+ All Categories
Home > Documents > NAVAL POSTGRADUATE SCHOOL - DTICA finite element formulation for solving axisymmetric transient heat...

NAVAL POSTGRADUATE SCHOOL - DTICA finite element formulation for solving axisymmetric transient heat...

Date post: 26-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
174
NAVAL POSTGRADUATE SCHOOL Monterey, Caiifornia i.. ID DDC THEHSH FINITE ELEMENT SOLUTION FOR AXISYMMETRIC TRANSIENT THERMAL STRESSES by Manouchiehr Bakhshandehpour iThesis Advisor: R.E. Newton Re po., -I. SE June 1972 S~NATIONAL TECHNICAL FIINFORMATION SERVICE 1) S D'o~~ort -•t of Coo'-erce Si~r-•€l,14,I A 77'151 AXISYMvIETR TRANIEN THERMAL Stez;d66Tin bRi~ESSE
Transcript
  • NAVAL POSTGRADUATE SCHOOL• • Monterey, Caiifornia

    i..

    ID DDC

    THEHSH

    FINITE ELEMENT SOLUTION FOR

    AXISYMMETRIC TRANSIENT THERMAL STRESSES

    by

    Manouchiehr Bakhshandehpour

    iThesis Advisor: R.E. Newton

    Re po., -I. SE June 1972S~NATIONAL TECHNICALFIINFORMATION SERVICE

    1) S D'o~~ort -•t of Coo'-erceSi~r-•€l,14,I A 77'151

    AXISYMvIETR TRANIEN THERMAL Stez;d66Tin bRi~ESSE

  • UNCLASSIFIEDSpSec itv Ca.ifi ,,cation

    DOCUMENT CONTROL DATA- R & DiSecuruty classuifeation of title. body o! abstract and indexing annotation niu.,t be onteed wýhen the overall rep.,rt is tenssIed)

    I. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

    Naval Postgraduate School Unclassified

    Monterey, California 93940 2b.GROUP

    3 REPORT TITLE

    FINITE ELEMENT SOLUTION FOR AXISYMMETRIC TRANSIENT THERMAL STRE..SES

    A. DESCRIPTIVE NOTES (7`'pe I report and.inclusive dotes)

    j. Mechanical Engineer's Thesis; June 19725. AUTHORISI (First name, middle initial, last name)

    Manouchehr Bakhshandehpour; Lieutenant, Imperial Iranian Navy

    0. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REPF.

    June 1972 174 98a. CONTRACT OR GRANT NO. go. ORIGINATOR'S REPORT NUMUEFR(S$

    b. PROJECT NO.

    C. 9b. OTHER REPORT NO(S) (Any other number& ftat may be assignedthis report)

    d.

    10. DISTRIBUTION STATEMENT

    Approved for public release; distribution unlimited.

    II. SUPPLCMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

    Naval Postgraduate School-Monterey, California 93940

    13. ABSTRACT

    A finite element formulation for solving axisymmetrictransient heat conduction and thermal stress problems isdeveloped in this thesis. The governing equations ofuncoupled, linear, isotropic thermoelasticity are discretizedusing quadratic isoparametric elements. A FORTRAN IV program,using double precision arithmetic, is presented. Compactstorage techniques for banded symmetric matrices are used.

    Comparisons between exact and computer solutions demon-strate close agreement for a number of test problems. De-tailed instructions for using the program are included.

    DFORM (P _ __

    - ,.NoV 5-3 UNCLASSIFIEDS/N 0101-807-6811 Security Clarsification•..a.,,-A-31406

  • UNCLASSIFIEDSecurity Classification

    14 LINK A LINK B LINK C

    * ROLE WT ROLE WT POLE WT

    AXISYMMETRIC TRANSIENT HEATCONDUCTION

    FINITE ELEMENT HEAT CONDUCTION

    FINITE ELEMENT TRANSIENT THERMALSTRESSES

    AXISYMMETRIC TRANSIENT THERMALSTRESSES

    FODD R•° 1473 (BACK) UNCLASSIFIED/ ,. ICI •607"6•I Security Classification

  • Finite Element qution for

    Axisymmetric Transien', Thermal Stresses

    af by

    Manouchehr Ba.• ishandehpourLieutenant, Imp,•rial Iranian NavyB.S., Italian VOi'al Academy, 1960

    Submitted in partial fulfillment of therequirements for the degrees of

    MECHANY CAL ENGINEER

    and

    MASTER OF SCIENCE IN MECHANICAL ENGINEERING

    from the

    NAVAL POSTGRADUATE SCHOOLJune 1972

    Author 2Z

    Approved by: _.-Thesis Advisor

    :Chaitman, Department of Mechanical Engineering

    .Academic Dean

  • "A1 STRACT

    A finite element formulation for solving axisymmetric

    transient heat conduction and thermal stress problems is

    developed in this thesis. The governing equations of

    uncoupled, linear, isotropic thermoelasticity are discretized

    using quadratic isoparametric elements. A FORTRAN IV program,

    using double precision arithmetic, is presented. Compact

    storage techniques fir banded symmetric matrices are used.

    Comparisons between exact and computer solutions demon-

    strate close agreement for a number of test problems. De-

    tailed instructions for using the program are included.

    1/

    ' -,

  • TABLE OF CONTENTS

    I. INTRODUCTION - 12

    II. FINITE ELEMENT FORMULATION OF HEATCONDUCTION IN AXISYMMETRIC BODIES ---------------- 14

    A. METHOD OF FORMULATION --------------------- 14

    B. THERMAL BOUNDARY CONDITIONS ------------------ 16

    C. EXACT TIME SOLUTION WITH SPATIAL

    DISCRETIZATION ------------------------------- 18

    D. TIME INTEGRATION ----------------------------- 20

    E. ESTIMATION OF EXTREME EIGENVALUES ------------ 26

    III. ONE-DIMIENSIONAL HEAT CONDUCTION ------------------ 29

    IV. STRESS PROBLEM ----------------------------------- 32

    A. STIFFNESS MATRIX ----------------------------- 33

    B. THERMAL LOAD VECTOR -------------------------- 34

    C. PRESSURE LOAD VECTOR ------------------------- 36

    D. CENTRIFUGAL LOAD VECTOR ---------------------- 37

    E. STRUCTURAL BOUNDARY CONDITIONS --------------- 38

    F. SYSTEM EQUATION SOLVER ---------------------- 39

    G. PRINCIPLE OF SUPERPOSITION ------------------- 39

    H. STRESS EVALUATION ---------------------------- 39

    V. ONE-DIMENSIONAL TRANSIENT STRESSES --------------- 41

    VI. TEST PROBLEMS ----------------------------------- 42

    Vli. CON&ZUSIONS AND RECOMMENDATIONS ------------------ 54

    APPENDIX A: APPLICABLE FORMULAS AND EQUATIONS .........- 56

    SAPPENDIX B: LIST OF THE PROGRAM ------------------- 59APPENDIX C: USER'S MANUAL ---------------------------- 135

    3

  • APPENDIX D: PROGRAMMING ------------------------------- 160

    LIST OF REFERENCES ------------------------------------- 171

    INITIAL DISTRIBUTION LIST ------------------------------ 172

    DD FORM 1473 ------------------------------------------ 173

    IiI

    A•

    Ct

    g- ,

    r

    k'J

  • LIST OF FIGURES

    1. Slab with One Face Insulated and Anotherin Contact with Fluid --------------------------- 29

    2. Quadrilateral Element Representation --------------- 33

    3. Boundary Element Under Pressure -------------------- 36

    4. Two Radial Elements Representatien inThick Cylinder ----------------------------------- 43

    5. Five Radial Elements Representation inThick Cylinder ---------------------------------- 43

    6. Stresses in Thick Cylinder Under ThermalLoading ------------------------------------------ 44

    7. Stresses in Thick Cylinder Under UniformInternal Pressure -------------------------------- 45

    8. Stresses in Rotating Thick Cylinder --------------- 47

    9. Hollow Semi-sphere 32 Elements Representation 48

    10. Thermal Stresses in Hollow Sphere ------------------ 49

    11. Nozzle Geometry ------------------------------------ 50

    12. Fluid Temperature-Time Histories ------------------- 52

    13. Element Representation in Nozzle ------------------- 53

    14. Longitudinal Cross Section ------------------------ 137

    15. Subdivision into Elements ------------------------- 138

    16. Element and Node Numbering ------------------------ 139

    17. Entry Temperature-Time Variation ------------------ 151

    18. Deck Set-up for Using CHECK Program ---------------- 155

    19. Deck Set-up for Using AXITTS Program --------------- 157

    20. Deck Set-up for Obtaining a Listing ofthe Program AXITTS ------------------------------- 157

    21. Deck Set-up for Obtaining a Punched Deckof the Program AXITTS --------------------------- 158

    5

  • 22. Functional Flow Chart of CANDY --------------------- 162

    23. Fluid Node Representation for Inside Flow ---------- 163

    24. Functional Flow Chart of STIFF --------------------- 167

    25. Functional Flow Chart of F0RMF -------------------- 168

    I

  • LIST OF TABLES

    I. Attenuation Factor Comparison, Fourth OrderRunge-Kutta Algorithm --------------------------- 23

    II. Attenuation Factor Comparison, TrapezoidalIntegration ------------------------------------ 25

    III. Effect of Using Irons' Correction at Every10 Steps of Integration ------------------------- 27

    IV. Comparison of One-dimensional TransientTemperatures ----------------------------------- 31

    V. Units for Input Data ----------------------------- 136

    VI. Maximum Values for Program Parameters ------------- 170

    I- 7

  • LIST OF SYMBOLS

    Note: A single underline is used to denote a column vectorand a double underline denotes a rectangular matrix.The symbols used in computer program are described inthe beginning of Appendix B.

    a Entrance fluid cross-sectional area

    A Linear combination of C and Y matrices

    b A constant vector

    B Standard rectangular strain-displacement matrix

    C Thermal capacitance matrix

    c Specific heat

    D Standard elasticity matrix

    E Young's modulus of elasticity

    e Superscript designating element contribution

    F Load vector

    F Element thermal load vector

    Fe Element pressure load vector

    Fe Element centrifugal load vector

    SLinear combination of C and Y matrices

    h Surface heat transfer coefficient

    I Identity matrixL'J Jacobian coordinate transformation matrixK System stiffness matrix

    Ke Element'stiffness matrix

    k Therme. conductivity

    L Thickness of slab

  • Arc length along the side of quadrilateral

    N. Shape function

    m Total number of nodes

    n Outwa-7d normal or number of nodes per element

    P Pressure

    R Radial coordinate

    S Surface area

    T Nodal tfnmperature vectorT Temperature or, when used as a superscript,

    transpose of a matrix

    Tavg Average temperature

    Tf Fluid temperature (used in one-dimensional example)

    U A vector defined as u Radial displacement

    v Right-hand side vector in conduction equation

    V Volume

    W Work done by loads

    W Modal matrix

    w Axial displacement

    w Eigenvector

    +,Y Thermal admittance matrix

    y Dependent variable

    Yij Element ij of the m~trix Y*

    [ ] Matrix representation

    < > Row vector

    V Gradient operator

    a Coefficient of thermal expansion

    0 Constant coefficient vector

  • 6 Nodal displacement vector

    6_e Element displacement vector

    { - Strain vectorEigenvalue of one-.dimensional transient temperaturesolutionThermal str.iin vector

    L•e Element strain vector

    Local element coordinate

    f v Poisson's ratioX "Eigenvalue

    p Material density

    a Stress vector

    3 • Local element coordinate

    T Time

    AT Step size of numerical time integration

    TRZ Shearing stress component

    8 Fluid temperature, or angle

    A Spectral matrix

    Speed of rotation

    SI

    '• 10

  • ACKNOWLEDGEMENTS

    F The author would like to express his gratitude to theImperial Iranian Navy for having made it possible for him

    to undertake the course of graduate study leading to the

    present text.

    To Dr. Robert E. Newton, Professor of Mechanical

    Engineering, the author wishes to express deep appreciation

    for his inspiring advice and guidance. Without his diligence

    and patience this study could not have been accomplished in

    its present form. The author is obliged to Dr. Gilles

    Cantin, Professor of Mechanical Engineering, for his generous

    advice during the course of study and computer programming.

    Thanks are also due to the personnel at the computer center

    of Naval Postgraduate School.

    Finally the author should thank his wife for her

    patience and understanding throughout his work at this

    institution.

    .V

  • I. INTRODUCTION

    Thermal stresses have become increasingly important in

    engineering practice during recent years. In power genera-

    tion higher cycle temperatures and use of nuclear fission

    are largely responsible for this trend. This thesis describes

    a computer program for finding temperatures and stresses in

    bodies having axisymmetric geometry and loading. The govern-

    i equations are those of isotropic, uncoupled, quasi-static,

    linear thermoelasticity. They are discretized by using the

    finite element method. A FORTRAN IV computer program using

    double-precision arithmetic has been written to solve

    problems of the following kinds.

    A. TEMPERATURE PROBLEMS

    The transient temperature vector, evaluated at the nodal

    points, may be obtained for an axisymmetric body with the

    combination of insulated, convection, or constant temperature

    boundary conditions. For the convection thermal boundary

    condition, however, we may have fluid flowing with entry

    temperature prescribed as a linear function of time (RAMP).

