+ All Categories
Home > Documents > Near-infrared Diffuse Optical Tomography studies on small animals

Near-infrared Diffuse Optical Tomography studies on small animals

Date post: 08-Feb-2016
Category:
Upload: greg
View: 85 times
Download: 0 times
Share this document with a friend
Description:
Near-infrared Diffuse Optical Tomography studies on small animals. By David Tse Mentor: Andreas H. Hielscher , Ph.D Columbia University Biomedical Engineering Department. 500 West 120th Street ET351 Mudd Bldg., MC8904 New York, NY 10027. Background. - PowerPoint PPT Presentation
Popular Tags:
18
NEAR-INFRARED DIFFUSE OPTICAL TOMOGRAPHY STUDIES ON SMALL ANIMALS By David Tse Mentor: Andreas H. Hielscher, Ph.D Columbia University Biomedical Engineering Department 500 West 120th Street ET351 Mudd Bldg., MC8904 New York, NY 10027
Transcript
Page 1: Near-infrared Diffuse Optical Tomography studies on small animals

NEAR-INFRARED DIFFUSE OPTICAL TOMOGRAPHY

STUDIES ON SMALL ANIMALSBy David Tse

Mentor: Andreas H. Hielscher, Ph.DColumbia University

Biomedical Engineering Department

500 West 120th StreetET351 Mudd Bldg., MC8904New York, NY 10027

Page 2: Near-infrared Diffuse Optical Tomography studies on small animals

Background•Near Diffuse Optical Tomography is an emerging imaging system that non-invasively analyzes the way light propagateswith respect to the absorption and scattering properties of the medium it’s in.•This imaging modality (system) provides access to information about the physiological properties of tissue including: oxyhemoglobin, deoxyhemoglobin, and blood volume with time sensitive resolution.

Figure 1: This is a reconstruction of a mouse a tumor. Notice that the tumor is an absorber of light. [1]

Page 3: Near-infrared Diffuse Optical Tomography studies on small animals

Background cont’d• Access to this knowledge will enable early detection

of, but not limited to: breast cancer, rheumatoid arthritis, diabetes, strokes.

• Images are reconstructed using complex algorithms that model the way light moves through a medium.

Figure 2: Light propagates through a media in a non- linear pathway, often based on the absorptionand scattering properties involved.Created by: David Tse

Page 4: Near-infrared Diffuse Optical Tomography studies on small animals

Optical vs. other imaging modalities?

X-ray/ct Pros: Details physical images Cons: Radiation is ionizing and damages DNA

Ultrasound Pros: No harmful effects, inexpensive, quick and convenient Cons: Resolution is grainy, and can only detect boundaries

MRI Pros: High resolution images Cons: Expensive

Pet Pros: Studies metabolic functions Cons: Expensive, and radioactive material is harmful

Optical Tomography Pros: Provides physiological images of hemodynamics Cons: Resolution is poor

Page 5: Near-infrared Diffuse Optical Tomography studies on small animals

Goals

Big picture: Create a reliable Diffuse Optical Tomography (DOT) system to image finger arthritis and kidney tumors in mice.

Small Picture: 1. Test the system quality when imaging a strong

absorbing substance.2. Determine the effect of temperature on 1%

intralipid.

Page 6: Near-infrared Diffuse Optical Tomography studies on small animals

Hypothesis I believe that the detectors will locate the

absorbing substance, but with moderately low resolution.

Also, as temperature increases, I believe that there will be an increased signal because the medium will become more scattering.

Page 7: Near-infrared Diffuse Optical Tomography studies on small animals

Materials DOT instrument

32 Detectors 16 Sources Computer 2 rings to bring the fibers into contact with the cylinder

1% Intralipid (100 mL) A solution of essential fatty acids that provides

nourishment (intravenously) to patients. In this project, we used it as a scattering medium.

India ink An ink used as a strong absorber in this application

Page 8: Near-infrared Diffuse Optical Tomography studies on small animals

Materials cont’d Caliper

An instrument for making fine size measurements. Microwave Thermometer MatLab program

A software program for analyzing and processing data. LabView program

A software program for collecting and displaying data over time.

Page 9: Near-infrared Diffuse Optical Tomography studies on small animals

Methodology 11. Put intralipid (1%) in cylinder2. Determine optimal gain settings and save it on LabView3. Acquire 1000 frames of intralipid 1 for reference 4. Put India ink tube near source 55. Put India ink tube near source 76. Put India ink tube near source 1

Page 10: Near-infrared Diffuse Optical Tomography studies on small animals

Results

Credits: Hyun Keol Kim, Molly Flexman

S1

S5

S7

Observed Data:

Expected Data:

Page 11: Near-infrared Diffuse Optical Tomography studies on small animals

Methodology 21. Put intralipid (1%) in cylinder to the rim of the cylinder2. Determine optimal gain settings and save it on LabView3. Heat flask with intralipid 1 in a microwave to bring the

temperature up to 37 C. A thermometer is used to verify.4. Acquire 400 frames of intralipid 1 (13 C)5. Acquire 400 frames of intralipid 1 (37 C)6. Repeat step 3 -5 three times.

Page 12: Near-infrared Diffuse Optical Tomography studies on small animals

Results cont’d

Page 13: Near-infrared Diffuse Optical Tomography studies on small animals

Results cont’d

Page 14: Near-infrared Diffuse Optical Tomography studies on small animals

Conclusion We found that we can correctly locate the strong

absorber in the cylinder filled with 1% intralipid using reconstruction algorithms. We are now ready to test the system with other objects

such as: fingers and mice.

Temperature has an effect on the signal of the optical properties of the intralipid (as temperature increases, the signal seems to increase). • The effect of this is conclusion is to be careful of the

temperature of the intralipid in future experiments—temperature must remain constant.

Page 15: Near-infrared Diffuse Optical Tomography studies on small animals

Acknowledgments Professor Andreas H. Hielscher Molly Flexman Thomas Poschinger Biomedical Engineering Department of

Columbia University Harlem Children Society Dr. Sat Bhattacharya

Page 16: Near-infrared Diffuse Optical Tomography studies on small animals

References Websites:

J. Masciotti et al, “ Monitoring Tumor Growth and Treatment in Small Animals with Magnetic Resonance and Optical Tomographic Imaging,” Proc of SPIE Vol. 6081, 2006

A.H. Hielscher et al, “Near-Diffuse Optical Tomography,” Disease Markers 18, pp.313-337, 2002

1. http://neuroimage.usc.edu/images/mouse1_small.jpg2. http://www.rxmed.com/b.main/b2.pharmaceutical/b2.1.mon

ographs/CPS-%20Monographs/CPS-%20(General%20Monographs-

3. %20I)/INTRALIPID.html

Page 17: Near-infrared Diffuse Optical Tomography studies on small animals

Thank You!

Page 18: Near-infrared Diffuse Optical Tomography studies on small animals

Reconstruction Two theories of light transfer:

Diffusion: simpler to implement, like diffusion of a dye through water – acceptable for fairly homogeneous media

Radiative transport Much more complicated algorithm – important

for very inhomogeneous media Complexity arises from the fact that it is an ill-

posed problem.


Recommended