+ All Categories
Home > Documents > NCSU, Raleigh, NC, USA June 28, 2011

NCSU, Raleigh, NC, USA June 28, 2011

Date post: 03-Jan-2016
Category:
Upload: quincy-greer
View: 37 times
Download: 0 times
Share this document with a friend
Description:
Optimal bioenergy from forests: Fundamental principles, general findings and optimal solutions Peter Lohmander Professor Dr., SUAS, Umea, SE-90183, Sweden [email protected]. NCSU, Raleigh, NC, USA June 28, 2011. - PowerPoint PPT Presentation
Popular Tags:
102
1 Optimal bioenergy from forests: Fundamental principles, general findings and optimal solutions Peter Lohmander Professor Dr., SUAS, Umea, SE-90183, Sweden [email protected] NCSU, Raleigh, NC, USA June 28, 2011
Transcript
Page 1: NCSU, Raleigh, NC, USA  June 28, 2011

1

Optimal bioenergy from forests:

Fundamental principles, general findings and

optimal solutions

Peter LohmanderProfessor Dr., SUAS, Umea, SE-90183, Sweden

[email protected]

NCSU, Raleigh, NC, USA June 28, 2011

Page 2: NCSU, Raleigh, NC, USA  June 28, 2011

2

 Decisions in the biomass supply chain influence the size of the renewable energy feedstock.

Indirectly, the use of fossil fuels, CO2

uptake from the atmosphere, and emissions of CO2 to the atmosphere are affected.

CCS, carbon capture and storage, is one

method to limit total CO2 emissions.

Page 3: NCSU, Raleigh, NC, USA  June 28, 2011

3

The role of the forest?

• The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

• We capture and store more CO2!

Page 4: NCSU, Raleigh, NC, USA  June 28, 2011

4Permanent storage of CO2

Coal mine

Oil field

Natural gas

CCS, Carbon Capture and Storage, has alreadybecome the main future emissionreduction method of the fossile fuel energy industry

Energy plant with CO2 capture and separation

Page 5: NCSU, Raleigh, NC, USA  June 28, 2011

5

CO2

Permanent storage of CO2

How to reduce the CO2 level in the atmosphere,

not only to decrease the emission of CO2

Energy plant with CO2 capture and separation

Page 6: NCSU, Raleigh, NC, USA  June 28, 2011

6

The role of the forest in the CO2 and energy system

• The following six pictures show that it is necessary to intensify the use of the forest for energy production in combination with CCS in order to reduce the CO2 in atmosphere!

• All figures and graphs have been simplified as much as possible, keeping the big picture correct, in order to make the main point obvious.

• In all cases, we keep the total energy production constant.

Page 7: NCSU, Raleigh, NC, USA  June 28, 2011

7

CO2

Permanent storage of CO2

Coal, oil, gas

The present situation.

4

1

5

0

1

CO2 increase in the atmosphere:

5-1 = 4

Page 8: NCSU, Raleigh, NC, USA  June 28, 2011

8

CO2

Permanent storage of CO2

Coal, oil, gas

If we do not use the forest for energy production but use it as a carbon sink. Before the forest has reached equilibrium, this happens:

5

5

0

1

CO2 increase in the atmosphere:

5-1 = 4

Page 9: NCSU, Raleigh, NC, USA  June 28, 2011

9

CO2

Permanent storage of CO2

Coal, oil, gas

If we do not use the forest for energy production but use it as a carbon sink. When the forest has reached equilibrium, this happens:

5

1

5

0

1

CO2 increase in the atmosphere:

5+1-1 = 5

Page 10: NCSU, Raleigh, NC, USA  June 28, 2011

10

CO2

Permanent storage of CO2

Coal, oil, gas

If we use CCS with 80% efficiency and let the forest grow until it reaches equilibrium.