    The program can handle up to 15 different ramps, each having

    a different flow velocity, and with discontinuities between

    successive ramps.

    B. STRESS PROBLEMS

    The program will generate load vectors for pressure load-

    ing, centrifugal loading, and axial force. Provision is

  • 4 made for direct input of one additional load vector. Stressesmay be found for any combination of these loadings.

    C. THERMAL STRESS PROBLEMS

    Thermal stresses may be found for as many as 20 different

    temperature vectors which may be output of the temperature

    problem or direct input. In short, in this part any combina-

    tion of the temperature and stress problems may be used.

    13

  • II. FINITE ELEMENT FORMULATION OF HEAT CONDUCTIONIN AXISYNIETRIC BODIES

    A. METHOD OF FORMULATION

    For bodies of revolution under axisymmetric loading the

    mathematical problems presented are two-dimensional. The

    governing equation for non-steady heat conduction is

    V-kVT = pci, (1)

    where k is the thermal conductivity, p the density, c the

    specific heat, T the temperature and V the gradient operator.

    The superior dot denotes a time derivative.

    Applying Galerkin's principle [I] gives

    f NiV'kVT dV = f pc N. T dV, (2)

    V V

    where the integral is over the volume V of the conducting

    body and Ni is a "shape function" used in representing the

    temperature distribution. If S is the surface of the body

    and n the outward normal to surface, then using Gauss'

    theorem we can write

    f V- '(N. kVT) dV = f N. k 'T dS. (3)

    V S n 3n

    Since

    f V"(N. kVT) dV = f (Ni)'(kVT)dv'4 V 1

    + f NiV.(kVT)dV, (4)

    Vwe can combine Eqs. 2, 3' and 4 to get

  • DTf cNi dV + f (VNi)'(kVT)dV= f Nik•-in dS. (5)V V S

    Each node of the solid region has a separate discretized

    S~linear equation calculated from Eq. 5 using the appropriate

    shape function Ni Thus each of the volume integrals on the

    left hand side of Eq. 5 yields a square coefficient matrix

    in the assembled set of equations. Calculation of these

    matrices is a standard process. Details are given by

    Zienkiewicz [1].

    The discretized set of equations takes the form

    C T+ Y T = v, (6)/

    where there is a term by term correspondence with Eq. 5.

    The real symmetric matrices C and Y represent, respectively,

    the thermal capacitance and thermal admittance. The elements

    of the vector T are nodal temperatures. The vector v, dis-

    cussed in the following section, depends upon the thermal

    boundary conditions.

    In the present development piccewise constant material

    properties have been assumed, i.e., k, p and c are constant

    within each element, but may vary from element to element.

    Also two-dimensional isoparametric elements are used. Appli-

    I cable equations are summarized in Appendix A.

    In this text a double underline denotes a rectangularmatrix and single underline denotes a column vector.

    i~~~~ -S . ....

  • B. THERMAL BOUNDARY CONDITIONS

    Thermal boundary conditions affect only those scalar

    equations of Eq. 6 which correspond to boundary nodes.

    Accordingly, the vector v is sparse. Also, in a single

    problem it is common to have different thermal boundary con-

    ditions on individual portions of the boundary. In what

    follows the subvectors of v (distinguished by individual

    superscripts) which correspond to separate boundary condi-

    tions are treated individually.

    1. Insulated

    It is clear that for insulated boundary conditions

    the subvector vM1 ) of the right hand side of Eq. 6 corres-

    ponding to this boundary condition is zero, since T _n

    2. Convection

    The heat transfer mechanism occurs in the interface

    of the solid and fluid. If the fluid temperature is e and

    the heat transfer coefficient is h, then equating heat con-

    ducted away from the surface to the efflux from the solid

    [2] gives

    -k (E) = h(T-0), (7)

    where the subscript S means that the derivative is evaluated

    at the surface.

    For constant h:

    f Nik 'T dS = h f Ni(O-T) dS. (8)S Sn 1

    16

  • In what follows the fluid temperature e is taken to be a

    specified function of position and time. For purposes of

    discretization, the fluid temperature is specified at a

    discrete number of fluid 'tnodes." If 0. represents the

    fluid temperature at fluid node j, then the fluid temperature

    along the boundary may be represented by

    6 = Z N.OP (9)

    where the N. are one-dimensional forms of the shape functions

    used for the solid. Substitution in Eq. 8 gives

    8T *f N. k E-I dS = E y. (0j-Tj)' (10)

    1 3n 13 J 3

    where the summation extends over the surface nodes and the,

    coefficients Yij are given by

    Yij = h f NiN. dS. (11)S

    Assembling the contributions from Eq. 10, the subvector

    v (2) for the convection boundary condition may be written

    v (2) = Y e. (12)

    The contributions -Z Yij j from Eq. 10 are included by

    augmenting the matrix Y (see Eq. 13 below).

    3. Constant Temperature

    If 0 represents the constant tempe1 ature desired at

    the wetted surface, then we can use the convection boundary

    condition and replace h by a big number (say 1020). Since h

    is very large, then for thermal equilibrium the temperature

    17

  • T at the surface will be forced to equal e. So the subvector

    V3 for the portion corresponding to the constant temperature

    boundary condition can be obtained from Eq. 12.

    Upon the application of these boundary conditions in

    a single problem, the right-hand side vector v will be com-

    bined from the corresponding subvectors and the finite ele-

    ment discretized equation becomes

    CT + _Y T =, (13)

    Swhere Y+ +

    C. EXACT TIME SOLUTION WITH SPATIAL DISCRETIZATION

    We consider only the solution of Eq. 13 for v = constant

    with T = a at time T = 0. Let T be a particular solution

    (steady state) with is = 0 so that

    is ) 1. (14)

    For the homogeneous equation

    C. + Y' T = 0 (15)

    the assumption T = w exp(-XT), where w is a vector and X is

    a scalar, yields the form

    j+ w = X * w (16)

    It is apparent that Eq. 16 defines an eigenvalue problem.

    Let A be the spectral matrix and I the modal matrix with

    normalization according to

    SWTW IV = IW , (17)

    18

  • where I is the identity matrix of the same order as C. Now

    let

    T_ = _w exp(-=AT) b (18)

    where b is a constant vector. Substituting this in Eq. 15

    gives

    Y+ W exp(-AT) b = C W A exp(-rAT) b. (19)

    Now Eq. 19 is satisfied for all b if

    W T Y+ W=A, (19')

    and this is guaranteed to be satisfied since A and W are

    spectral and modal matrices for the eigenvalue problem of

    Eq. 16 with W normalized according to Eq. 17.

    Returning to the original problem (Eq. 13), the com-

    plete solution may be written as

    Y = W (B + exp(-AT) b) (20)

    where

    T= W , (21.)

    and B is a constant vector. Now 8 may be found (using

    Eq. 14) to be

    = A 1 _wT_ . (22)

    Substituting this result into Eq. 20 and using the initial

    condition gives the result

    b = W-1 a - A" 1 WT v. (23)

    The general solution of Eq. 13 may thus be written

    as

  • T =. W- exp(-AT)) ,,-I WTV + exp(-AT)W- la. (24)

    For purposes of the present program non-zero compo-

    nents of vector v are to be specified as piecewise linear

    functions of time. During each segment of time history of v

    an analytical solution of Eq. 13 is possible in the form of

    a particular solution plus a complementary solution such as

    Eq. 20. At each node the corresponding time variation of

    temperature will consist of a linear part contributed by the

    particular solution and a sum of n terms representing the

    complementary part. Each of these n ternis decaysexponen-

    tially with a separate time constant. In principle it is a

    straightforward process to find each particular solution and

    accompanying complementary solution.

    Contemplated problems may typically have from 10 to

    40 segments required to represent the piecewise linear

    variation of v. The number of body nodes n will be of the

    order of 100 or more. In view of the number of particular

    solutions required, each accompanied by an individual comple-

    mentary solution of the form given by Eq. 20, it was concluded

    that a numerical solution of Eq. .13 would be considerably

    more economical than an analytic one such a's that given by

    Eq. 24.

    D. TIME INTEGRATION

    in this section the relative m,:rits of the Runge-Kutta

    and trapezoidal. methods of time integration are discussed.

    Since either of these methods will g;ve an exact result if

    the solution is a linear' function of time, investigation

  • is confined to performance on a single scalar equation

    ý + Xy = 0 (25)

    whose solution y = y0 exp(-XT) is of the same form as the

    components of the complementary solution (Eq. 20 ).

    1. Runge-Kutta Method

    A method introduced by Runge and subsequently elabo-

    rated by Heun and Kutta [3] is widely used for the numerical

    solution of first order ordinary differential equatiois.

    This algorithm prescribes a sequence of calculations for

    determining the ordinate yi+l at time T i+l = T i+AT in terms

    of yi and values of 5 at intermediate and end points of the

    interval AT. The fourth-order form, which requires four

    evaluations of y, gives for Eq. 25 the result

    Yi+l _ 1 X + 2 (XAT)3 (XAT)41 A (XA-iT (26) +(~Yi 2! 3! 4! " (26)

    The right-hand side of Eq. 26 represents the first five terms

    of the Taylor expansion of the exact solution

    (Yi+I/Yi = exp(-XAT)) so we may conclude that the relative

    error in each time step is less than modulus of the next

    term: (XAT)5/5!.

    In addition to providing the apparent prospect for

    high precision indicated by this error bound, the Runge-Kutta

    method also permits changes of time increment during the

    integration process without requiring additional computa-

    tionally expensive matrix decompositions. The attractiveness

    of these two features dictated a thorough exploration of the

    potential of this method for the present application. The

    21

  • disqualifying defect which emeiged after studying a number

    of examples is readily appreciated from examination of

    Table I. For values of XATr less than 0.5 it is apparent

    that Runge-Kutta scheme affords acceptable engineering

    accuracy. However, when the method is applied to solution

    of Eq. 13 we must deal with a number of Ps equal to the

    number of nodes (see Eq. 20 ). This number may be greater

    than 100 and the ratio of the largest X to the smallest may

    easily exceed 1000. Although the solution is dominated by

    the contributions of the eigenvectors corresponding to the

    smaller Xs, it is clear that the solution will be unstable

    if the largest XATr exceeds about 2.7. Because an unaccept-

    ably small AT is required in typical problems, the Runge-

    Kutta method was rejected.

    2. Trapezoidal Method

    The trapczoidal method estimates yi+l from the formula

    Yi+i= Yi + 1(i + Yi+l) (27)

    Substituing for i andi+l from Eq. 25 and rearranging

    gives

    Yi+l 2 - XAT (28)Yi 2 + XAT

    Series exijansion of the right-hand side provides an error

    bound (per step):

    (XAT) 3/12.

    From the point of view of the size of XAT this method has no

    stability limit, but has slow attenuation with alteration

    22

  • TABLE 'I

    ATTENUATION FACTOR COMPARISON

    Fourth Order Runge-Kutta Algorithm

    SYi+i/Yi exp(-XA'r)(Runge-Kutta) (Exact)

    .0001 .9ý99 .9999

    .001 .9990 .9990

    .01 .9901 .9901

    .1 .9048 .9048

    .2 .8187 .8187

    .5 .6068 .6065

    1.0 .3750 .3679

    2.0 .3333 .1353

    2.5 .6484 .0821

    3.0 1.3750 .V198

    4.0 5.0000 .0183

    8.0 110.3333 .0003

    10.0 291.0000 .0000

    20.0 5514.3333 .0000

    50.0 240784.3333 .0000

    100.0 4004901.0000 .0000

    2

    23

  • in sign for large XAT. Table II shows this behavior.

    Since a wide usable range of XAT is essential and

    the stability of trapezoidal integration is guaranteed,

    this method is chosen for the present program.

    Applying the trapezoidal algorithm to Eq. 13 yields

    A Ti+l G Ti + L- (vi+l + v1 i (29)

    2

    where

    A =C +AT Y+S• ~2 '

    G= C AT y# +

    S 2

    and the superscripts denote evaluation at discrete time

    intervals AT. If m is the order of the capacitance and

    admittance matrices, C and Y, then once a certain step size

    3.AT is chosen, it requires m /3 operations to perform the

    needed t:r z•ngular decomposition of A. Thus, for large m, a

    change of step size AT becomes costly from the point of view

    of computer time. Accordingly, in the piesent program only

    one time step size is used thloughout each problem.

    Also, for assuring sufficiently rapid attenuation of the

    components corresponding to the large XAT, the following

    correction is utilized.

    ?. Irons' Correction

    Irons proposed a scheme [4) for augmenting the atten-

    uation of the contributions of those eigenvectors for which

    XAT is large. Define

    24

  • TABLE II

    ATTENUATION FACTOR COMPARISON

    Trapezoidal Integration

    XAT Yi+I/Yi e-fAT(Trapezoidal) (Exact)

    .0001 .9999 .9999

    .001 .9990 .9990

    .01 .9901 .9901

    .1 .9048 .9048

    .2 .8182 .8187

    .3 .7391 .7408

    .5 .6000 .6065

    1.0 .3333 .3679

    2.0 .0000 .1353

    2.5 -.1111 .'0821

    3.0 .2000 .0498

    4.0 -. 3333 .0183

    8.0 -. 6000 .0003

    10.0 -. 6667 .0000

    20.0 -. 8182 .0000

    50.0 -. 9231 .0000

    100.0 -. 9608 .0000

    25

  • S .25 yi- + -. yi + .25 yi+l, (30)

    where yi and yi+l are obtained from yi-l by trapezoidal

    integration.

