035 +/- 0.005

RotationRotation

P = 41.85 +/- 0.1 hrP = 41.85 +/- 0.1 hr

Pole (Pole ( ,, ))

85+/-10, 10+/-10 deg or85+/-10, 10+/-10 deg or

775+/-10, 45+/-155+/-10, 45+/-15

Phase fn = 0.074 +/- 0.006Phase fn = 0.074 +/- 0.006

9P/Tempel 1 May 2004 HST Data

13.0

13.5

14.0

14.5

0 10 20 30 40

Time (hours)

Ma

gn

itu

de

4 pxl aperture Best fit (F+3harmonics)

To be done (To be done (SprSpr 05) 05)

Dust Dust modellingmodelling

Onset of Onset of outgassingoutgassing

Search for JetsSearch for Jets

March 2004March 2004

SpitzerSpitzer

ObservationsObservationsIRAC 4.5 & 8.0 IRAC 4.5 & 8.0 µµm, little dustm, little dust

MIPS 16 & 22 MIPS 16 & 22 µµm m models models

show <10% dustshow <10% dust

ResultsResults

Radius 2.9 +/- 0.1 kmRadius 2.9 +/- 0.1 km

Thermal inertia, I=1-20 J/K/mThermal inertia, I=1-20 J/K/m22/s/s0.50.5

ppvv = 0.02-0.03 = 0.02-0.03

Active fraction ~ 14+/-5%Active fraction ~ 14+/-5%

Nucleus Rotation Nucleus Rotation –– Motivations Motivations

Mission PlanningMission Planning

Hit large side of nucleus in sunlightHit large side of nucleus in sunlight

P = f PP = f P22sid sid / / T, f = 12T, f = 12oo, P = 42 hr, T = 6 mo , P = 42 hr, T = 6 mo 48 sec 48 sec

View crater formation during flyby as comet rotatesView crater formation during flyby as comet rotates

Impact ScienceImpact Science

Thermal models of interior Thermal models of interior pristine ices possible? pristine ices possible?

Change in angular momentum after impactChange in angular momentum after impact

Accurate interpretation of coma observationsAccurate interpretation of coma observations

Coordination of Earth / spacecraft observationsCoordination of Earth / spacecraft observations

HST & SIRTFHST & SIRTF

Rotation ResultsRotation Results

WindowClean Analysis of 9P/Tempel 1

May 2004 HST Data

0.000

0.002

0.004

0.006

0.008

0 1 2 3 4 5 6 7 8 9 10

Frequency (Inverse Days)

Po

we

r

9P/Tempel 1 May 2004 HST Data

13.0

13.5

14.0

14.5

0 10 20 30 40

Time (hours)

Ma

gn

itu

de

4 pxl aperture Best fit (F+3harmonics)

HSTHST

40.9 +/- 10 hr only (Belton)40.9 +/- 10 hr only (Belton)

41.42 (1997 & 2004, 41.42 (1997 & 2004, LamyLamy))

> 0.45 > 0.45 magmag amplitude amplitude

Asymmetric light curveAsymmetric light curve

SIRTF & HST & groundSIRTF & HST & ground

41.85 +/- 0.1 hr41.85 +/- 0.1 hr

Comet Phase FunctionsComet Phase Functions

No exact solution for scatteringNo exact solution for scattering

InterpretationInterpretation

Large surge Large surge –– moderate moderate albedoalbedo

Amp & width of surge largelyAmp & width of surge largelycontrolled by controlled by albedoalbedo

= 0-12 = 0-12oo: porosity, grain sizes,: porosity, grain sizes,

compactioncompaction

= large: macroscopic roughness = large: macroscopic roughness

~ linear at large ~ linear at large extrapolate extrapolate

NEAR ErosNEAR Eros

DelahoddeDelahodde et al Fernandez et al et al Fernandez et al

Onset of Gas EmissionsOnset of Gas Emissions

Keck 10m telescopeKeck 10m telescope

Hawaii Hawaii –– Jan 5, 2005 Jan 5, 2005

ResultsResults

No CN in Dec 2004No CN in Dec 2004

CN on Jan 5, 2005CN on Jan 5, 2005

Key Earth ObservationsKey Earth Observations

Volatiles (pre-post)Volatiles (pre-post)

