+ All Categories
Home > Documents > NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Date post: 13-Jan-2016
Category:
Upload: scott-benjamin-fisher
View: 216 times
Download: 3 times
Share this document with a friend
31
NEEP 541 – Material Properties Fall 2003 Jake Blanchard
Transcript
Page 1: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

NEEP 541 – Material Properties

Fall 2003Jake Blanchard

Page 2: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Outline Materials in Reactors

Fission Fusion

Material Properties Tensile tests Impact tests Creep tests

Page 3: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Materials in Reactors Fission

Fuel Cladding Moderator Core structure Reflector Control rods Coolant Pressure

vessel shielding

Fusion Fuel Structure Tritium

breeder Coolant insulators shielding

Page 4: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Fission Primary radiation damage is in fuel

and cladding Cladding:

Adequate strength (T, fluence) Corrosion resistance Thermal conductivity Neutronics (low absorption) Available resources Fabricability Inexpensive

Page 5: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Cladding Materials

Low thermal absorption cross section Al Mg Zr Be

High thermal absorption cross section Nb Mo Ta V Ti Steel

Page 6: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Some Numbers

Material Thermal - Zr Fast - steel

Tmax (C) 380 660

Coolant Water Sodium

Pressure (atm)

130 <1

Clad thickness

(mm)

0.6 0.4

Clad OD (mm)

10.8 6.3

Life (dpa) 20 150

Page 7: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Fusion Structure Requirements Same as fission plus…

Low swelling Low embrittlement

Typical Materials Austenitic steel (316 SS) Ferritic steel (lately ODS FS) Refractory alloys composites

Page 8: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Radiation Effects Radiation hardening (increase in

strength) Embrittlement (decrease in

ductility) Swelling (volume increase due to

voids) Irradiation creep

Page 9: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Tests Tensile tests (modulus, ductility,

strength) Tube burst tests (creep) Impact tests (ductility, fracture

toughness)

Page 10: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Tensile Tests

Page 11: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Understanding the Tensile Test A0=cross sectional area before test

(in test section) A=cross sectional area during test

(load=P) L0=section length before test L=section length during test

Page 12: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Tensile Tests Engineering stress=eng=P/A0

True Stress=true=P/A Before necking, A~ A0

Engineering strain==(L-L0)/L0

True strain=

1lnln

00L

L

L

dLL

L

true

Page 13: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Stress-Strain Curve

Page 14: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

True Stress – True Strain

Page 15: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Combined

Page 16: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

When does necking start? Plastic Instability (dP=0)

20

0

0

0

00

0

A

dAA

L

dL

A

A

L

L

LAALA

dAd

AddAAddP

Volume is conserve

d

Page 17: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Plastic Instability

true

true

d

d

dL

dL

A

dAd

A

dA

A

dAA

L

L

L

dL

L

L

L

dL

A

LAL

200

0

0

00

Necking occurs when slope of true stress-true strain curve=true

stress

Page 18: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Plastic Instability suppose

n

CCCn

CCnd

d

C

C

nn

n

n

n

1

1

1

111

11

1

Page 19: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Hardening

Page 20: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Impact Testing Test for ductility Measure energy absorbed during

fracture

Page 21: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Typical Results DBTT=ductile to brittle transition

temperature

T

E (J)

Upper shelfLower

shelf

irradiated

DBTT

40

Page 22: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Creep Tests Apply load and measure

deformation as a function of time

time

Creep strain

primary secondary

tertiary

Page 23: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Study creep rupture with a tube burst test

p

2R

L

Page 24: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

t

pR

pRLRLdptL

h

h

2)sin(20

p

hh

Slice cylinder vertically

Page 25: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

t

pR

pRRt

axial

axial

2

2 2

axialaxial

Slice cylinder horizontally (picture is shown cut away vertically as well)

Page 26: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis Uniaxial (1-D tensile test) Constant stress

tK

Kdt

d

n

n

Page 27: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

zrijij

ijij

zzrr

zzrr

n

S

S

dt

d

dt

d

Kdt

d

;3

12

3

2

12

1

*

*

21

222*

21

222*

**

Page 28: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

023

12

23

1

223

1

3

1

zz

z

zr

S

t

pRS

t

pR

t

pR

t

pRS

Page 29: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

t

pR

zzrr

2

3

222

1

2

1

*

21

222*

21

222*

Page 30: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis

0

2

3

4

3

2

3

4

3

22

3

2

3

2

3

1

1

11*

dt

d

t

pRK

dt

d

t

pRK

dt

d

t

pR

t

pRKSK

dt

d

z

nn

nn

r

n

r

nr

Page 31: NEEP 541 – Material Properties Fall 2003 Jake Blanchard.

Burst Test Analysis Negative radial strain means that

wall gets thinner Zero axial strain means length

doesn’t change Positive hoop strain means radius

increases Analysis assumes small strain,

constant stress For large strain, wall thins and

stress increases, leading to rupture


Recommended