    In the program presented in Appendix B, Eq. 30 is used

    after every 10 steps of time integration. Table III shows

    the resulting modifications.

    E. ESTIMATION OF EXTREME EIGENVALUESAnalytic results for one-dimensional heat conduction

    give, for an eigenvalue,

    r2k 1(31)4pc d2

    where d is the distance between points of extreme tempera-

    ture and zero temperature.

    If we use this to estimate the smallest X in cylindrical

    coordinates, two modifications are recommended.

    1. Assume that the point of zero temperature is in

    the fluid at a distance from the wall equal to k/h,

    where h is the surface heat transfer coefficient.

    2. If there are two approximately orthogonal paths for

    heat flow from the (single) maximum temperature point,

    then replace l/d2 in the above formula by

    1 1 + d (32)

    d mi. max.

    For estimating the largest X, the surface heat transfer

    coefficient has no significant effect. We may continue to

    26

  • TABLE III

    EFFECTS OF USING IRONS' CORRECTION

    AFTER 10 STEPS OF INTEGRATION

    XAr exp(-10XAT) Yl0/Y0 y* 1 0 /y 0Exact Trapezoidal Corrected

    0.00010 0.99900 0.99900 0.99900

    0.00020 0.99800 0.99800 0.99800

    0.00100 0.99005 0.99005 0.99005

    0.01000 0.90484 0.90484 0.90486

    0.10000 0.36788 0.36757 0.36849

    0.20000 0.13534 0.13443 0.13579

    0.30000 0.04979 0.04866 0.04978

    0.50000 0.00674 0.00605 0.00645

    1.00000 0.0000S 0.00002 0.00002

    2.00000 0.00000 0.00000 0.00000

    4.00000 0.00000 0.00002 -0.00001

    8.00000 0.00000 0.00605 -0.00040

    10.00000 0.00000 0.01734 -0.00072

    20.00000 0.00000 0.13443 -0.00136

    50.00000 0.00000 0.44914 -0.00072

    100.00000 0.00000 0.67028 -0.00027

    I

    • 27

  • use the same formula for d2 , but now consider only the

    smallest element and take

    d _ length of smallest sidedmin 4

    (32')

    d max length of largest side4

    A comparison of estimates based on Eq. 31, 32, 32' with

    the exact solution of the eigenvalue problem has been carried

    out for several examples. Based on these comparisons, it is

    believed that these estimates are sufficiently accurate for

    choosing a time step and estimating the time of occurrence

    of the extreme stresses.

    28

  • III. ONE-DIMENSIONAL HEAT CONDUCTION

    For comparison of numerical (time) integration methods,

    studies of one-dimensional heat conduction were made. In

    this section numerical results for trapezoidal time integra-

    tion using Irons' correction are compared with the exact

    transient temperature solution.

    Consider a flat slab of thickness L with conductivity k,

    density p, specific heat c, zero initial temperature, one

    face insulated and the other in contact with fluid at tem-

    perature Tf (Fig. 1). The surface heat transfer is h. The

    exact transient heat conduction solution is available ES] as

    SSin~iL Cospix Vk '-TT=Tf 1- 2 E L+SinpiL Cos•iL e (33)

    -b •Temperature T f

    Slab . .

    Figure 1. Slab with One Face Insulated and Anotherin Contact with Fluid.

    29

  • where k/pc is the diffusivity and the •i are the solutions

    of the transcendental equation

    ShL ITan UL = hL 1 (34)

    For the finite element comparisons we subdivide the

    distance L into m one-dimensional 3-noded elements and use

    the corresponding isoparametric shape functions. (The work-

    ing equations, shape functions and the element capacitance

    and admittance matrices are given in Appendix A.)

    In the course of this investigation separate computer

    programs were written to evaluate nodal transient tempera-

    tures using the following methods:

    (a) exact transient temperature solution, Eq. 33;

    (b) exact time solution with spatial discretization• -(section II.C, Eq. 24);

    (c) Runge-Kutta time integration (section II.D,part a);

    (d) trapezoidal time integration (section II.D,part b);

    (e) trapezoidal time integration with Irons'correction (section II.D, part c).

    For an initial step change of fluid temperature from

    zero to 1, transient temperatures have been found. For these

    comparisons the parameters (in consistent units) were taken

    to be:

    L = 8, p = 25, k = 8, c = 5 and h = 5

    The distance L was subdivided into m.= 3 elements. For the

    present purpose, comparison is confined to the exact solu-

    tion (item (a)), arid the finally adopted system (item (e)).

    30

  • In Table IV, temperatures at the two faces (x = 0, x = 8)

    are compared for various times. The trapezoidal integration

    has been performed using the constant time increment unity

    and the Irons' correction is applied after every 10 incre-

    ments.

    It is believed that Table IV demonstrates that the

    numerical integration method gives adequate accuracy for

    engineering applications.

    TABLE IV

    COMPARISON OF ONE-DIMENSIONAL TRANSIENT TEMPERATURES

    Method x Time=0 Time=10 Time=20 Time=30 Time=50 Time=70

    Exact 0. .00000 .00000 .00000 .00002 .00095 .00560Trapezoidal 0with Ironsl .00000 .00028 .00007 .00066 .00207 .00619

    Exact 8. .00000 .38431 .47684 .53284 .60264 .64685

    Trapezoidalwith Irons'V 8. .00000 .38720 .47716 .53262 .60256 .64686

    'Irons' correction is used after every 10 steps of trapezoidalintegration.

    31

  • IV. STRESS PROBLEM

    For bodies of revolution deformed symmetrically under

    axisymmetric loading, the stress distribution is two-

    dimensional. Since deformation is symmetric about the axis

    of revolution, cylindrical coordinates (R,Z,O) are used.

    It follows that the stress components are independent of the

    angle e and all derivatives with respect to O are zero.

    Also the components of shearing stress TRe and TZO vanish

    on account of the symmetry. But since any radial displace-

    ment induces a strain c in the circumferential direction,

    this non-zero component of strain and the three in-plane

    components (cZ' CR' YRZ)' complete the state of strain at a

    :, $. point in any axisymmetric situation. Hence the state of

    stress for an axisymmetric body under axisymmetric loading

    is given by

    T (35)

    - 0 RZ

    In this chapter the stiffness matrix of an axisymmetric

    body and the thermal, pressure, and centrifugal load vectors

    are formulated and, finally, evaluation of stresses at a

    point is discussed. The treatment closely follows that of

    Zienkiewicz [(] and this reference should be consulted for

    further details.

    32

  • A. STIFFNESS MATRIX

    The elements used are bodies of revolution (about the

    Z axis). For analysis it is sufficient to describe thecross-section in the R,Z plane. In Fig. 2 such an element

    and the local •,r coordinates are shown.

    I4

    +/

    IW

    -. Z

    Figure 2. Quadrilateral Element Representation.

    If u and w are the displacement components at a point in the

    directions of R and Z respectively, then these displacement

    components may be defined in terms of the nodal displacements

    by the appropriate isoparametric shape functions as

    8 8u Z Niui , w = Z Niwi , (36)

    i~l 11i=l11

    where Ni, a function of 9 and n , is the shape function for

    element node i and ui'wi, are the nodal displacement compo-

    nents. The strain-displacement relations [6] can now be used

    to obtain the components of the strain vector. Thus

    33

  • c = B 6 , (37)

    where B is the standard rectangular strain-displacement

    matrix of any finite element formulation, a function ofthe local coordinates ý and n, and 6 is the vector of nodal

    displacement. (See Appendix A, part 3, where the applicable

    formulas and useful equations are summarized).

    If the elasticity matrix for an isotropic material is

    D, then the stress vector o at a point is given by

    oaDe . (38)

    Now, by evaluation of the total strain energy in the element,

    the element stiffness matrix can readily be obtained as

    Ke - f BT D B dV , (39)

    where the integration extends over the volume of the

    element.

    In the present program the upper triangle of each ele-

    ment stiffness matrix is evaluated by numerical integration

    using four Gauss points within the range of ý and of n [1].

    The element contribution is immediately placed in the system

    stiffness matrix, which is stored in banded form.

    B. THERMAL LOAD VECTOR

    If we denote T as the difference between local tempera-

    ture and reference temperature, then the thermal strain fo

    is given as

    c UaT, (40)

    34

  • whereU =< 1 1 O>T

    and a is the coefficient of thermal expansion.

    The thermal load vector Fe is given by Zienkiewicz [1]

    as

    E f T Dco dV. (41)

    From the point of view of the numerical evaluation it is

    interesting to note, however, th-t the product D e in

    Eq. 41 will reduce to

    D e = Ea Tu (42)L-o 1-2.v ,

    where E is the modulus of elasticity and v is Poisson's

    ratio. Thus

    Fe_ Ea f T BT U dV (43)T 1-2v

    nwhere T = E NiTi and n is the number of nodes in each

    i=lelement.

    In the attached computer program in Appendix B the advan-

    tage of the simplicity of Eq. 42 has been utilized. Also,

    since B has some zero components, in the process of multi-

    TTplication of BT U, simply the addition of the appropriate

    non-zero components of each column of the B has been per-

    formed. Finally, Eq. 43 has been integrated with four Gauss

    points.

    35

  • C. PRESSURE LOAD VECTOR

    Consider a quadrilateral element as in Fig. 3 on the

    boundary of the axisymmetric cross-section where constant

    pressure P is applied. The infinitesimal force dF due to

    the normal pressure acting on the inner infinitesimal cir-

    cumferential surface dS is

    dF = PdS = 2rRP dt , (44)

    where dt is the infinitesimal length along the side of

    quadrilateral.

    p- Z,W

    Figure 3. Boundary Element Under Pressure.

    Let FR and Fz be the components of the pressure force in the

    R and Z directions respectively, then

    dFR = dF Cos 0, dFz = -dF Sin 0 , (45)

    where Sin = dR and Cos 0 = d Therefore

    dFR = (2-RP)dZ dFz = -(27r RP)dR. (46)

    - 36

  • Since the total work W done by the normal force F is equal

    to the sum of the work done in R and Z directions,

    W = fu dFR + 1w dFZ

    S2'rP (fR u dZ -. IR w dR). (47)

    Now, by using the appropriate shape functions, each compo-

    nent of Eq. 47 may be defined in terms of the nodal values.

    Since

    .W =( 6 _e) e; (48)

    (48'

    where F is the element pressure load vector

    vector contributed by node j is explicitly given as

    g F R -e1N zF. 2,fP f (ENiRi) Nj dý (49)"JP _F zj -1i DN Nip L - • R•

    where N. in Eq. 49 is the appropriate shape function for

    node j.

    D. CENTRIFUGAL LOAD VECTOR

    Refer again to Fig. 2 and assume that the body is rotat-

    ing about the Z axis with angular speed Q. Then the centri-

    fugal force per unit volume at a point distant R from the Z

    axis will be pQ2 R, where p is the density of the material.

    The work done in this case is

    W pP2 R udV (50)

    V

    37

  • For constant pP2 the corresponding element centrifugal load

    vector is readily obtained by evaluation of the components

    of the integral in Eq. 50 in terms of the nodal variables,

    i.e.,

    F = 21Tpg 2 f f (ZNiRi) det J N. d~dn, (51)3c -i -i =

    where det J is the determinant of the Jacobian coordinate

    transformation matrix (see Appendix A).

    k E. STRUCTURAL BOUNDARY CONDITIONS

    The structural boundary conditions implemented in the

    program are:i (a) one or more nodes prevented from moving axially;

    (b) one or more nodes prevented from moving radially;

    (c) the right-hand end cross-sectional plane remainsplane and the transmitted axial force is specified.Hereinafter this will be referred to as the plane-end boundary condition.

    The computer program presented in Appendix B has the

    capability of handling any combination of the above men-

    tioned structural boundary conditions. For boundary condi-

    tions of the types (a) and (b), simpfsly multiplying the

    corresponding diagonal component of the stiffness matrix byco20 gives zero displacement [8] (for practical purposes).

    For the boundary condition of type (c) both ends are initially

    fixed axially for all solutions. An additional solution is

    obtained for uni\. axial displacement of one end. The axial

    ., force is evaluated for each solution. Superposition is per-

    formed by adding the displacement vectors for the given

    , •38

  • loadings (thermal plus mechanical), plus an appropriate

    fraction of the vector found for unit axial displacement.

    This fraction is chosen so that the resultant axial load has

    the specified value.

    F. SYSTEM EQUATION SOLVER

    Vi Once the desired structural boundary conditions are

    applied, then the problem is to find the nodal displacement

    vector 6, corresponding to a given number of load vectors.

    ,;f We have

    K 6 F , (52)

    where K is the system stiffness matrix in banded form and F

    is a load vector. In the present computer program a single

    Cholesky decomposition is performed on K. Then, by a process

    of forward and back substitution, each load vector is

    replaced by the corresponding displacement vector.