5

11

4

1

CO2 increase in the atmosphere:

1+1-1 = 1

Page 11: NCSU, Raleigh, NC, USA  June 28, 2011

11

CO2

Permanent storage of CO2

Coal, oil, gas

If we use CCS with 80% efficiency and use the forest with ”traditional” low intensity harvesting and silviculture.

4

1

1

4

1

CO2 increase in the atmosphere:

1-1 = 0

Page 12: NCSU, Raleigh, NC, USA  June 28, 2011

12

CO2

Permanent storage of CO2

Coal, oil, gas

If we use CCS with 80% efficiency and use the forest with increased harvesting and high intensity silviculture.

3

2

1

4

2

CO2 ”increase” in the atmosphere:

1-2 = -1

Page 13: NCSU, Raleigh, NC, USA  June 28, 2011

13

General conclusions:

• The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

• We capture and store more CO2!

Page 14: NCSU, Raleigh, NC, USA  June 28, 2011

14

Page 15: NCSU, Raleigh, NC, USA  June 28, 2011

15

,min ( ) ( ) ( ) ( )

. .

u f a wu wC C u C f C a v C w

s t

u f K f K u

w a K a K w

v u

Page 16: NCSU, Raleigh, NC, USA  June 28, 2011

16

,min ( ) ( ) ( ) ( )u f a wu wC C u C K u C K u w C w

Page 17: NCSU, Raleigh, NC, USA  June 28, 2011

17

Page 18: NCSU, Raleigh, NC, USA  June 28, 2011

18

( ) ( ) ( ) 0

( ) ( ) 0

u f a

a w

CC u C K u C K u w

uC

C K u w C ww

u f a

a w

C C C

C C

Page 19: NCSU, Raleigh, NC, USA  June 28, 2011

19

Observation 1

• In optimum, the marginal cost for forest biomass utilization equals the marginal cost of fossil fuel utilization plus the marginal cost of global warming.

Page 20: NCSU, Raleigh, NC, USA  June 28, 2011

20

Observation 2

• In optimum, the marginal cost of global warming equals the marginal cost of CCS.

Page 21: NCSU, Raleigh, NC, USA  June 28, 2011

21

2

2

2

2

2

2

( ) ( ) ( )

( )

( )

( ) ( )

u f a

a

a

a w

CC u C K u C K u w

u

CC K u w

u w

CC K u w

w u

CC K u w C w

w

Page 22: NCSU, Raleigh, NC, USA  June 28, 2011

22

Second order minimum conditions:

2

20

C

u

2 2

2

2 2

2

0

C C

u u w

C C

w u w

Page 23: NCSU, Raleigh, NC, USA  June 28, 2011

23

0u f aC C C

0u f a a

a a w

C C C C

C C C

Page 24: NCSU, Raleigh, NC, USA  June 28, 2011

24

0u f a u f aC C C C C C

2u f a a

u f a a w a

a a w

C C C CC C C C C C

C C C

Page 25: NCSU, Raleigh, NC, USA  June 28, 2011

25

2

2 2

0

u f a a w a

u a u w f a f w a a w a

u a u w f a f w a w

C C C C C C

C C C C C C C C C C C C

C C C C C C C C C C

Page 26: NCSU, Raleigh, NC, USA  June 28, 2011

26

Observations of the first and second order conditions:

( , )

0

0

( , ) 0

x

y

x y

f x y

f

f

df x y f dx f dy

Page 27: NCSU, Raleigh, NC, USA  June 28, 2011

27

2 2 2( , ) ( ) ( )xx xy yx yyd f x y f dx f dxdy f dydx f dy

xy yxf f

2 2 2

2 2 2

( , ) ( ) ( )