CO, COCO, CO2 2 ,, HH22OO

CN, CCN, C22, C, C33

Key OrganicsKey OrganicsParents: 2.0-5.0 Parents: 2.0-5.0 µµmm

New VolatilesNew Volatiles

Impact Flash Impact Flash –– high high

speed photometryspeed photometry

3500-6000K, 1-2 sec3500-6000K, 1-2 sec

Subsurface strengthSubsurface strength

Dust EvolutionDust Evolution

Particle sizesParticle sizes

CompositionComposition

UV RegionUV Region

1200-3000 A region spectra1200-3000 A region spectra

Water production: OH (0,0) 308.5 nm, (1,0)Water production: OH (0,0) 308.5 nm, (1,0)282.0 nm, (0,1) 314.0 nm282.0 nm, (0,1) 314.0 nm

CS (0,0) 257.6 nmCS (0,0) 257.6 nm

HI, OI, CI, SIHI, OI, CI, SI

CO Cameron bands CO Cameron bands –– photodissociationphotodissociation CO CO22

Imaging Imaging –– High resolution High resolution

2 wks pre impact: HST 16 km, DI 25 km2 wks pre impact: HST 16 km, DI 25 km

Stereo imaging of jets (30Stereo imaging of jets (30oo diff view angle) diff view angle)

Optical RegionOptical Region

ImagingImagingMicron- sub-micron dust comaMicron- sub-micron dust comaevolutionevolution

Optical flash (high speed) Optical flash (high speed) –– T ~ T ~3500-6000K3500-6000K

SpectroscopySpectroscopyTypical comet species,Typical comet species,daughters (CN, Cdaughters (CN, C22, C, C33, CH etc.), CH etc.)1414N/N/1515N isotope ratioN isotope ratio1313C/C/1414C isotope ratio from CNC isotope ratio from CN(and C(and C22?)?)

Ortho/Para ratio of NHOrtho/Para ratio of NH22 spin spintemperaturetemperature

Dust spectrum in opticalDust spectrum in opticalLong slit spectraLong slit spectra

Chemical models & SpatialChemical models & Spatial

profiles profiles parent production parent production

((RauerRauer –– ESO; ESO; HelbertHelbert PhD. 2003) PhD. 2003)

Infrared & RadioInfrared & Radio

2-5 2-5 µµmm Parents, organicsParents, organicsHH22O, CO, COO, CO, CO22 (best from space observations) (best from space observations)

5-8.7 5-8.7 µµmm Cannot be done from ground; Cannot be done from ground; new regime: organics, PAHnew regime: organics, PAH

7-45 7-45 µµmm silicate evolution (crystalline olivine)silicate evolution (crystalline olivine)

10-30 10-30 µµmm dust dominate (7-14 dust dominate (7-14 µµm ok from m ok from ground; 14-21 ground; 14-21 µµm harder)m harder)

Sub-mmSub-mm parent & daughter moleculesparent & daughter moleculesHCN, CO, OH, CSHCN, CO, OH, CS

IRAS 25 IRAS 25 µµmm

Unique FacilitiesUnique Facilities

HST HST –– UV Spectra UV Spectra –– Encounter Encounter

SIRTF (Spitzer) SIRTF (Spitzer) –– Pt source sensitivity Pt source sensitivityPre- Dust Environment Pre- Dust Environment –– IRS (7.5-40 IRS (7.5-40 µµm); 24/70/160m); 24/70/160µµm MIPS m MIPS –– 12/04 12/04 –– 2/05 2/05

Encounter Encounter –– 5.2-8.7 5.2-8.7µµm (canm (can’’t do from ground)t do from ground)HH22O (6.0 O (6.0 µµm), PAH (6.2, 7.7, 8.6 m), PAH (6.2, 7.7, 8.6 µµm), CSm), CS22 (6.51 (6.51 µµm)m)

Organics: CHOrganics: CH44, CH, CH33OH, CHOH, CH22O, CHO, CH33OCHOCH33, CH, CH33NHNH22, C, C22HH66,,CC22HH22, C, C22HH55OHOH

SOFIA SOFIA –– Not ready, possible use from runway Not ready, possible use from runway

FUSE (UV Satellite)FUSE (UV Satellite)

Cycle 6 deadline Cycle 6 deadline –– Aug 4 (for 4/05-5/06) Aug 4 (for 4/05-5/06)

Chandra (X-ray) Chandra (X-ray) –– 300 300 ksecksec near encounter near encounter

Rosetta Rosetta –– several several instrinstr. (sub-mm, UV, near IR). (sub-mm, UV, near IR)