    G. PRINCIPLE OF SUPERPOSITION

    Upon the evaluation of the displacement vectors due to

    the various types of loading, the principle of superposition

    can be applied on the displacement vectors. On each thermal

    displacement vector the displacement due to any other type

    of loading is superimposed and, as the result, the number of

    displacement vectors is reduced to the number of thermal load

    1' vectors.H. STRESS EVALUATION

    From the system displacement vector 6, the displacement

    vector of each element _e may be obtained easily. Then the

    39

  • corresponding element strain vector se at any point can be

    found from

    5e B 6e (53)

    Finally, the corresponding element stress vector Oe is

    obtained by

    a e D (C e L- ) *(54)

    Since normally the stresses on the inner and outer surfaces

    of axisymmetric bodies are desired, in the computer program

    presented in the Appendix B provision has been made to cal-

    culate the stresses at the two Gauss points corresponding

    to • = ± 1_L_ on the inner and outer boundaries of eachVT

    element (where n = ±1).

    Upon the evaluation of the stresses at each point the

    mean stress and the octahedral shearing stress [7] are

    calculated. The program gives as output the extreme values

    of these stresses, the R and Z coordinates of the corres-

    ponding points, and the times of occurrence.

    40

  • V. ONE-DIMENSIONAL TRANSIENT STRESSES

    In this section a one-dimensional comparison of stresses

    is made between exact and finite element results. The tran-

    sient temperature problem is the one previously described in

    Section III.

    If the slab edges are free to translate in the plane of

    the slab, but are prevented from rotating, the exact solu-

    tion for thermal stress [9] is

    a Ea -(T T) (55)Oy -z 1-V Tavg

    where T is the local temperature (Eq. 33), andTavg is the average temperature in the slab

    If we choose E = 2, a = .50, and v = 0 (all in consistent

    units), then the maximum stress obtained from the exact solu-

    tion is

    a ma -. 477786

    and it occurs at x = 8, 1 = 73.

    Using the finite element technique with trapezoidal time

    integration and Irons' correction every 10 steps, the maximum

    stress is found to be

    amax - -. 477778

    and it also occurs at x = 8, T = 73, as before.

    f It is observed that the method chosen gives excellentresults.

    41

  • VI. TEST PROBLEMS

    Program integrity and accuracy have been verified by

    solving a number of test problems. Since stresses, whose

    evaluation depends upon derivatives of displacements, are

    known to be less accurate than temperatures, comparisons

    with exact results are confined to stresses. Individual

    problems are described below.

    A. THICK CYLINDER

    Consider a thick cylinder with inside radius 30 inches

    and outside radius 50 inches and the following material

    properties.

    Modulus of elasticity E = 28.9 x 106 Psi

    Poisson's ratio v = .28

    Coefficient of thermal expansion a = 7.22 x 10"6 I/F 0

    Thermal conductivity k = 28. hr.ftuF

    Density p = 489. Lbm/ft3

    Specific heat c = .111 LBm.tuF

    An arbitrary length of 25 inches has been selected for the

    cylinder and it has been subdivided into two different

    element representations as in Figs. 4 and 5. The plane-end

    boundary condition with zero axial force is used. The

    stresses for various types of loading are compared with the

    corresponding exact analytic solutions as described below.

    42

  • Figure 4. Two Radial Elements Representationof Thick Cylinder.

    Figure 5. Five Radial Element Representation

    of Thick Cylinder.

    1. Thermal Loading

    For a linear variation of the temperature T = 20R

    the stresses obtained by the finite element method for the

    above representations are compared with the exact analytic

    solution in Fig. 6. The TRZ for this problem clearly is

    zero and the one obtained by the program was 10-9. The

    accuracy of the other results is clearly satisfactory.

    2. Pressure Loading

    A uniform pressure of 1000 psi. acts on the inner

    surface of the cylinder. Again, T RZ is zero and the program

    gives 10 -0. In Fig. 7 the other stresses induced by this

    uniform pressure are compared with the exact solutions.

    Here also the accuracy of the results, even with two radial

    elements, is adequate.

    43

  • AKSl.

    60

    50

    -EXACT.

    40 42 A ELEMENTS.

    30 o 5 ELEMENTS.

    20

    10

    030 32 34 36 38 42 44 46 46 50 RIN.

    10

    20

    30 FIG.

    THICK CYL INDER UNDER THERMAL

    LOADING, T= 20R

    40

    450

    • 44

  • PI Z

    2000

    1600

    1200

    - EXACT.800 A 2 ELEMENTS

    0 5 ELEMENTS

    400

    Az

    -400

    -600.

    30 34 39 42 46' 50 JIcJnch

    FIG. 7 THICK CYLINDER? UNDER INTERAL PRESSUE,

    45

  • 3. Centrifugal Loading

    The speed of rotation has been assumed to be 500

    revolutions per minute. The stresses obtained by the pro-

    gram are compared with the analytic solution in Fig. 8. In

    this case also the results obtained by the program, even

    with only two radial elements, are very close to the exact

    solution.

    B. HOLLOW SPHERE

    We consider a hollow sphere with the same material

    properties as in the thick cylinder with inside spherical

    radius 30 inches and outside 50 inches. The loading is

    thermal with T = 20 -(spherical radius). Symmetry permits

    using only half of the sphere for the computer analysis.

    The elements representation is given in Fig. 9. Since the

    program gives stresses in cylindrical coordinates, these

    have been transformed to the spherical coordinates for

    comparison with the exact solution in Fig. 10. The accuracy

    of the results is noteworthy.

    C. THERMAL STRESSES IN NOZZLE

    This problem concerns thermal stresses near the inter-

    section of a cylindrical pipe and the spherical vessel.

    Fig. 11 gives the cross-section of the structure which is

    to be analysed. The material properties are:

    Modulus of elasticity E = 29.3 x 106 Psi

    Poisson's ratio v = .30

    Thermal expansion coefficient a = 7.6 x 10-6 1/F0

    46

  • 4..iKSI.6

    4.-

    A

    3.

    --. EXA C T.

    A 2 ELEMENTS.

    2. o 5 ELEMENTS .

    1.5

    FIG. 8

    ROTATING CYLINDERI.

    .5

    47

  • R

    o30 35 40 50 Z

    jfl Figure 9. Hollow Semi-sphere 32 Elements Representation.

    48

  • 80

    70

    60

    50

    40

    30

    20

    I0R

    10

    20

    20

    4030

    50

    3 32 .34 3ý 38 4 42 44 4G 48 50 SPHERERADIUS.IN.

    Figure 10. Thermal Stresses in Hollow SphereT = 20 (spherical radius).

    49

  • LUQ

    F- Lu

    C) jc

    LuJ

    F Le

    50

  • Thermal conductivity k = 10.25 Btu/ft.hr.°F

    Density p = 530.5 Lbm/ft3"

    Specific heat c = .128 Btu/LbmoF

    The loading results from the thermal transient in the fluid

    contained in the nozzle. This fluid is in contact with the

    structure on surface "i" (Fig. 11) and has the entry temper.-

    ature time variation as in Fig. 12. The fluid in the sphere,

    which is in contact with the structure on surface "2" (Fig.

    11), has the constant temperature 478 0 F. At T = 0 structure

    has a uniform temperature of 478OF and is stress free.

    Exterior surface of the structure is insulated. The flow

    velocity past surface 1 is 8.5 ft/sec (inward) and

    there is no flow past surface 2. The surface heat

    transfer coefficients are 1393 and 2910 Btu/hr.ft 2OF for

    surfaces "1" and "2" respectively.

    For the structural boundary condition it is assumed

    that the nodes on the left end cross-section of Fig. 13 are

    prevented from any axial displacement.

    The maximum thermal stresses obtained by the program

    occur in element 14 of Fig. 13 as follows:

    Maximum mean stress = 18.81 ksi. at time = 4 seconds;

    Maximum octahedral shearing stress = 11.5 ksi. at time

    = 18 seconds.

    These results appear to be reasonable, but no suitable com-

    parison solution is available.

    S~51

  • 0F

    637

    478

    0 2 SEC.

    VARIATION OF ENTRY FLUID TEMPERATURE

    IN NOZZLE. (SURFACE-1

    0

    F

    478

    4t

    0

    SEC.FLUID PAST SURFACE "2.

    FIG. 12. Fluid Temperature - Time Histories.

    52

  • kNN

    (D Lu

    53

  • VII. CONCLUSIONS AND RECOMMENDATIONS

    A. CONCLUSIONS

    FA computer program has been developed for the solution

    of axisymmetric transient heat conduction and thermal stress

    problems. The system will accommodate a wide variety of

    geometric arrangements, thermal and structural boundary con-

    ditions, and mechanizal loadings.

    Although double-precision arithmetic is employed through-

    out, efficient algorithms for the manipulation and storage

    of large symmetric banded matrices allow in-core solutions

    with modest time requirements.

    The quadratic isoparametric elements used allow accurate

    representation of curvilinear boundaries and the stress

    field. Examples presented show that a small number of ele-

    ments is generally sufficient to determine stresses with

    good precision.

    B. RECOMMENDATIONS

    Incorporation of several additional features would

    significantly increase the program capabilities. The follow-

    ing extensions are recommended.

    1. Material thermal and elastic properties have been

    assumed constant within each element. Since such properties

    are generally temperature dependent,.provisions should be

    made for periodically "updating" them during both temperature

    and stress solutions.

    54

  • 2. The surface heat transfer coefficient, taken as

    constant in the program, is a function of temperature and

    flow velocity. Provision should be made to include these

    effects.

    3. The program presently starts every temperature

    solution with constant initial solid temperature. Provision

    for an externally specified initial temperature vector should

    be included.

    4. The large quantity of temperature and stress results

    generated by the program is currently presented as digital

    printout. Graphical output in the form of two-dimensional

    contour plots of temperatures and stresses should be

    provided.

    L

  • APPENDIX A

    APPLICABLE FORMULAS AND EQUATIONS

    PART 1

    (a): Two dimensional 8-noded (parabolic)isoparametric shape functions.

    Corner nodes:

    Ni=I (I + •o(1 + no(o+ no-i

    4 o o o

    Mid nodes:

    S0, N(1 - E2) (1 + )•i= 0, N

    S 1 E 2n=0, N 2=O

    where

    0o E i no 1n ni

    (b): Temperature at a point in terms of thenodal temperatures.

    8T= E N.T.i=l z 1

    (c): Coordinates at a point in terms of thenodal coordinates.

    8•iR E N NRi

    i=l1 1

    .8Z E NiZi

    i=l1

    (d): The Jacobian coordinate transformationmatrix.

    56

  • j-

    3Z aRJ

    (e): Element of the finite element capacitancematrix.

    eC. pc f Ni N. dV!1J

    (f): Element of the finite element admittance matrix.

    Yij = k f VNi*VN• dV

    (g): Elemental volume.

    dV = 2fR det J dg dn

    PART 2

    (a): One-dimensional 3-noded (parabolic) iso-parametric shape functions.

    _1End nodes Ni - 0 o (1 + ýo)

    i E2)Mid node N. = (I )

    where, again, o =

    (b): One-dimensional capacitance and admittancematrices.

    !•4 2 -1 7 -8 1 h 0 0

    Ce pcZ 2 16 21 +e kE 8 16 -8 +i = ~ ~ ~~~30 '=3, 81

    3 -0 2 4I1 -8 7 L 0 0

    where Z is the length of the element.

    (c): The element v vector for the one-dimensional case.

    Se= T

    57

  • II

    PART 3

    (a): Strain-displacement relations.

    _Ni

    C R TR 3R -• i

    Z. NU.u i

    N N. UU + 211

    _2-u - _ U + E IVYRZ 3Z R 3z i 3R

    where Ni are the same isoparametric shape

    function as in Part 1, (a).

    (b): The B matrix.

    IN1 aV2 DN80 0To B .......

    3N1B 0 0 ....... 0

    N 1 0 N2 00R R

    BN1 •N1 •N2 •N2 aN8_z _- Uz • .......

    (c): The element displacement vector.

    6e = T

    (d): Elasticity matrix D for an isotropic material.