( , ) 2

xx xy yx yyd f x y f dx f dxdy f dydx f dy

d f x y au huv bv

Page 28: NCSU, Raleigh, NC, USA  June 28, 2011

28

2 2 22d f au huv bv

2 2 22h

d f a u uv bva

2 22 2 2 2 2

22h h h

d f a u uv v bv va a a

Page 29: NCSU, Raleigh, NC, USA  June 28, 2011

29

2 22 2h ab hd f a u v v

a a

xxf a a

2xx xy

yx yy

f f a hab h

f f h b

Page 30: NCSU, Raleigh, NC, USA  June 28, 2011

30

2 20 0 0a ab h d f

2 20 0 0 0h

a ab h u v d fa

2 20 0 0 0a ab h v d f

2 20 0 0 0 0a ab h u v d f

Page 31: NCSU, Raleigh, NC, USA  June 28, 2011

31

So, if 0xxf and 0xx xy

yx yy

f f

f f

and 0 0dx dy

or 0 0dx dy

or 0 0dx dy

then 2 0d f

Page 32: NCSU, Raleigh, NC, USA  June 28, 2011

32

Then, the solution to

represents a (locally) unique minimum.

0

0x

y

f

f

Page 33: NCSU, Raleigh, NC, USA  June 28, 2011

33

Page 34: NCSU, Raleigh, NC, USA  June 28, 2011

34

A numerically specified example:

1( ) 5

20uC u u

1( ) 10

300fC f f

1( ) 0

20aC K u w K u w

1( ) 14

100wC w w

Page 35: NCSU, Raleigh, NC, USA  June 28, 2011

35

Page 36: NCSU, Raleigh, NC, USA  June 28, 2011

36

Comparative statics analysis:

( ) ( ) ( ) 0

( ) ( ) 0

u f a

w a

CC u C K u C K u w

uC

C w C K u ww

Page 37: NCSU, Raleigh, NC, USA  June 28, 2011

37

u f a a f a

a w a a

C C C du C dw C C dK

C du C C dw C dK

Page 38: NCSU, Raleigh, NC, USA  June 28, 2011

38

1 1 1 1 1 1

20 300 20 20 300 20

1 1 1 1

20 100 20 20

du dw dK

du dw dK

Page 39: NCSU, Raleigh, NC, USA  June 28, 2011

39

31 1 16

300 20 300

1 6 1

20 100 20

du dw dK

du dw dK

Page 40: NCSU, Raleigh, NC, USA  June 28, 2011

40

16 1300 20

1 620 100 0.0007

0.1891891890.003731 1

300 20

1 620 100

du

dK

Page 41: NCSU, Raleigh, NC, USA  June 28, 2011

41

31 16300 300

1 120 20 0.0025

0.6756756750.003731 1

300 20

1 620 100

dw

dK

Page 42: NCSU, Raleigh, NC, USA  June 28, 2011

42

Explicit solution of the example for alternative values of K

( ) ( ) ( ) 0

( ) ( ) 0

u f a

w a

CC u C K u C K u w

uC

C w C K u ww

Page 43: NCSU, Raleigh, NC, USA  June 28, 2011

43

1 1 15 10 ( ) 0 ( ) 020 300 20

1 114 0 ( ) 0

100 20

Cu K u K u w

u

Cw K u w

w

Page 44: NCSU, Raleigh, NC, USA  June 28, 2011

44

31 15 16 15000

300 300 300 3005 6 5 1400

0100 100 100 100

Cu w K

uC

u w Kw

Page 45: NCSU, Raleigh, NC, USA  June 28, 2011

45

0 31 15 16 1500 0

0 5 6 5 1400 0

Cu w K

u

Cu w K

w

Page 46: NCSU, Raleigh, NC, USA  June 28, 2011

46

0 31 15 16 1500 0

0 5 6 5 1400 0

Cu w K

u

Cu w K

w

Page 47: NCSU, Raleigh, NC, USA  June 28, 2011

47

0 31 15 1500 16

0 5 6 1400 5

Cu w K

u

Cu w K

w

Page 48: NCSU, Raleigh, NC, USA  June 28, 2011

48

Page 49: NCSU, Raleigh, NC, USA  June 28, 2011

49

1500 16 15

6 1500 16 15 1400 51400 5 6

31 15 31 6 5 15

5 6

30000 21

111

K

K KKu

Ku

Page 50: NCSU, Raleigh, NC, USA  June 28, 2011

50

31 1500 16

5 1400 5 31( 1400 5 ) 5(1500 16 )31 15 31 6 5 15

5 6

50900 75

111

K

K K Kw

Kw

Page 51: NCSU, Raleigh, NC, USA  June 28, 2011

51

Dynamic approach analysis

du Cu

dt udw C

wdt w

1

Page 52: NCSU, Raleigh, NC, USA  June 28, 2011

52

eq

eq

x u u

y w w

Page 53: NCSU, Raleigh, NC, USA  June 28, 2011

53

u f a a

a w a

x C C C x C y

y C x C C y

Page 54: NCSU, Raleigh, NC, USA  June 28, 2011

54

xx xy

yx yy

x m x m y

y m x m y

Page 55: NCSU, Raleigh, NC, USA  June 28, 2011

55

( ) ; ( )kt ktx t Ae y t Be

kt kt ktxx xy

kt kt ktyx yy

kAe m Ae m Be

kBe m Ae m Be

Page 56: NCSU, Raleigh, NC, USA  June 28, 2011

56

xx xy

yx yy

kA m A m B

kB m A m B

Page 57: NCSU, Raleigh, NC, USA  June 28, 2011

57

0

0xx xy

yx yy

k m m A

m k m B

Page 58: NCSU, Raleigh, NC, USA  June 28, 2011

58

• k is selected in way such that the two equations become identical. This way, the equations only determine the ratio B/A, not the values of A and B. This is necessary since we must have some freedom to determine A and B such that they fit the initial conditions.

• With two roots (that usually are different), we (usually) get two different ratios B/A. This makes it possible to fit the parameters to the (two dimensional) initial conditions (x(0),y(0)).

Page 59: NCSU, Raleigh, NC, USA  June 28, 2011

59

One way to determine the value(s) of k is to use this equation:

0xx xy

xx yy xy yxyx yy

k m mk m k m m m

m k m

Page 60: NCSU, Raleigh, NC, USA  June 28, 2011

60

xy yxm m

2 0xx yy xyk m k m m

22 0xx yy xx yy xyk m m k m m m

Page 61: NCSU, Raleigh, NC, USA  June 28, 2011

61

Another way to get to the same equation, is to make sure that the two equations give the

same value to the ratio B/A.

0

0

xxxx xy

xy

xy yx

xyxy yy

yy

k mBk m A m B

A m

m m

mBm A k m B

A k m

Page 62: NCSU, Raleigh, NC, USA  June 28, 2011

62

2

22

0

0

xyxx

xy yy

xx yy xy

xx yy xx yy xy

mk mB

A m k m

k m k m m

k m m k m m m

Page 63: NCSU, Raleigh, NC, USA  June 28, 2011

63

Lets us solve the equation!

2

2

2 2xx yy xx yy

xx yy xy

m m m mk m m m

2

2

2 2xx yy xx yy

xy

m m m mk m

Page 64: NCSU, Raleigh, NC, USA  June 28, 2011

64

No cyclical solutions!

• Observe that the expression within the square root sign is positive.

• As a consequence, only real roots, k, exist.• For this reason, cyclical solutions to the

differential equation system can be ruled out.

Page 65: NCSU, Raleigh, NC, USA  June 28, 2011

65

xx u f a

xy yx a

yy w a

m C C C

m m C

m C C

Page 66: NCSU, Raleigh, NC, USA  June 28, 2011

66

2

2

2 2

u f a w au f a w a

a

C C C C CC C C C Ck C

2

22

2 2

u f w a u f w

a

C C C C C C Ck C

Page 67: NCSU, Raleigh, NC, USA  June 28, 2011

67

• We may observe that

• As a consequence, both roots to to the equation are strictly negative.