World CoordinationWorld CoordinationDPS DPS 20032003 9/1/039/1/03

ESO ESO GarchingGarching 2/14-15/042/14-15/04

NOAO Tucson NOAO Tucson 2/23/042/23/04

IfAIfA Hilo Hilo 4/30/044/30/04

NCU Taiwan NCU Taiwan 5/28/045/28/04

NOAO Chile NOAO Chile 6/24/046/24/04

AustraliaAustralia Sep 04Sep 04

The coordination of the observing programThe coordination of the observing programhas been accomplished through a series ofhas been accomplished through a series ofworkshops, and through interaction atworkshops, and through interaction atseveral astronomical meetings: 6/04 AAS,several astronomical meetings: 6/04 AAS,Denver, Denver, BioastBioast ’’04, 7/04, Iceland, COSPAR,04, 7/04, Iceland, COSPAR,7/04, DPS, 11/04 Louisville, 1/05 AAS.7/04, DPS, 11/04 Louisville, 1/05 AAS.There is also a professional There is also a professional collabcollab web: web:

http://deepscience.astro.umd.edu/collabhttp://deepscience.astro.umd.edu/collab

Email: Email: [email protected]@astro.umd.edu for access. for access.

Scheduled/Prop ObservationsScheduled/Prop Observations

Pre-EncounterPre-Encounter

UH 2.2m UH 2.2m –– dust/jets dust/jets –– SIRTF Support SIRTF SupportNov 16/17, 2004 (r=2.54 AU, V=17)Nov 16/17, 2004 (r=2.54 AU, V=17)

Dec 1, 2004 (orbit plane)Dec 1, 2004 (orbit plane)

Jan 16/17, 2004 (r=2.18, V=14)Jan 16/17, 2004 (r=2.18, V=14)

Keck 10m Keck 10m –– Gas onset Gas onsetDec 3, 2004 (0.25 Dec 3, 2004 (0.25 ntnt) (r=2.44, V=16)) (r=2.44, V=16)

Jan 5, 2004 (0.25 Jan 5, 2004 (0.25 ntnt) (r=2.25, V=14.8)) (r=2.25, V=14.8)

ESO 3.6m + EFOSC2 ESO 3.6m + EFOSC2 –– jets (BVRI) low jets (BVRI) low resres spectra. spectra.Feb-Mar (2.5 Feb-Mar (2.5 ntsnts))

CalarCalar Alto (Jets, low Alto (Jets, low resres spectra) spectra)Jan, Feb, Mar, Apr, MayJan, Feb, Mar, Apr, May

KPNO KPNO –– UMD time (20% over year) UMD time (20% over year)For development of comaFor development of coma

Mauna Kea PlansMauna Kea PlansUKIRT (3.8m)UKIRT (3.8m)

CGS4 CGS4 EchelleEchelle –– Hot water lines Hot water lines

KeckKeck I and II (10m) possibilities I and II (10m) possibilities

High Resolution IR spectra High Resolution IR spectra –– NIRSPEC NIRSPEC

HIRES HIRES –– High resolution optical spectra High resolution optical spectra

LWS LWS –– 8-11 8-11 µµm imaging/spectram imaging/spectra

UH2.2mUH2.2m

SNFS SNFS –– 6x6 6x6””, 15x15 spectral elem. R~1000, 15x15 spectral elem. R~1000

CFHT (3.6m) CFHT (3.6m) –– wide field imaging wide field imaging

Gemini (8m) Gemini (8m) –– closed loop AO (high spatial closed loop AO (high spatial resres; thermal); thermal)

Will be competed separately as DD timeWill be competed separately as DD time

Michelle Michelle –– Thermal Imaging (8-25 Thermal Imaging (8-25µµm)m)

Subaru (8m)Subaru (8m)

Will be considered DD timeWill be considered DD time

Thermal imagingThermal imaging

0.6m0.6m

OPTIC orthogonal transfer CCD OPTIC orthogonal transfer CCD –– high speed high speed

imagingimaging

NASA IRTF ProgramNASA IRTF Program

NASA IRTFNASA IRTF

Extended CampaignExtended Campaign

APOGEE, NSFCAM, MIRSI,APOGEE, NSFCAM, MIRSI,

SPEX, CSHELLSPEX, CSHELL

June 23-July 20 daily + AugJune 23-July 20 daily + Aug

Program July 3-5Program July 3-5

Special DI TACSpecial DI TAC

Program MechanicsProgram Mechanics

Queue scheduledQueue scheduled

Core on-site observersCore on-site observers

Dedicated support scientistDedicated support scientist

Adaptable to conditions Adaptable to conditions ––

30 min inst change over30 min inst change over

PDF archived data PDF archived data ––

proprietary period 6 moproprietary period 6 mo

IRTF ProgramsIRTF Programs

Mid IR spectra (gas comp)Mid IR spectra (gas comp)

PolarimetryPolarimetry (dust) (dust)