    D1 0i ~= E(I-v)) )(l+v)(1-2v) 1- -V

    V V 101-v 1-v 1 0"J TV% TV%

    0 0 .0 1-2v82 (1-v)•, 58

  • 0000000000000 0 00 0 000000000r)00000000000oo0000000000

    0000000000"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000

    * z W>-Z. IWI U0 ZI-')' I*U W )>O(/) '-'10 S-'W<

    < aB W ZQ. Wi o ZOO /C)o ZI-XT 0,... jWO C) Z * 0I < u xWWi Ltcn

  • 000000000000000000000000000000000000000000000000

    000000000000000000000000003000000000000,'OooooO00o*ooooooo,,00000000000000000

    * V) 0

    3* Do >- 8-.4C* I-- u z1 . L

    < I-~ - C- Z LU w 0C(< 0 z D 0- "i 1-1tt D * LL 9< n0-- 1-

    * LQZZLC) LL zx0< < 4

    *Z W'I4+ LU 0. -'0 4 1-4- 1- . 7**0 1-I--(.L) a-0 < I-LU L 00 u w-4

    *" LU'- '-'- >~ 41< < o< F- 0

    * 0 IL00n.4 V~)COI- V-C) F- -- D F- - oZ D* zoz ýL 0r0Z0 1--* C zzwz0Zz z -~

    W* 00 9F LWU_ -in( CJ WLU0K4-q 0 0 0 -I> m ZUUXX< XLLo 0 0- 0r--w uu czo~

    * Z)< 0 6-o42 '-'0 z .-.'- U0 001F-O. W0WLZ4 * -4W>0Q C-1 oU) -'Vn 1-0w -4"1- Z Z wUI.-:o

    *( (Y1- 1--Li) F-LV)OW LU t/)L'-4> LL LJ.L. 'ýw -4 Of4 0 U W.* C/). < ( * >) LLQ Lt. LI..CC L ILCA..J*1--< .400zrW Z>1-'- "F.4ý4 _ 1--0 WUi[JJ.ZO (n) Cl) i-WC

    * -Z Ozz z -

  • 000000000000000000000000000000000000~oooooOOOCOOOOOOOOOOOO00ooo000000000000000000.O0

    0 0 0 0 00

    W*

    0.t *L 0.

    C* 6 Do W Ut ..

    X 4 0 DD cc. _j On OX .0 "0.

    0 . 0 " W*- 0t$'4' t. z' 00 0- U%) 0. -Z ZDoo )LI.o-U-.LLUVLL F- W UL * "t0 tn- U 1-) U. U.. "A

    ' Z-

    I--0(AH1-40C-~ C/)_>_ > F~~.-4:7 X

  • 000000000000000000000000000000000000000000000000

    0000000000000000000O 0000000000000000000

    ,-,-.4 ~ - -.--- - -r4-- .6- 4wI -. 4-4- -. 4.4- -.- -. I - 4L .4.4--4.44-.- -.-

    LOW 4..4 0.U.> .WV-o"14----- LL U- - -9.W

    r4-4 0m-. -o'ý 00z

    .- (YL))W- .4-t ..J LA.rv)1 -tZI/ P-4-> uiOl-4

    MCIC)N-4flWL/ WU. 9n D 0 9.99. .41.... 9 -0- LAI. z W-4

    r4W, U (. 0 02-'00 '--

    (b-.'- "V -tuco'- co X ZZ0

    M -W 9. .'W - Of -%-

    cA0(N-40--N >-- ZA CLzLI-LC- "0--9. z ww-

    *q-,% CC) 0. 9.0 Ln u 0 0V)ic~ '-0n 0"0(- 0. 1- ~ -4'-"" .400 %CO S.- 0. cc 0

    ,DO-Ct 0 " k:0* - * 0 *I 00 #.

    9.9.j -4- u~~ D~ 0.. LA00 0 A-0 -4 0..0-ow oa~u >~ ' 0 00 0

    -. 4 ---'LA- Z ~4-I Wo D-00 i CL 099 o-*9.)( 0 09ýr 0 0

    V-2-V)vV)0 OIL--LA% Z wU .4 'i-i'. 'tC 4 Zýý. 0 UWw 0 .U)4AZL/) 4.9 - . '- w.h- CL . ~ v4-- -ai. a < L U. . I-- * N~ m I/)(o 9.F-40 v.'-M- 2:-- L) 0 aa a0I- *.V)(t,4W Zc,-". Wl N~ LA0'-4Oý- W

  • .-4r,4-4f-h4N ('N ('1NC\J C\JC-i'JN 1'%JN N(%JN N('NNC' "NNNN N

    OOCOOOOOOOOOOOOOOOOOOC)000000000000II 0000000000000000000000 000000000000

    * ". X .

    - ~ t --L '- x~t. NN * NNQc~f-4N.,

    0 3: C..

    -Z**X

  • 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 00 0 000000C.,c:00000

    * *ooooooooo0000000000000

    * -. O- ON

    I- - ZO- . t0

    _j-H- * .OLn OX -- 0

    Of~ ~ 00 c- L< *.j U_ .- 4 zA~* -I-D F- * 9.N 0-:. I.-z Z 00-. m

    , w

    * :--

    *0(.)/ * 0 9- LIH I,- -. jO OzmM.-4Z* ZI-'- w * .--. '- IH W ,- 6.i 9V)o .-OZOI

    * -- 4 Z it -'D -CA 0

    *00 mO 41 CoO N'C) LLU.-N o- (n - "Z Z---0 "-v)

    F* WIOCA * 0 "4 it>N- *.M')9

  • OOOOOOOOOOOOOOCOOOOOO0oOOQOOO00OOOO0o0oOOOO0oOOOO

    00000000000 OOOOOOOooooooonooOOOC)0000000000000000000000000000O000O0000000000O00000000O00o00O0o0000

    "MLIw04ZLLWL

    --4b 00000000U-> 000000000- - NNc'N'

    0 CQcc w

    0. zz . . ---- %.-~--

    CD 1 U) aa-----.--

    j a> 1- 11 u --- -

    coU. V ZZZZZZZZ rC---4 0 11 0 ---.-- ~-

    W>)-'- z 0 C." NCW

    aCoz e 0 4-4mmtt-t-- 0 zo *2U " I- a (D V..J

    -tn.a 2 -- - -- u-

    ý- ~ ~ ~ ~ ~ ~ ~ ~ 0 -0JrU"0 - ý w z z z z 0 . z00cNLU~N~ r-4cz u2 0

    0 -0. 0O>--.u co Cl, CDl,

    00CZ - tn -0 00" 00 111 11 11 11 ,0 00 0IL , -ý O t4co 9, co 1 (')- 0 - *1M N65-

  • ooooooooooooooooocnooooooooooooooooooo0o0Oooooo0o

    - N

    NN NN N 3~1~~,. .O 'OOO'f

    U)

    V) 4l CCX 00 :

    - w *.-0:V-() W *

    (/) (/)

    w -I- 0

    -< t- *L>

  • I-4NM( %rnC 10 1'- 00%C 0 9-N ul- O L(I' -WQ' 0 -4N~ cM"tu'ýO r-o'0 -NM-4- LnOr-W(a'0 .- NM '-IUn %01- a

    00000000000000000000o00t00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000oo

    0,ý 0004 00 00 00 00 00 00 0 0000 0000, % 000 L 000 000=0 0

    94. 9.-C~nýM s-U L~ H JJ )tDý ýVL

    ý-4 -4 "-xo ~n ý L 9-F . - V. ->"

    *ý" ov W i.. > wQ ui't-~- w'J-. $(.)-- U-z 9W- .4-W 9. -\ ZZ 9. ý-4'tUJ-7-74L Z9W #I- f.N cr>'

    U-) t 9.C'JNLJý U-j~ZL W~ . D40 )I- -Jc v ,L

    LLI -LU('). -I-- u cu Z- 6- "ýj 2s-4 *-o- wiV).- 4.-4 ZzIW< W0-4CX. *>"X 9.i: z -XW aW- 'IL-" I< .

    IIU. ":. Z~~ -J .J X.L~ 9.>< O)O-4--Z U0 w9~4/ Z9I~->- F >

  • ti7 0%-T t -4 r- -' t 4'? 44 44 t It' -t -zr 44 4 4 444"% rI t-rI t1 t- r- '*44 T t4 1 NT -t? 444-It4t4r 444j 000000000000000000000000000000000000000000000000

    '-4-I 0I- Z X

    C(I--1CO

    0. F-' CD U N"x I L

    "uU QOO LL~o 0

    I-tJ)< 0 68

  • 0000000000

    0000000000c~c4 0000000000o

    00000000000000000000

    00(V)

    -ww

    ~LO-(L/)

    #-i L

    1-0o

    1-LU

    OLU

    -ZO

  • 0000000000000000000000000000000000000000000000

    r~ooCO000a )000 0000%0'000000000-0-44NC'JN

    0C000000000 3000000000000000000000000000000000000000000000000000000000000000000000000000000000oooooooo0000000000000-oooooocoooooooooc0oooo0,oooo0000000000000000000000000000000000000000000000

    it*

    * *t* 0%

    * *tO

    * =w *o -0 -- - < CC) u..-. 0A-.---w- 'tu-

    * -- W - 0-9 m-.

    * i tI2 "4-I- No lf (..)*- :E- Qv) $.-4.-4( " 'c.* Wi- 1--ZU * w- --- o"2 r- WV) 0- '-0s .- M

    *t IW(AOýaý iZ -(/) (/WO jý *z MI- 'n- 4 r)Y ~ -4-

    * 0.~Q-4 I-GYF 0* Z - ,ý 00 4m- --t4* -zU0 T W *4 u-0 z< it- r-, WO -' -0 0-

    * 0 O-WCWol< *t LLI91 -4 ý_Xo -Z Zo. -4 -. .- Z(/ -~ (** UlQ ___ * 0- ~0 OWC CL~ "2 mO 0- -~

    i* F-0O Ij-'-40 i*c 1 -/ 4 O 9. >V)=. 0 .-o )ý - - or-.4 a,-*t 09-4 2:-Cl- * 0 '.4 .- Vi)9-'U Z, 3%0ý it UL-9-40L0 it M4 Iý X-4 v-.X Z % ~- ZLI' -4W,-4 '--UJU2l0O 9-4 00 ~ t UI 00.1-z w -2~ W- - -- -

    '-4 -4 -4(N '., _.4( C -NC)t

  • 000000000000000000000000000000000000000000000000

    in NNNI O o o o -~LALAL0000 0000 0000 0000 000 0000 0000 0000 000 00 0

    t- z-

    Z 0"LJV0- 0 0 ýU lW- 0 Z-) - ~

    z w ow F- l J w

    > U P. > O0F---0j0 --co 4-NM -~--4--ON T n. a 0 a+ Ccl 0-' 1-0 ocWZ - 0 'AQ.1-.-L -ZFý- 000co -~ W 0 O:N ýow N 0 00 COXM r4-I .-

  • 000000000000000000000000000000000000000000000000

    ooooooooo,:oooooloooooooooooooooOOOOOOc0oooooooooo000000c00000000000000000000000000000000000000000

    0 -s. >-C~-I.- to 1 ZZO. 0

    0QW9 -JL~ ) J zZZO 0

    V)C) ZI- Z I.- .-

    ON% Z-WWLL Z-Wj 9. '- 0"- A If

    -0 9.- .---- 4 ý-O Q~~ < Wj- .- () 9. -0-.

    C/) .. LL U- 4 " -n 9.0 .- OZ c(-0rOZN1 CY N N.-A WWUIli00u..)OL -4-0- -- H ZZOW") C\L-JNLL 00Ci:.-.ZZ< f- .. J.JZ. - ýCiYciz ZZZ - . 9. 9 -I"-0..ox O) zZ U) zz 0 0-tn-O-u)(I

    0 *. 9JLn ZZLL'-. ZZLLZ -.--. LZ CO -X- I-I- -U-N ~ -14 0. -0 O N'40-t< a~ < 1 D

    09. -44j 0-4 m- t-. 000 o 11 1 -> 0> 9.f-l'- *eON, *'0- zzNO< 41 L)L 0 UU0-iL

    u 72

  • 000000000000000000000000000000000000000000000000

    If O00OO000:O0oo 0oooooooo0oCoooo0OOO000 0O0O0 OO00000O0000000'00000000000000000000000000000000000000.ý000I; 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

    wU-

    a -4

    0~

    0I-

    z z z z0 "LL 4-.W '-

    00>-0 0Wt/).J II ~-J< '- I " >- Cf C

    00 0 00C) 000 < ZwtWH-

    *. wwj 0 Mr 0-4 Mw w M"~-00ý W>> 0L 0. I-- 0

    ca-Jj7- "0 0 < 00-Al11 00 < -

  • 000000000000000000000000000000000000000000000000

    0000000C000000000000000000000000000003000000000000000000000000000000000000000000000 p0000000000000000000 00000'D00000000000 00000000000000000000000000

    m-

    ,4ý4 1-4 It

    00- 00 Ir

    00 0oa -EzW

    1111 0 -N '-

    "1 " CO 1. 4 -

    -- I >-- 0 U S00 r4 0 0 Z-4 ->->- - 0'- * 00C(Cjf-4- CO'.-' 0 0 .41

    0 coN' 0'--00 N~aO c COc ".-4 -0 N\ ý4 ~4 "".