• Therefore, divegence from the equilibrium solution is ruled out.

u f w u f wABS C C C ABS C C C

2

22

2 2

u f w a u f w

a

C C C C C C Ck C

Page 68: NCSU, Raleigh, NC, USA  June 28, 2011

68

• With only strictly negative roots, we have a guaranteed convergence to the equilibrium.

• However, this does not have to be monotone.

• With two different roots (k1 and k2) and with parameters A1 and A2 with different signs (and/or parameters B1 and B2 with different signs), the sign(s) of the deviation(s) from the equilibrium value(s) may change over time.

Page 69: NCSU, Raleigh, NC, USA  June 28, 2011

69

Derivation of the roots in the example:

2

21 1 1 1 1 1 1

120 300 100 10 20 300 1002 2 20

k

Page 70: NCSU, Raleigh, NC, USA  June 28, 2011

70

249 13 1

600 600 400k

1

1

2

2

0.081667 0.054493

0.13616

0.081667 0.054493

0.027174

k

k

k

k

Page 71: NCSU, Raleigh, NC, USA  June 28, 2011

71

1 2

1 2

1 2

1 2

( )

( )

k t k t

k t k t

x t Ae A e

y t B e B e

Page 72: NCSU, Raleigh, NC, USA  June 28, 2011

72

We may determine the path completely using the initial

conditions

0 0(0), (0) ,x y x y

Page 73: NCSU, Raleigh, NC, USA  June 28, 2011

73

We also use the earlier derived results:

xyxx

xy yy

mk mB

A m k m

Page 74: NCSU, Raleigh, NC, USA  June 28, 2011

74

Using the derived roots, we get:

11 1

xx

xy

k mB A

m

2 22

xy

xx

mA B

k m

Page 75: NCSU, Raleigh, NC, USA  June 28, 2011

75

1 2

1 2

1 22

11 2

( )

( )

xyk t k t

xx

xx k t k t

xy

mx t Ae B e

k m

k my t Ae B e

m

Page 76: NCSU, Raleigh, NC, USA  June 28, 2011

76

Let us use the initial conditions and determine the parameters!

0 1 22

10 1 2

xy

xx

xx

xy

mx A B

k m

k my A B

m

Page 77: NCSU, Raleigh, NC, USA  June 28, 2011

77

2 01

021

1

1

xy

xx

xx

xy

m

k m xA

yBk m

m

Page 78: NCSU, Raleigh, NC, USA  June 28, 2011

78

02

0 020

11

22

1

1

11

1

xy

xx xy

xx

xxxy

xxxx

xx

xy

mx

k m mx y

k myA

k mm

k mk m

k m

m

Page 79: NCSU, Raleigh, NC, USA  June 28, 2011

79

0

1 10 0 0

21

22

1

1

11

1

xx xx

xy xy

xxxy

xxxx

xx

xy

x

k m k my y x

m mB

k mm

k mk m

k m

m

Page 80: NCSU, Raleigh, NC, USA  June 28, 2011

80

Using the figures from the example, we get:

0 01

0.6565

1.431

x yA

0 02

0.6565

1.431

y xB

Page 81: NCSU, Raleigh, NC, USA  June 28, 2011

81

The solutions to the numerically specified example

X(t) = -106.63·EXP(- 0.13612·t) + 6.61·EXP(- 0.02718·t)

Page 82: NCSU, Raleigh, NC, USA  June 28, 2011

82

Y(t) = - 69.95·EXP(- 0.13612·t) - 10.07·EXP(- 0.02718·t)

Page 83: NCSU, Raleigh, NC, USA  June 28, 2011

83

Page 84: NCSU, Raleigh, NC, USA  June 28, 2011

84

The cost function from different perspectives:

(based on the numerically specified example)

Page 85: NCSU, Raleigh, NC, USA  June 28, 2011

85

Page 86: NCSU, Raleigh, NC, USA  June 28, 2011

86

Page 87: NCSU, Raleigh, NC, USA  June 28, 2011

87

Numerical solution of the example problem using direct

minimization:

Page 88: NCSU, Raleigh, NC, USA  June 28, 2011

88

K = 600

• model:• min = C;• k = 600;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 89: NCSU, Raleigh, NC, USA  June 28, 2011

89

• Variable Value Reduced Cost• C 8975.806 0.000000• K 600.0000 0.000000• CU 4995.578 0.000000• CF 2516.909 0.000000• CA 1463.319 0.000000• CW 0.000000 0.000000• U 358.0645 0.000000• F 241.9355 0.000000• W 0.000000 1.903226• A 600.0000 0.000000• ANET 241.9355 0.000000• EQW -53.15315 0.000000• EQU 383.7838 0.000000

Page 90: NCSU, Raleigh, NC, USA  June 28, 2011

90

K = 800

• model:• min = C;• k = 800;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 91: NCSU, Raleigh, NC, USA  June 28, 2011

91

• Variable Value Reduced Cost• C 13952.25 0.000000• K 800.0000 0.000000• CU 6552.228 0.000000• CF 4022.401 0.000000• CA 2196.271 0.000000• CW 1181.353 0.000000• U 421.6216 0.000000• F 378.3784 0.000000• W 81.98198 0.000000• A 718.0180 0.000000• ANET 296.3964 0.000000• EQW 81.98198 0.000000• EQU 421.6216 0.000000

Page 92: NCSU, Raleigh, NC, USA  June 28, 2011

92

K = 1000• model:• min = C;• k = 1000;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 93: NCSU, Raleigh, NC, USA  June 28, 2011

93

• Variable Value Reduced Cost• C 19357.66 0.000000• K 1000.000 0.000000• CU 7574.872 0.000000• CF 5892.379 0.000000• CA 2615.068 0.000000• CW 3275.339 0.000000• U 459.4595 0.000000• F 540.5405 0.000000• W 217.1171 0.000000• A 782.8829 0.000000• ANET 323.4234 0.000000• EQW 217.1171 0.000000• EQU 459.4595 0.000000

Page 94: NCSU, Raleigh, NC, USA  June 28, 2011

94

Numerical approximation of the dynamics:

• ! dynsim;• ! Peter Lohmander Valencia 20100222;• model:• sets:• time/1..100/:x,y,dx,dy;• endsets• cxx = 31/300;• cxy = 15/300;• cyx = 15/300;• cyy = 18/300;• x(1) = -100;• y(1) = -80;

Page 95: NCSU, Raleigh, NC, USA  June 28, 2011

95

• @FOR( time(t): dx(t)= -( cxx*x(t) + cxy*(y(t)) ));• @FOR( time(t): dy(t)= -( cyx*x(t) + cyy*(y(t)) ));

• @FOR( time(t)| t#GT#1: x(t)= x(t-1) + dx(t-1) );• @FOR( time(t)| t#GT#1: y(t)= y(t-1) + dy(t-1) );

• @for(time(t): @free(x(t))); • @for(time(t): @free(y(t)));• @for(time(t): @free(dx(t))); • @for(time(t): @free(dy(t)));

• end

Page 96: NCSU, Raleigh, NC, USA  June 28, 2011

96

Conclusions

Global warming, forest policy, energy policy and CCS should be studied as one system. This way, the economically most efficient solution can be obtained.

General and optimal decision rules have been derived.

In typical situations, a unique global cost minimum can be obtained.

We should, in the optimally coordinated way:

- Increase harvesting of the presently existing forests.

- Use more biomass from the forests to produce energy.

- Increase forest production in the new forest plantations.

- Increase the use of CCS.