Near-IR imagesNear-IR images

HaleakalaHaleakala

AEOSAEOS

3.7m military surveillance telescope3.7m military surveillance telescope

High resolution spectraHigh resolution spectra

500-770nm500-770nm R~24,000 (5E4)R~24,000 (5E4)

640-1000nm (320-500nm)640-1000nm (320-500nm)

J, H, KJ, H, K R~11,000 (3E4)R~11,000 (3E4)

PolarimetricPolarimetric spectrophotometryspectrophotometry

Magnum Telescope Magnum Telescope –– Imaging Imaging

FaulkesFaulkes Telescope Telescope –– EPO EPO

Imaging Imaging –– teachers & student involvement teachers & student involvement

Radio Observations PlannedRadio Observations Planned

230-665 GHz230-665 GHz10.4 m10.4 mCSOCSO

Water from spaceWater from space557 GHz557 GHzODINODIN

RosettaRosettaMIROMIRO

Array may not be usefulArray may not be useful< 100 GHz< 100 GHz6x22m6x22mATCAATCA

230, 345 GHz230, 345 GHz12 m12 mAPEXAPEX

OHOH< 100 GHz< 100 GHz22 m22 mMopraMopra

JapanJapan89 GHz89 GHz45m45mNobeyamaNobeyama

Monitor WaterMonitor Water18 cm18 cmNancayNancay

OH OH –– coordcoord w / others w / others< 100 GHz< 100 GHz64 m64 mParkesParkes

Still investigatingStill investigating230, 345 GHz230, 345 GHz8x6 m8x6 mSMASMA

Not usefulNot useful18 cm18 cm27x25m27x25mVLAVLA

260 GHz260 GHz12m12mKPNOKPNO

Continuum maps?Continuum maps?89 GHz89 GHz14m14mFCRAOFCRAO

HCN, HHCN, H22CO, CO CS coma mapCO, CO CS coma map210-692 GHz210-692 GHz15m15mJCMTJCMT

HCN, CHHCN, CH33OH, CS, CO, HOH, CS, CO, H22S, HS, H22COCO86-272 GHz86-272 GHz30m30mIRAMIRAM

Monitor OHMonitor OH18 cm18 cm100m100mGBTGBT

Monitor OH Mid Mar-JuneMonitor OH Mid Mar-June18 cm18 cm300m300mAreciboArecibo

ESO Encounter ESO Encounter –– P75 P75

Proposed ObservationsProposed Observations

Nucleus / Dust structures & physical studies (opticalNucleus / Dust structures & physical studies (optical& IR)& IR)

UT 4 UT 4 –– NACO: high resolution imaging ( NACO: high resolution imaging (ejectaejecta, jets), jets)

UT 3 UT 3 –– VISIR: (mid-IR images/spectra) dust comp, silicates VISIR: (mid-IR images/spectra) dust comp, silicates

UT 1 UT 1 –– FORS1+ISAAC: ( FORS1+ISAAC: (visvis/near IR) dust population/near IR) dust population

NTT & SOFI: (NTT & SOFI: (nearIRnearIR images/spectra) coma structures, jets images/spectra) coma structures, jets

3.6m 3.6m –– TIMMI2; dust silicates, temperature evolution TIMMI2; dust silicates, temperature evolution

2.2m 2.2m –– WFI; coma structures WFI; coma structures

Gas componentGas componentUT 2 UT 2 –– UVES/FLAMES: (high dispersion UVES/FLAMES: (high dispersion visvis spectroscopy) spectroscopy)isotopic ratios, Na studiesisotopic ratios, Na studies

NTT & SOFI NTT & SOFI –– (near IR) spectra of coma/ices (near IR) spectra of coma/ices

NTT & EMMI NTT & EMMI –– (low dispersion) CN, C (low dispersion) CN, C22, C, C33 spectroscopy spectroscopy

Arizona/CA Proposed Arizona/CA Proposed ObsObs

KittKitt Peak Peak

4m 4m –– Narrow band imaging Narrow band imaging

2m 2m –– SQIID 0.9-5 SQIID 0.9-5µµm imagerm imager

WIYN WIYN –– low low resres optical spectra optical spectra

McDonald ObservatoryMcDonald Observatory

2.7m, 822.7m, 82”” –– High res. spectra High res. spectra

Lowell ObservatoryLowell Observatory

4242”” –– narrowband optical narrowband optical

7272”” –– MIMIR MIMIR –– IR imaging spectra IR imaging spectra

Palomar 5mPalomar 5m

Cerro Cerro TololoTololo, Gemini S, SOAR, Gemini S, SOAR

CTIO CTIO –– Proposed Proposed –– multiwavelengthmultiwavelength

dust studies & spectradust studies & spectra

4m 4m –– ISPI, 2K 1-5 ISPI, 2K 1-5µµm imager (K band)m imager (K band)