    0 " 4+ .- 4>_00' ir- 0C Z *0\ -0 ~40 ~G\ 00>-0 '-m I--. - - -a% 000ý>. o." in L .4 '

    00% 0 * czw >.-- 0"0" 0 ->-4 I.I-00 '.-OOcO cc %t~a-Q- (3L m-4 0 Uý -

    * 9. co a -~ (')- (,.- *-'LL 0 I- L U..oll

  • 0000000000000000000000-00000000000000000000000000

    o000000000000000000000000000000000000000000000~0000000000000'0000000000000000000000000000000000000o00000000C'000000000o000C00000000000000O00O0000000

    000000000000000000000000000000000000L

    4-z

    MU)a -

    -.ý ( >'-4 .9 z

    a- 0O.. L)

    4- C90) Lliii -- 4 9-' U

    >,00 -(..I LCD-- LC l'N N9 W

    LL. (0

  • 000000000000000000000000000000000000000000000000

    000000000000000000000000000000000000000000000000OOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOO0oO0oo~oo

    OO OO O OO OO O OO LLO OO OC O ONOOO O O O o

    S. 6-*o

    M: In C w U

    0-: -.- eo - z-Iua 1- - 00 ai C) 0*-

    I-- > W W Q X WZl-0 UL UJ -4uj 9 L)LI z!Z F 0 wi F- r''-4 - I '-Q 0 o ZZ 0

    0. IL _- .- -4- - -~ :3 4 u-- .U/) W z 0ý F--t't ,--

    1-4~~L " 0 '->Z . 0 U- -' . IC) LI)W Qfý F- n-4Otj z 0 cr- 1-1-

    CC III F- a. L) Z ..LL.-4 0 '4WW 0'0 c~ z < < LJ( F- Lli Wil0-4 *

    F- < '- - F- W- 4 Z 0- 00) 0o) Qý 0) z ILJI>LL F- DF-Wu- ZZ zw LI) a.Z 0 Qý - In r- - 0 F- Oý 0 =F- -'-4x~ C LLQ.-. LU F- Uh)ý WU LA 4 LI

    UL 0 UJIW wU

  • 0000000000Q00000000000000000000000000000000000000 )C:

    OOOOOOO0OOOoOOOOOOOOQaOoOOO0oQ0oooO00oooOOOOOOOc~0O 0

    Z.*

    Wzo

    z0

    10 L) 0 F- el c

    L/) ý 0(/)

    L/V) P4/Q

    Ic- 0 00

    00 Xx0LU-~U_ wLW OO. L.

    W4- -IN c,N N N F- ")r- 0 UL)O0' 0 - N 4O Q

    NO LA% ..-4l IA-LAL LL

    0) N) N : -Nw - WU F- ý ~

  • 0 0000000000000000000000000000000000000002000000

    .O OOOOOC)O000oooooocoo'o0OOooo

    o 0000000000000000000000000O00000000000000000000

    o it

    * *

    "q - **W 0 Ce0't «Z Li-

    D~-~ 0 C CeOO-0 z~ z 0MU7..LLULLI..0o-(n) 000 D"- :r.L- 1-4 X->- 0-"4ý-40 0

    0 'l -4I N co

    78

  • 000000000000000000000000000000000000000000000000

    01%0% QQ' 0% ON ciUON C o'o'O o'l % , 0%7 0%'o 00o'u' 'c'o' 0' ONO (IN a, a, a, 0' 0(Pa, 01% 0' O'C7' ON' 91 0'U'NON'G C)No% c ' ON0000000000000000000000000000000000000ooo000000000000000000(700000000000000000000c,000000000000000000000000000000000000oo 000000000000000 Cn00 0000000000

    * 000000000000000000000000000000000000000000000000

    .1z

    z

    r-4 r

    I~~0

    0 0- 00

    004u

  • 00000000000000000000000000000000000

    000000("00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

    + ie

    -% ww

    COO0-- L' W~

    -..-- - N 4

    0 < .-. 4 L0 9U..L *.' I-~LJD

    9. i~. mom

    - -- ':j-.0 0II~ N Z III -A~ ZLtZ

    0 I~ 944 .- 0< uV...CJN 00~ i. "INN toLUCK

    '0 XZ+' 4-4-.-- s LL x)*% W- -'. UJ - e

    Q0L~ 0-0 0 00

    804. -,o

  • i00o 000000G%%O(300000000000000000000000000000000000000

    0' 0 0'0000 0000-4-0-00004,-000C-4-)00r1-4000000000000- r.o 000 00-'0000000OOOOOOOOOOOO-C)(-4OO0 000000000000000000000000000000000000C.. oo00C)0000 000000o000000000000000O000ouo00000000Oo000o

    * *L4.

    * LL 9

    0% * "- * UCC *t LLQL.. *-

  • 00000000000000000000000000OHN000000000000000cooH

    00o00o00000000000000000000

    w

    W<

    I-W

    l'- CI

    -U%... --

    '-o N a

    9D . -<

    W~ 0I-->.- H tI

    --- NX 0- n >-C.- 0U.

    3.1 -m 11 r'-

  • 00000000(00000000000000000000000000000000

    .~ooo0 o '0 '0 Ioo -r--r- r-,-- '--~-cocwocw co .crjw cr 0 a, 0' 0 00' 0'' '%0' 0' 0000000000000000000000000000000000000000.I-ir-I

    000000000000000000000000000000000c'00000000000000000000D00O00000000000000000.2000000

    *it ***

    < *U* r U:3

    * ) > WZ V * L r

    * W/) *- * Z* zAz w *

    * ic < 0W . M3n-

    PqO- * * Z ~~ M,

    * - 0Cl/L~ <

    *0 T * -

    w. ::WL-'0 -1 *4*(N N --- )* .VJI.O-W *, Z 11 11 ) 1< 11 1 a. O * .41 1"L *3 L/.J 0 iQ * - --- :z L 11 . 11--

    /)q.- < 0-4 * "s-4 : - "Ii

    D *U n

  • 0 OOOO000000000000000000000000000000000000000oo

    o 0OO0000000000000O00~0001-OOOOOC)OOO0000ooo000OCo OOOOOOOO000000000000000000000000000000000000o

    *- -N I-- Zi. 0. t0 m

    * _*- OL\O - s-4 W U.. _-4=-. M* 00 0- U< -. LLPi '--- L< < * *C\ 9.0 ! JN 2 Z - )Q 2:- 9.J-O 4M* )< _J 0 *_ 4U _ 49 N' _ 4-0-4 " "-4-

    * o .W W tc .- '- ". Cl-Z ý ~ . -* O L C.16F tJ -1- OLA 0)< U-4" -_ on-.4 -* H 0< 0 0 J1.') (1) 0J CL'0 0A-.--.L.-.-- 't* a- * COD OD 0-'H Z Iza- 0- LL--9.. - -N'* 0 -(7

    *,_ 00 )ý-i *J Cs 9 . J ) .0 C0-'< 1/ 9*k ez~j-Js _j M Ul..it - 00-4W 70'-

    it * 00H -

    -4 r--4 -IN -4 -4 M - JC~)4Uno -4

    1 84

  • 0000000C)O0000~00000000000000O0000000000C00000000O000

    I,-

    0 000

    z P-4w

    wi~ I- w

    w+

    0

    '0 -ifm -4 *~W+r<

    -~UJ OW OW COW0 1 10 1 0+0+

    > 0 00-40 .0.-4

    Ln t r-4 '-4*-I -4*

    -" -i i, -it--'- N it. N i

    '"4- s-,4Nif >-'.-4 0)Z '-* '-

    U(- uu UU0 uuu u u u 85u

  • 0)00000000000000000O000000000000000000000000000000

    ooooooo00ooo0oooooooýooooocoooooo~ooooo~ooooooooooooOOOOOOOOOOOC)O00000000000000000000000000000000000

    0 0

    oL 0.

    w + I +a -0. t-- J.. tI- I-

  • 000000000000000000000000000000000000000000000000

    ~W

    F'-

    n) LLL) i-~ ow

    0 m~ X0 NN uJV L) I,-I. D.. >

    0 ~0z *t :F it<

    < - 0 w -'-4 ' ' '- ++ 4 -

    0ý Z a.. ml- 0D ZH ) V) L -

    9-4WU CL1- 7- ww*>< I.- * ,4.000z D Na.. Q, F- 0KNO

    - 0 Z

  • oo0000o00ooOooooorooooooooooooooo0000000 ooo000oool:Co

    00000000000000O0000000N00N0000 N00000000

    000000000000000000000000000000000000000000000000

    z

    tI-I-'-4

    z

    0z

  • 00000000 00C:>D00ý000000O000000000000000000000300000000O

    0000000000")0000000000000000000000000000000000000

    '-4

    n~ 0**-4

    ++ 0

    c -4')n 000

    I N+ i 14-4 a .. N4...4(7 F1-C-11 0C\1 ++ 0) :c 00 Du

    >

  • 000000000000000000000000000000000000000000000000

    -4c -o 4- 44ý o4'o''0 rC'04', 0' C-'-' O'0 000000000 44-v-4 .l-(4 -.- I4"4ý-4NN NNNNNNNN 4"4ý4- w ýý -ý4m

    000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

    * *

    ++ C 0 I+:Z IL U- LL NNI

    I I 0~ U-+ (. LL. S. .

    I I*'- -4 4 Nj 0 .

    !4- ' - 0 000 t- aa00000,-4 + 'e -4 N~j+ 9'4 * -4 000 '",-I .- IN ý-4 00000

    .. +. 0'-' No+a-. 0 . U. t L -4 -+ + n\ *unLn

    00 LUO 11 0"'00 WONI OCO.- 1iii ii -Z Z Z ZzUWI iL z: w U- ULLU.IJ Wi w + U-U-U- LIliiIIIOL) 1'4a:) U 00) Op-.lD .. a II * 000ZZ~N4z~z ZOZ~ZN4z4zZ 00z0z (PZZ 0~~'-' -Q- '0.-4 -*Z--. '-A N Ln

    7. ii 1-1- It 11i 11 -41- 0-4N U-. 11 1111 11 .-4 N \~ N11I zY Ze 11 l

  • 0000000000000000000000000 -0c0000

    00000000000000000-0ý.:Io0o000O0~crj0o00oo0000O00000OOOOOOOOOOOOOOOO8OOC)000000000000000

    0 00 0 0 0 0 0 0 0 0 00

    000000000000000000000000000000000000000000000000

    I-mm ::)>:oo

    000 wcq X~e 4I

    CL on- x

    7* 7 000(LI '7 tU0.. 000*F

    0 N c\Icm CL L 0

    V) lJ w+ 0 )/V -4NCL0.0"0

    N '-4) + : 00 )-

    Q.D -k **- N- 4 --- f OF t <

    -)c N -j C~l 0 i "4L

    ý- **4 F-4 II)A0 I-.-F 0

    + 0

    CC'r4 --. 41 1 1 114 i ' 1-4 coo F-> 01 -4

    4 xJ -- 4 NN 0ý N-~-UUU n 11 1-'N01(L M CC CC: +* 0A 0 0C r -4 -XLU +L Z P 4 11 '-4 + .-4

    + +* 3.4 + D 11 U..LL 1

    * C1 I--4 nz4ý *0 IiIZiiiI 0 I 00 -- IM I '~ I) *DXD44 f- V)')F 0 .- v'L ý1 11

    X XeN)< 0N Dx -1-----'L 0 0 , 0 i "L 0Z - -4 0 -4N

    0cWino00 0 -400 000 0 u0u0-000 07ý- ýl

    Fl - ca

    91

  • DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO00000000000000OO00000000N0000000000000

    ~ 4.4.4,.4p*.-4..4444,-4-'4,4.-ooooQoooc~oooooooooooooooooooooooooooo"

    I--

    * w0n

    0 OF->-

    +0 N

    N U 0

    + + z + zcc -404n

    '-4 I- I 2 VI-."Z

    U-LUOI 0 3M+LLL-J LW N 0L0l-

    z "C

    IIi

  • I00000000iin- )% -o0 -mc -tL 0r c

    mmm ~ mmmm11% .1I

    '0N%00

    0 a00 0*

    z zo0 z

    - 0

    0- 1 '0 0 11 -. 1 Z

    0+4 §- C: II..Z :):-

    0- 0 tL'LLO '-00) U.IZ

    o 0000 U*nhooN NC\I\I

    L0 00

    93

  • o OOOOOOOQCOOOOO:OOQOOOOOOOOOOOOOooo~oo00000000~

    o oooaooo~ooooooo(:00000ooocc~ooocoooooonoooooc-,oo0o 0000000000000000000000000000030000000000000000

    *L *[1*LL W * . -4 w LLO sot-~~t- q. Ic( O-

    < -"0 z o r Lc* I-IIz*. __' m~. 1--Z ~ ~ -

    it _j< * - on. OX~J - " - >w. 0ýý CfLL-* _t czWL(/ * V) '- 0Us _j WLL/P *.-t-0 .-..

    < -wZ It I'-N C0'.& .-1-(D c >z u .- -- >% _ 0'.