Page 97: NCSU, Raleigh, NC, USA  June 28, 2011

97

References

• Lohmander, P., Adaptive Optimization of Forest Management in a Stochastic World, in Weintraub A. et al (Editors), Handbook of Operations Research in Natural Resources, Springer, Springer Science, International Series in Operations Research and Management Science, New York, USA, pp 525-544, 2007 http://www.amazon.ca/gp/reader/0387718141/ref=sib_dp_pt/701-0734992-1741115#reader-link

• Lohmander, P,. Energy Forum, Stockholm, 6-7 February 2008, Conference program with links to report and software by Peter Lohmander:http://www.energyforum.com/events/conferences/2008/c802/program.phphttp://www.lohmander.com/EF2008/EF2008Lohmander.htm

• Lohmander, P., Ekonomiskt rationell utveckling för skogs- och energisektorn i Sverige, Nordisk Papper och Massa, Nr 3, 2008

• Lohmander, P., Guidelines for Economically Rational and Coordinated Dynamic Development of the Forest and Bio Energy Sectors with CO2 constraints, Proceedings from the 16th European Biomass Conference and Exhibition, Valencia, Spain, 02-06 June, 2008 (In the version in the link, below, an earlier misprint has been corrected. ) http://www.Lohmander.com/Valencia2008.pdf

Page 98: NCSU, Raleigh, NC, USA  June 28, 2011

98

• Lohmander, P., Economically Optimal Joint Strategy for Sustainable Bioenergy and Forest Sectors with CO2 Constraints, European Biomass Forum, Exploring Future Markets, Financing and Technology for Power Generation, CD, Marcus Evans Ltd, Amsterdam, 16th-17th June, 2008 http://www.Lohmander.com/Amsterdam2008.ppt

• Lohmander, P., Ekonomiskt rationell utveckling för skogs- och energisektorn, Nordisk Energi, Nr. 4, 2008

• Lohmander, P., Optimal resource control model & General continuous time optimal control model of a forest resource, comparative dynamics and CO2 consideration effects, SLU Seminar in Forest Economics, Umea, Sweden, 2008-09-18 http://www.lohmander.com/CM/CMLohmander.ppt

• Lohmander, P., Tools for optimal coordination of CCS, power industry capacity expansion and bio energy raw material production and harvesting, 2nd Annual EMISSIONS REDUCTION FORUM: - Establishing Effective CO2, NOx, SOx Mitigation Strategies for the Power Industry, CD, Marcus Evans Ltd, Madrid, Spain, 29th & 30th September 2008 http://www.lohmander.com/Madrid08/Madrid_2008_Lohmander.ppt

• Lohmander, P., Optimal CCS, Carbon Capture and Storage, Under Risk, International Seminars in Life Sciences, Universidad Politécnica de Valencia, Thursday 2008-10-16 http://www.lohmander.com/OptCCS/OptCCS.ppt

Page 99: NCSU, Raleigh, NC, USA  June 28, 2011

99

• Lohmander, P., Economic forest production with consideration of the forest and energy industries, E.ON International Bioenergy Conference, Malmo, Sweden, 2008-10-30 http://www.lohmander.com/eon081030/eon081030.ppt

• Lohmander, P., Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage, UE2008.fr, The European Forest-based Sector: Bio-Responses to Address New Climate and Energy Challenges? Nancy, France, November 6-8, 2008 http://www.lohmander.com/Nancy08/Nancy08.ppt (See also later versions 2009)

• Lohmander, P., Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage, The European Forest-based Sector: Bio-Responses to Address New Climate and Energy Challenges, Nancy, France, November 6-8, 2008, Proceedings: (forthcoming) in French Forest Review (2009) Abstract: Page 65 of: http://www.gip-ecofor.org/docs/34/rsums_confnancy2008__20081105.pdfPresentation as pdf: http://www.gip-ecofor.org/docs/nancy2008/ppt_des_presentations_orales/lohmander_session_3.1.pdfConference: http://www.gip-ecofor.org/docs/34/nancy2008englishprogramme20081106.pdf

• ECOFOR, (in French) Summary of results by Peter Lohmander (on page 8) in “Evaluation du developpement de la bioenergie”, in Bulletin d’information sur les forets europeennes, l’energie et climat, Volume 157, Numero 1, Lundi 10 novembre 2008 http://www.gip-ecofor.org/docs/34/nancy2008synthseiisd.pdf