1.5m (optical spectroscopy)1.5m (optical spectroscopy)

1.3m (simultaneous U and H band)1.3m (simultaneous U and H band)

1.0m (R band imaging)1.0m (R band imaging)

0.9m (I and U continuum band imaging)0.9m (I and U continuum band imaging)

Gemini S Gemini S –– 8m 8m

Special call for DD time at encounterSpecial call for DD time at encounter

TReCSTReCS: 10-20 : 10-20 µµm spectra m spectra –– SiSi evolution evolution

PHOENIX PHOENIX –– high res. IR high res. IR echelleechelle

SOAR 4mSOAR 4m

Las Las CampanasCampanas (Chile) (Chile)

Magellan 6.5m CCD 2Magellan 6.5m CCD 2’’FOVFOV

SpectrographSpectrograph

IMACS 20IMACS 20’’ FOV imager FOV imager

MIKE MIKE –– echelleechelle R ~ 65000 R ~ 65000

PANIC PANIC –– 1-2.5 1-2.5µµm imagerm imager

DuPontDuPont 2.5m 2.5m

EchelleEchelle R ~ 40000 R ~ 40000

Low Low resres spectrograph spectrograph

Swope 1mSwope 1m

23x1523x15’’ optical CCD optical CCD

Australia & New ZealandAustralia & New Zealand

AAT 3.9mAAT 3.9m

UCLES UCLES –– EchelleEchelle R~80,000 R~80,000(isotopes)(isotopes)

ANU 2.3m (2/15 deadline)ANU 2.3m (2/15 deadline)

CASPIR JHKL R~500 spectra /CASPIR JHKL R~500 spectra /imagesimages

ANU 1.0m, 0.6m (2/15)ANU 1.0m, 0.6m (2/15)

WFI (52WFI (52’’))

FaulkesFaulkes 2m 2m

Perth ObservatoryPerth Observatory

STS8 STS8 –– plans to monitor comet pre- plans to monitor comet pre-and post encounterand post encounter

Other European EffortsOther European Efforts

La PalmaLa Palma0.8m 0.8m –– dust imaging, weekly, 2 colors dust imaging, weekly, 2 colors

INT (UK time) INT (UK time) –– imaging (35 imaging (35’’ FOV) FOV) –– Start Dec Start Dec ’’04/Jan 04/Jan ‘‘0505

Herschel Herschel –– bi-monthly CN, C bi-monthly CN, C33, C, C22 (service) (service)

Encounter Encounter ––Herschel: JHK band high Herschel: JHK band high resres imaging (AO) + med imaging (AO) + med resres spectra spectra

Italian: Near IR spectra (to 2.5 Italian: Near IR spectra (to 2.5 µµm), imaging, visible spectram), imaging, visible spectra

Russia (Kiev)Russia (Kiev)6m SAO Scorpio 6m SAO Scorpio –– imaging and med imaging and med resres spectra (Dec spectra (Dec ’’04)04)

2m telescope 2m telescope –– high resolution spectra high resolution spectra

2.6m Crimea 2.6m Crimea –– med resolution spectra med resolution spectra

Medium resolution spectra (0.6m, near Kiev)Medium resolution spectra (0.6m, near Kiev)

AZT14 0.5m AZT14 0.5m –– Imaging & narrowband photometry Imaging & narrowband photometry

Amateurs (>30) in UkraineAmateurs (>30) in Ukraine

CalarCalar Alto Alto

Imaging and spectroscopy (0.75 deg FOVImaging and spectroscopy (0.75 deg FOV))

RozhenRozhen (Bulgaria) (2m telescope) (Bulgaria) (2m telescope)

Broadband imaging Broadband imaging –– April April ’’05 05 post encounter post encounter

Narrowband imaging (CN, CNarrowband imaging (CN, C33, C, C22, NH, NH22, 2 continuum), 2 continuum)

Far East NetworkFar East NetworkMoletaiMoletai ObsObs. Lithuania. Lithuania GaumeiguGaumeigu ObsObs. . YunnanYunnan, 3200m, 3200m

LulinLulin ObsObs, Taiwan, 2862m, Taiwan, 2862m

YunnanYunnan ObsObs., China., China

MaidenakMaidenak ObsObs. Uzbekistan. Uzbekistan

Dark sitesDark sites Imaging/Imaging/PolarimetryPolarimetry

Good access Good access High speedHigh speed

WenWen-Ping Chen-Ping Chen

Wei-HsinWei-Hsin Sun - coordination Sun - coordination


Recommended