    * DZ* - >) t- =t z osL -OD4--- t-w* LUJW0 Z t *tr I-0 -IC/ Mt-- -4-s V) WIn '----. n* -> i~0 * W- (.j ý0 LI-c .- >Q ft .. ý* -5Q30 *t Lit C -s MM~ " < -z 001'~~r~-

    * Z0.J * -0 -0' 0 -- m~ -0*t =)X ~ *Z it, >- .- U0 ý .- N .- c Z L) _W-0*t I-w Z * cow C-0--- 0~C* '-0t 0z . CA_ t V.it *C0 i 0- C-s -U- ClW.Z-,v L):El)ýz O--

    i-s ~t0-0c *) " 0 MCL V)W-4-~I-- MN.cC)0: i (14 ~ - tJ ý

    W t 0-Z4 tZ :3-S .-4 ' -4 "1-4V 0-.-4N(I4L O ._ ý -4

    0 I O O OL.)000 00 to o-) LL U_ OW"0 -- ZO)Z

    1- 0 -U-%OI, -IU --- % L Z - 0 L

  • 0000ooooooo0oOo0ooooo0Oo00Oo0o0000000Q0o0~o00000

    00000000000000000000O0000000000000000000000000000000000000000000000000000000000000000000000.o00000

    0WI--zw

    4.. W

    M '-4

    .4 000

    00

    '0- 0 -.1 %0..

    z 0 rIc 0 ý4 0 00 WW l-H -

    ol.- ootfN'04- m a F- Hýd3z NI~-O00Co' 0% n 1-4-4".~W MtnUtmrCoH N I 0.- 0 ON

    ... Ls0A40n1co 0' 0 00 0 C. L" 0 I-MUto-1 m~o 00 U.D 00 LLC O & -

    .. fl~ I-4' n4 L Z - 0 zz cr(0%of~- t-TI-oNQa C M~ 0 Z>-- 0- FH-4'. -44f-MO~N MC -j 0 9. o 0 (DH 0.- 0 NCOCOflH4% %0 0 0--0- - . 0 I LL

    1-14 ocmiHu"'.-l NWjt 0-C 9-l- 00 co. 0 u>fr 1- 0cr * o'cr ON a*.-IL) J 0~- 0fu -0 Z0ýz Co.'.-U H h r- N -* n- 1,- 0 6-U. 9ow r-~J4~ H t - N IIn 4 4 1 - NN * 110 CY O0 N

    CO.- 00, 'A~t 000 U-W.L . NNWWJ I IW D-Z 01H~0:) 00 0 0Hc N- LU-W 1-4 Q.J. 1 W Y - 01-0

    LA) 9,4 oNNN41 109 II cue 11 t I. ,:. N - > .I 1 -. 03.Q... 't- %t.~ '- W ýII 0

    liii H,1 1111 01 U.wý-z -HN(M4UVO < L U. LLU. OH- 1-4 LLLLJ. 0 L'. U.. LLW =)0

    O~W 000000 m Z1-4e.-'.4 OU.. H co -q s-4 1-4Z 0C)

    NO M

    U00 00000 00 000 0uu0 000 00

  • 000000000000000000000000000000000000000000O000000

    000000000000o000000:,00000000000000000000000000000000000000000000000000000000000000000000000000000

    cc

    N* C~

    *\]*- *' t-

    LL.+-) I +) IS -S

    oL +)mN +.-4,4. 0 00 tN--) >_'- N *Z *oVN *QVc) !4 *ý 0 a

    * 0e 0-- L- CIO a LL M

    0Ntno NJ)'- l'- z

    0 *.~# *-uitC) 0)0-NQc *ckc N-.) 0n 0. 0~ x Ls

    it U-. I '* rO I0L . C LD M1 iDNt.UJ+Cý0 + lC 0 II- Z~ I IC.

    z- ZI )* < O*< Z- -ý zz0- * -u -u + -t - e < I_. -4 >_ 4

    0 c j-CC% _ic Pm II Z c-,O NU. N0 -,n ) C NO wC OZ

    ""N 0- -JN 0--- *\J I,/>-.~N*Cý 1*' 0 -4+ 0o Z ZO

    00 0' 0 +0-0 11 Y .-'Q -:1, ~ 1110 -0 it 101I-'--j *.

  • 000000000000000000000000000000000000c

    II

    LtU"

  • 000000000000O0000000C00000000000000000

    000000000000000000000000000000000000

    Of00000000000000000

    Ic

    + a a

    1-4)ý- -4

    I.- < t.o4 -

    No N

    aNy N N cIIF

    1-4w w- 0 -

    +ýLLJY- Il > -cjaLL

    LA)- 1+ =+

    :nooOt~o "U1-N D 0-o 1-NI0 WC>UV a14 -I-L 0-4.-4 .

    No c-4> 0. co coNA

    0..>-)U *u Uu U)

  • 0 oo0ooo00c0oooo0o00ooooo~oOuocoooooOoooooo~ooroo3

    0.4 .-. 4.4 ~ - 4 ,4.4.l.JtI4~ - ~.~t1 .- ~ 4~1-~~I .. 4- - - 4.4..4 - 4'

    0~~ 0000000* 00000000000000o

    *f *O _N I I-) t

    *tr -tC/ * 4u) a.'-4.-

    yI _j4 Mx__f4 Q U L

    *UF ZO0 i0 0*- 0)0 z .-Zý -4mt-4r/V)LI. -0)C'O*f 00- *. N '0N .-c t-. "- I-- 9ss- I ' - I, --

    * (1-0O> a v-4 LUI)- 0--- Z.O *rI)41Z'40*if 'g *O 0f 0-. 2: LA-. W .-r' #U.. -07V ' ~~-v L.t)

    * ~w> 41 NX .--.- 'A- : UV). 0. *-rD 0."'-,( C.9. 2cZO- it (), X.-W 0"¼ tip. WO ~ -0 .O-W-*i-0A -OC t--- DCLQ ýf( 0 m >.I 'Z -- -- > -C'-.-ý_

    * WI U../- co N' rX~ ---r'J #- Z L) 0 4>-4-C - TA-LA-

    3: * n z- * -' ý- -- - ' - k-4z (/ ., 7.-o.i u .-n C-C.J-*- -.

    -e * j if~ 'tN- p. -X -- Q'ZV. -- 'Z<::) *t =Jlc *- 0 - "

  • oooooooooooooooooooooooo:oooooooooooooooooooooooo

    000000000000000000000000000000000000000000000000

    +, +

    U-40I- it i

    NN 0N 1-

    uLI U.H < 0z 0L)<

    N ++ +LL

    + r-4-- ~ -4- +U- 0

    U.U4 C.) 11U. -)U -4I- 40 > 0-' C)->> ( -4 -d* I-

    41-

    U. 010 -O L- L t L .00Po.0> L)A +LU

    *3o U- 11 u1 Z Z I'v o *uIl zz

    O-FZýz N 0 - NN0- i-"- ooz N

    Z Izo)> 0> Z 0- >0 > 00y-> 0 L)

    o l *-4 p.j %0- -1J -- 0CD

    UL u .*- . N -

    0 .4 -4 -I~~+-I I N 0 .4 100'-

  • I0000000000000000000000

    o00000000000000

    - \-

    LL L U-LLI

    U- +LLL L

    -4 N

    ,-e-Ir-+

    >>I-

    L U . N LLu- .

    i0 Z 0040

    NO I N Ns%.# - W>> Io-4"1-4

    U.. +-'A.

  • SM'lIO 0U 01-M0iN tmol G11 Coooooooooo Qtoooooooooooooooo

    or-oo o r- a~'0 -,tc LL 'r-N C) ' .)O0Nm4L''fQJcoca ~ ~ ~ ~ ý coca coaa '0 'C0'C'00 '00 0 00 0.4- 4-O 4-44.'NNN Ncocaccacoccococcacoc coo G'Q QsQ U 'a,- -4.4,4-4 4.- .- . .4-4- '4~-4 ".4~ 4-.4.4.4.4r 4 .4.- -I--.4- .-*4 *.-4 tm - '. - -4.i- .. . ,.

    00000 0000 0000 0000 0000 0000 0000 0000 0000000000000000O00000OX 0000000000L00

    o *- l- 9. -44FO - ONI

    * - *jý m"-O z o.ý -4-40 '-.*( *< ~ - W U..0 00 Ov -- U

    D * -4-.j- LULL 0 *at-,

    "Z* - m* ~ .. 4*-T- 4- ýý -,ZC 4+C00-'- N£9 * 0 * 00 0- 0 < o..n Ii..- ýz CO. ..f' t) 0,4' 9* -. .--.- 4

    *WQcV * -V '-N 0. Ht z LW0. m--JZ. 0

    * -F il0 * -. WI-4 . II- "Z ZO. 'co-4 -4.,V)r .- CO-O* -< - >C'0.L - IV.ot-4'j G-0Wcc * W 4 ,1- * J 7- 0 .:Z-4 ZE'-)< 0 .7-4-Z:r~ OI'--'Z LL'-'co

    CI M LC ZN :-E 2.- Z Z X-~ uO>Ww --- '~T-4 1- -I -4 H0M QLL. N01 1- It0Z W-.-.. NO-4(-.- 0 C)

    Itu00)L000 U 0) 00 0) Q

    102

  • ~ I OC-oooooooQoooooooCooOOOOOOQOOOOOOooooooo0.)oooooo

    oooooooocv)OoooooOOOOOOOOOOOOOOOOO0oooo0oo0ooooo0oO0OOOO0O0000OOOOO0O000000000O000O0000O00OOO00000

    z0

    Dr-I--

    4. 0

    z

    zz -

    CO - 0LU. 0. C. U..

    wac~. 1:'-.

    * * w I-_ z.4W C', ca"0.z. -- NýI-

    D -4 w -. ' w z. 0:zu. + CL l0. 0

  • 000000000000000000oo00000000000000000000000000000000000000000000000000000000000000000000Q0000000

    00000000000000000OO000000oo0000o000oo00o000O0O0o00

    0

    0

    zU 0of 0

    0 000

    0 1--0-We. N W 0 0 L

    0- Lii r44 I-.0 ow - o Z0 CCm:>

    0.*Z LL !n l- *o zA 0*0

    0 0co Ln + 0 t-.- 1w V

    z 10 -* -n.Z.. * w-.0,4 OWII 0 10 r4 '-4+ v+-l-4 O-- W -4 NO

    ý- i-- 0\ "' N1 '-41- 0+0Ui*o 0 i r-4 obl 110 I- 11- W1l- u -4-4c co il I%a - c~ 0. U)' -t 4 c~ Oil *H.-4ýW

    ~ +--'-ci -~~4 .- f~ +~ 0r.4 II9~~ -4 * I IIlt

    + ZL) :4 -.1 0 0~ -' D o "Z `4 0 C L. -140 r4 110 -4 110 4-4- W ýe4 i o/ ý-4 0 QZ r44

    l--W W -4 C\:-liz

    LL:Di- LLO '-400 0-C 0--00 OWU W 00O,...t0 OC)WO. 0 .-40N0ULLI~vc -4V beCDc. 01- 01o 01- 01o o 1- Z4ý41ý-" (u1-- 0 000'-o

    Cn~tN 0-4 0-4 0-! %t.'t '0 '-4LALA %0'.0 r-11- V-4 1-4 N

    00 000 0) 0) 0 000 0 0 0 Q

    #1 104

  • ooooooooooooooooooooo0ooooooooooNN\N NNNN("NNNNNN NNNNN' rJNNNN N'NC"I NNN"NNN

    0000000000000000000000000010000000000I0000000000000wj

    ui

    01

    0- Ztr

    .~~1-4m

    CO o O CO -- 40

    S 0-'0 .0 .-CL

    U-. 0L --0

    0. O4 0 0 * .H l-

    -I--z 11)- 9 -

    W-: 0 C0. 0 0--.-4--. 0 L.*4 * O9 ,-1-0-4

    N~ ~ F-- ~-~ Z Q 0.0. *.No,-.-z ~'4 -40-40.-4 %-

    Cy ':--l.. a - H . .. N-4O~o~ 41- H -4 0-4ul NZO--4I

    00 HZ 24I 4 -Z0 H L CL 90 OO - H+

    0 01-H,) LZ1Y.11 1.20 0 0 r 0 wz

    00 Nc- ZN -4 N.ý-40 -0~C CO NCO-e :

    00 N f) C~l -4 N\ý

    105

  • oooooo0000000000000000000000000-000000000cOO0004ý

    C0)O0000O00000o000QOO000oo000')0003000O0oO,-4-0004.-

    0O000000000000000O00Q'000oO00O00oooQ00o00ooo00O* *ooouoooooouoooooooooo0

    It *L 0'0*

    it *O - -4 I- LLO

    *0 *4)W *< _-4 '~s-

    -i* ** IWOLC~ *(f)- sI .4 10-4 -. -O). 0*tto --Y Z '- -L/" t)WCD Cd. ..Z 0 -

    * Z~

  • oOOOOOOOOOOOO00OO0oOOOOOoODOOOQOOOOOOOOOOOOOO00oO

    .00. 0

    LL I-

    - -

    0 -1---J

    -4ý4 r-

    0 Lm 0+

    0 -14

    '1070

  • 000000000000000000000000000000000000000000000000

    o9 0

    0-4

    0 *

    )~V) wW W w V)-~ w + I + I WL + I + I

    < 2< H

    O+

  • OOoO:Oo:COocoOoooo~oOoOoooooo00ooO0oo0oCOO0o0oO0oOOO000 00-04N00 0oo000in '000000!-c'O-4clO-cOO Q OA )!-ooO.4f'1LV0!-0000000000000O00000000000000t000000000

    ooooo~oooooooooooooooooo~oooooooooANNNNNC'N c'JNNNNNNNNNNNNNNNC'~JNN NNNNNNNNNN'Jo