• IISD, Summary of results by Peter Lohmander (on page 6) in “Evaluation of Bioenergy Development”, in European Forests, Energy and Climate Bulletin, Published by the International Institute for Sustainable Development (IISD) http://www.iisd.org/ , Vol. 157, No. 1, Monday, 10 November, 2008 http://www.iisd.ca/download/pdf/sd/ymbvol157num1e.pdf

Page 100: NCSU, Raleigh, NC, USA  June 28, 2011

100

• Lohmander, P., Integrated Regional Study Stage 1., Presentation at the E.ON - Holmen - Sveaskog - SLU Research Meeting, Norrköping, Sweden, 2008-12-10 – 2008-12-11, http://www.lohmander.com/NorrDec08/NorrDec08.ppt , http://www.lohmander.com/NorrDec08/NorrDec08.pdf , http://www.lohmander.com/NorrDec08/NorrDec08RawData.xls

• Lohmander, P., Öka avverkningen och hjälp Sverige ur krisen, VI SKOGSÄGARE, Debatt, Nr. 1, 2009 http://www.lohmander.com/PLdebattVIS2009nr1.pdf

• Lohmander, P., Economic Forest Production with Consideration of the Forest and Energy Industries (SLU 2009-01-29), http://www.lohmander.com/SLU09/SLU09.pdf http://www.lohmander.com/SLU09/SLU09.ppt

• Lohmander, P., Rational and sustainable international policy for the forest sector with consideration of energy, global warming, risk, and regional development, SLU, Umea, 2009-02-18, http://www.lohmander.com/IntPres090218.ppt

• Lohmander, P., Strategic options for the forest sector in Russia with focus on economic optimization, energy and sustainability (Full paper in English with short translation to Russian), ICFFI News, Vol. 1, Number 10, March 2009http://www.Lohmander.com/RuMa09/RuMa09.htm

Page 101: NCSU, Raleigh, NC, USA  June 28, 2011

101

• International seminar, ECONOMICS OF FORESTRY AND FOREST SECTOR: ACTUAL PROBLEMS AND TRENDS, St Petersburg, Russia, March 2009, http://www.lohmander.com/RuMa09/ProgramRuMa09.pdf

• Lohmander, P., Satsa på biobränsle, Skogsvärden, Nr 1, 2009 http://www.Lohmander.com/PL_SV_1_09.jpg

• Lohmander, P., Stor potential för svensk skogsenergi, Nordisk Energi, Nr. 2, 2009 http://www.Lohmander.com/Information/ne1.jpghttp://www.Lohmander.com/Information/ne2.jpghttp://www.Lohmander.com/Information/ne3.jpghttp://www.Lohmander.com/PL_SvSE_090205.pdfhttp://www.Lohmander.com/PL_SvSE_090205.doc

• Lohmander, P., Strategiska möjligheter för skogssektorn i Ryssland Nordisk Papper och Massa, Nr 2, 2009 http://www.Lohmander.com/PL_NPM_2_2009.pdf http://www.Lohmander.com/PL_RuSwe_09.pdf http://www.Lohmander.com/PL_RuSwe_09.doc

Page 102: NCSU, Raleigh, NC, USA  June 28, 2011

102

• Lohmander, P., Economic forest production with consideration of the forest- and energy industries, Project meeting presentation, Stockholm, Sweden, 2009-05-11, http://www.lohmander.com/EON_090511.ppt

• Lohmander, P., Derivation of the Economically Optimal Joint Strategy for Development of the Bioenergy and Forest Products Industries, European Biomass and Bioenergy Forum, MarcusEvans, London, UK, 8-9 June, 2009, http://www.lohmander.com/London09/London_Lohmander_09.ppt & ttp://www.lohmander.com/London09.pdf

• Lohmander, P., Rational and sustainable international policy for the forest sector - with consideration of energy, global warming, risk, and regional development, Preliminary plan, 2009-08-05, http://www.lohmander.com/ip090805.pdf


Recommended