    2; vNNNNNNNNNNNCJNNNNNNNN\N< ooooooooooozooooo~oooooo

    oooooooooooLoooooooooooooo

  • 000000000000000000000000000000000000000000000000moo0 -4NM 'O~f-0Q'o ~-NrM4-?Lst'-Co M0N j~'I~O'.4c 4WOi- cD'0c-4NMNNNNcic~~lNNNN~jcNNNN\NNC\NNNNNlC\NNN~NNNNNNN(PN\(\C\NNNNNNNICl~NNNNC\NNNC\NNNII\)CJNNNC\CNC\IC\(JNNNNNNNNC rjNNN\I\C\'\JNNN(\NICJJNNNcl~rjN(IJNNNNNN NN\Cj~r~cjq\NNNN~o00000oo00o0o oco 000000000ooooo0000000000000000000

    00L (n/x

    V) L.. -4z w :

    < z-cc LL

    1LL

    1-4

    I- z

    Ow ul

    0 OA

    F- >-I

    I-- W *w W\ +*v*

    94V L) +4- -4

    IA * - W- ox: WI LL)I IN4-0 c N" Z"-7 Z- ZO0C

    o 0 *.4.-4 -4'0 r-l'-40 0W)U -4- .4-,4A4 .- ' -z 9-Wj WL DO z Z1-)" 011if-11

    z 01111 11.1 fill 0czZ lIZ 11Z *- II V-- -

    CO 1-4 '0~ '-') -- ' 0:) co2)o 1 zz+ Wi +~v I-- N~ 0 -. W - ~ t~ WW I *4 *.*i

  • 000 0 0 0 0 00 000 0 0 0ooooooooooooooroooOOOOOo~o 000000000

    N \ Ior'- NNc \INNo "ICICj N(INN \ N \ NNNNNO Nr' i- O '

    Cl N cOO' O.N C

    0 0ý

    U) U

    4 -0L n ~ 0r-) 4i L- C( Z -- O

    Oz I(.D-- _j 1- 44 Z ý

    W C%- 0 -%tn

    0) W) W Z .Ov) ~ ~ - - r

    (D LL LLQ Z 'ctO

    Of ) -4-4 I40 .1 r04 .. It g. Z

    wL (1) It- 2 0 cc C -. 0 C0 -C

    Wi U.. F-40ý 1- -40 S- Z11 * 21

    z 0 n'-ý- "-' non + Wi -)Cyn 1 1--4Z 1--'z

    LLI < ~ nb WbW W LI .4 c W

    -z -4. C(- 4- NN 4---An z z'* '4. -'-ZIN 'l

    0 Li. 000 0 ),OLLon _J-- OLLOnO 0 ILL 01 LLWO 00

    a C.) 00 mz ')-'n .4-"ý-q CJ .0 Q U g..4C)ýd. I..40ý400

    (0~~c 40 4 4 or

    u 0 00000 00L. 00) 00L 000 0 0

  • OOOOOOO000000000000000o

    000000000000000000000o00OO0000000000000000000o

    AX

    LL '0 N

    I- 0 0

    C) 0Co -CO QC0 00

    ~OZl Zz 0 Ln U. 4-4/

    -Z 11 V) 1-40-0 11 (nLi) ..i- 0,.

    0 '

    zi '-4- ,s.D z + UU

    0 0Li00) 0 + #.CAO I Y:)=U C: O' \0 _.j V

  • ooooooooooaoono ooooo O0O00O00000O0000Q0OO00000OO000O0000O0O000C000000000O000000000O0000000000O000

    Iti ON* **t *I4LL 0..*4 * 'I U-0

    CeZ *n -- t-- . r~- 2* JLL _j3 *@N . IZ Ox 00.4*~m 00. 0 .W- U

  • 00000000000000000000000000000000000000000000ooocooooo0000

    0000000000000>00000000000000000000000000000000000

    0000 0

    w In' + 0 0)

    W + In <

  • 0.0.0 0 0 0 000.00..--Nr. 1r-0G)co0o0ca) OO ~)O'O'Do O'O' r r'0 'O'00000000

    000000000000000000oooo000000000'000000)000000000000(.)o0 0000 0000000000000 000000000000000 000000000000

    z

    X -<

    w

  • 4- ---- ~-.--- - A

    OOO00000000000000 0000 000000 000 0~C

    LU A

    z 0 a

    14 4L < Mw0 AU c u l

    CL C.D I- 0 0Z~ a i-i 0# -

    u0 W- - 0 U.D A> 0. -0 >

    < 0 0 "cx *o I-N D 0

    +4 z 0 0 ID

    a 0

    41LU 0 5.- W- -4w * VI- o - C\1 wL

    4-.' (L 00. w uJ' -

    00 cx- I- W OLW-

    0L W ws z *Z4- U- 0

    - a 4- E Z ' I IU. 4 Z + 0 22f-eN4 w Z2- 0 MO -Co0= -i

    - - CL' ONV Z X a- 24-4 -M2 '. Z Z. - ::1~'- 0

    *0ý4~ I-q0 0 CL 0 U..0 - 0-4 9) 4- ~nIr 11 z - (A Oý .- ( 0 - N. I

  • zw

    w

    0

    -SW 0

    wW 0LL- ~ ~ -++

    r.4-4 w z

    0-U..

    0

    -'4* LL *j 1- Lr

    0- .0 I1IWOw w tZ0u

    NZ'-"-4 Z~ >. "Z0'4 ~Z

    C~z" zzzzz CL< -II ZI*-C

    N-4--- 0OC'00O LL 0 -. OWZ1-4"t1-U.L 0 0 U1-4) ý4 a-ia. 0yw

    -40)~ N~

    117

  • I 0000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0IAo ooo- cOQ' -(J '.4cf~tlo r- 000000 N1 V-O004Nm 0- 0or'o o'Lt

    *t * 00Zl

    * a * it '- Z Wn U.

    * j2 * ftN -. . -z Cz uO.

    *t W *l .ý0 -- ý-.ý ZO-

    * I-*) it0 Lrt P- 'joI. - *!I "- I- w "it cOD'.o oo Z Oý ýz

    it.- WW) it NW .9.it U-j it X- 6-4 WV)

    it w0 *t Ma - ~ >-t/) 0.' - 1.'E Z U V.

    *t LI)U. *- 0.'t zc~ U..-

    * WIJ i U (-) ý-'4' " .9..1'*t -CO * UJ-4 >->< " u 9.'Z< r- :F-zlw < (\Nj-cz 0L ZN V-' zv)< z ~zI1- I- '- tii

    D E o 0Z o0z c0Q.LOOZ

  • 000000000000000000000000000000000000000000000003

    0000000O00000000000000000000C00000000000000OOOOO

    000000000000000000000000000000000000000co

    .0 0 <0- 0 0 '-.

    0 -40 X

    t- F

    W F-- F- I-- !I wW + 0 -s

    0..4 L - F-F t-F- F- 0.LI )x 1 0A W WWW t 'Anxx

    -W -41J + I W + + I

    Lo < : * it * * M tLJW WWCn-'F--X-F--> t-. 00 00 F * * * *t

    C~ c 0 W

  • 4rz

  • 00000000000000000r-woor-O.-IM 101-O O -4NMf

    0000000000000000000000 000 00 000000 000000000000000000

    I 0w

    0

    w wUI--

    0 -

    0 Z -4

    '-4

    I-t

    C) 1-4-

    "Z oNZ-Z z Z-0~ ~ w- z4 -

    0 1-"-4 L. HOw

    "~4 Nl

    0000 00 00

    121

  • OOOOOOOOOOOOOOOOOC000000000(-)ooooooooocoo0000000

    0000000000000000000000000000000000 '00000'000Z000

    0000000020000000000 .JOOOoO

    00O000O000000Q0Q0000O00O~O000000

    %t *- * *it *t11 u L

    *ý *-U

    * t i CjC & F-4 .W Uo..0*t *L s t- =I- o-C

    *t c(- * -0 -.-. - s-. Cz V41 00\L *- P1- it * *. -- I->:1 0z 1o. uj* n~ W t *C -" -w .- 7- - xt)

    * jA 0c *ý 4ICýfýI- I--. WV)* -... i * -C/).--. ý-I- mf~o D* Lý W t M - "M1 - -4 '.x-

    * zI -:E -VC) o 0 Z-JC.)O U) 0*A i wDI *t 0 ~ I- U < ac:N U.. '-422 U.. m a*) -41--wu * 4'. *J-tC " .- 2: ot- it cfU. < :'-

  • 000000000000000000000000000000000000000000000000

    c~ ~ 'o~ O 0 0'0'' '00000000 4CR'('J CJNNNNU1n 0

    0

    x x CLC

    c-J

    1.4 CL

    0- WC( V)

    CL z

    01 9 + -++ UJ1w --4 I- 0 it+1

    C ~ ý 1 11 11 1 00 0 Q-Ix z-Jt l )- ** 01I il t

    ON ,-4*'J~.-4 4Nm II M II~ - -

    Z Z -. C *-4 "* Ul*L Nlc----Q, 0. O 0" :a : X X Qz Q)417-4 -~w*L Oretj ox V)Lng coo clo) o c:0W 07u

    0) ULI 0) .9. UL) U+++ UUJ

    0 U II '- >

  • 00000000

    0oo0000o000o

    A 000000000000000000000000

    \I-

    U-7

    I-+

    U-u-

    Z -4w

    0-4N - -O w

    2 -4LU

    II I 124

  • 0000000000000000000000000000000000000000000000

    0000000000000000000000000000000000000000000000

    * * * * * * * *ooooooooo:)0000000

    * *t

    %t *

    *~-- * 4 U. m

    it *m -- - Wl- xUI- Z O* *)ý 't r 9."ý

    * 0111 it -.- 0 - nu I- < Zo* -.Zu *t '-V) -4.. m- .oc*4-> X< "C0. 0+ .4j IL I

    WU *t D0C0 -* Z"- 0- "X-> 0 .- 'ý-.z 0 LU - I-i) t.-z * V)WQj.- it 0-. t-U F-(4< IL IL OAW9 ft OGZ I I -

    t * 001.)- *1 - I-m N " .0 -. W= N- N :: U.1 OWJ<t- *t L) 1-- * 9. b-4 11 CY ), C >-J 0CD *t .- W0.-j * U ZN Z- Z0. " Z ~N2: -Z Z 11I'-.0. 0-40 4j0 *t ZIWjO * . 0'- 0\0 0 W.0 0 0-~0 c-1oIf " (NJ 'C'-'-CY1 *t t-i->C/) *t 4J ý:Q :E4 :E.-. Z Z-.-ýW-L oil- 4jco CL. :K- =- mo< Z Z x t2- cý 4 .1

    D~~ oz Ow oo:F_ 0 00.(,.u7 W'U-'LO 0-0 ILLI)) .- 0 L 00.1,- Q UZOZZ """o-' QL11.0o4.-

    14 -4 .-4N\ '-4 .'-dM

    125

  • 0:0000=000000000000000000000000-"0000000000000000000

    000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

    0000000000000000000000000000000000000

    CD

    U. uF. -) +a4 0 -) I-- u,

    -i z OEM 0 w wU-It.% N 2: 0

    Cl) -j W - q- -V* UA LL LL.

    OLLIE 0 <

    D2 *U) ) 0- 1o - z V~) .-

    LL LL < 0-.I 0 1-4 4 :cc 00 On) 0 w V 0 W '~ 0.) 0.- C)zz C(' Q LL-"D CD w cxý n

    -. w Z 0-0 > Z +9.~~ .4z 0 - -4 - z 0.

    -. 4-N N~ *C/).. ' .t 0 . ' 0 .J) U- + r-V)- 0 DU4 *)

    11s 11 Fl- LL, W z 0.-4 -4 ( .') c -~4 -4'-'-'U I I .4 1.+- * "4' 0 + cc wi w+ )<

    -1. 0) wU - 110 11 0 * 1 0 11 cII - ý z U 0) 00t 0L u0z z

    Vd) W LL Wl LL D WU . LJ on=i ) W "-40 on 3w 11WUJCd- M0tL.N0+0Cd)--. D 04 c 1 0 0 11 > 0 i*c ):)

    Z000Z zo 0 zý . CC -j z LLzzfl~~~a P-r 9.1- %0.ZI'C )~i 11 '-4 00 11 '-4 II'~ - t I1-' _j 1-4.4.41- V4. -0 C) 0d

  • 0000000000 0000000000000000000000000o

    0%0 Q'%0% 0%%0%% O aGQNC~ .4s 3t-Ol 0'0 0% 0 -40% f O7t% % G CY O

    00000000000000000000000000000000000

    z

    0

    _j

    *L 0 0 II

    w 1 0 u

    0- 7- YI) L

    -0. z LL L.ý .DU _ L> z D* 0 u 00 >0

    0. CL w t o

    11U 11 li +0.-. 0 0 11 1-0 c-d X~ LLLL -.0 (D L

  • o OOCOOoCOooo:)oooooooooooOooocoooc,00000000000000

    0' 0~~~'-~L 0 O 0 OO00.4NNN0' ~ ~ ~ ~ ~ 0 U'0Q.'''OOOOOOOOOOOOO

    9- -N

    o -zo~~L_ QQOoOQoooOO0O0 OX~OOOOOOOOOoVW U 00 0 (> XýL U-0 r41

    * OIL/)W-LiU U Z 'N Z-x wC f- ~z V 1 11 1L0 * C ('

  • 000000000000000000000000000000000000000000000000

    000000000000000000000000000000000000000000000000000000000000000000000000300000000000000


Recommended