+ All Categories
Home > Documents > __NERC_wind

__NERC_wind

Date post: 07-Aug-2018
Category:
Upload: raulbsu
View: 212 times
Download: 0 times
Share this document with a friend

of 242

Transcript
  • 8/21/2019 __NERC_wind

    1/242

    Arnold SchwarzeneggerGovernor

    INTERMITTENCY ANALYSIS PROJECT:APPENDIX B

    IMPACT OF INTERMITTENT

    GENERATION ON OPERATION OFCALIFORNIA POWER GRID

    Prepared For:

    California Energy CommissionPublic Interest Energy ResearchProgram

    Prepared By:GE Energy Consulting

    Xinggang BaiKara ClarkGary A. JordanNicholas W. MillerRichard J. Piwko

    PIER

    FINA

    LPROJECTREPOR

    T

    July 2007CEC-500-2007-081-APB

  • 8/21/2019 __NERC_wind

    2/242

    Prepared By:GE Energy ConsultingRichard J. Piwko

    1 River RoadBuilding 2, Room 644Schenectady, NY 12345Commission Contract No. 500-02-004Commission Work Authorization No: MR-017

    Prepared For:

    Public Interest Energy Research (PIER) ProgramCalifornia Energy Commission

    Dora Yen Nakafuji, Ph.D.

    Contract Manager

    Gerald Braun

    Program Area Lead

    PIER Renewables

    Ken KoyamaActing Office Manager

    Energy Generation Research Office

    Martha Krebs

    Deputy Director

    ENERGY RESEARCH & DEVELOPMENT DIVISION

    B. B. Blevins

    Executive Director

    DISCLAIMER

    This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of tEnergy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors ansubcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represethat the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the CalifornEnergy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report.

  • 8/21/2019 __NERC_wind

    3/242

    i

    Table of Contents

    ListofFigures ................................................................................................................................... v

    ListofTables.................................................................................................................................... xi

    Executive

    Summary..........................................................................................................................1

    StudyOverview ...........................................................................................................................1

    Conclusions...................................................................................................................................3

    Recommendations .......................................................................................................................3

    GenerationResourceAdequacy ...........................................................................................4

    TransmissionInfrastructure..................................................................................................8

    RenewableGenerationTechnology,Policy,andPractice.................................................9

    Closure...................................................................................... Error!Bookmarknotdefined.

    1.0Introduction ...............................................................................................................................11

    1.1.Challenges.............................................................................................................................11

    1.2.Background...........................................................................................................................11

    1.3.IntermittentGenerationDefinition ...................................................................................12

    1.4.OverviewofProjectObjectives,TasksandParticipants................................................12

    1.5.Participants ............................................................................................................................15

    2.0StudyApproach ........................................................................................................................17

    2.1.StudyScenarios ....................................................................................................................17

    2.2.TypesofAnalysis.................................................................................................................20

    2.3.Data........................................................................................................................................21

    2.4.Terminology .........................................................................................................................22

    3.0StatisticalAnalysis ....................................................................................................................23

    3.1.TemporalandSpatialPatterns...........................................................................................23

    3.1.1. DailyandSeasonalVariations .............................................................................23

    3.1.2. SpatialVariations...................................................................................................28

    3.1.3. YearlyVariationandPenetrationRelativetoSystemLoad.............................29

    2006and2010Penetration..............................................................................................33

    2020YearlyVariationandPenetration.........................................................................36

    3.2.HourlyVariability................................................................................................................38

    3.2.1. 2006VariabilityRelativetoLoadLevel ..............................................................40

    3.2.2. 2010Variability.......................................................................................................41

    RelativetoLoadLevel ....................................................................................................43

    RelativetoTimeofDay .................................................................................................45

  • 8/21/2019 __NERC_wind

    4/242

    ii

    Sustained3HourChanges ............................................................................................48

    ExtremeChanges.............................................................................................................50

    3.2.3. 2020VariabilityRelativetoLoadLevelandTimeofDay...............................54

    3.3.IntraHourVariability .........................................................................................................57

    3.3.1. Selected

    Periods......................................................................................................58 3.3.2. IntraHourVariabilityDefinitions.......................................................................59

    3.3.3. 2010XVariabilityatLightLoad ...........................................................................62

    3.4.VariabilitySummary ...........................................................................................................65

    3.5.HourlyForecastError .........................................................................................................67

    3.5.1. DayAheadForecastError ....................................................................................67

    3.5.2. HourAheadForecastError..................................................................................75

    3.6.Summary...............................................................................................................................77

    4.0ProductionSimulationAnalysis.............................................................................................79

    4.1.1. GeneralDatabaseCreation ...................................................................................80

    4.1.2. ScenarioDescription..............................................................................................81

    4.2.Economics .............................................................................................................................82

    4.3.IntermittentRenewableForecasting .................................................................................90

    4.4.Operations.............................................................................................................................95

    4.4.1. CaliforniaHydroelectricOperation ..................................................................103

    4.4.2. CombinedCycleOperation................................................................................106

    4.4.3. RampRateandRangeofOperation..................................................................108

    4.4.4. Sensitivities ...........................................................................................................114

    4.5.Emissions ............................................................................................................................121

    4.6.TransmissionPathLoading..............................................................................................122

    4.7.Observations.......................................................................................................................126

    5.0QuasiSteadyStateAnalysis..................................................................................................129

    5.1.OverviewofMethod .........................................................................................................129

    5.1.1. StudyPeriods........................................................................................................130

    5.1.2. InputData .............................................................................................................131

    5.1.3. BoundaryConditions ..........................................................................................132

    5.2.SystemPerformanceExamples........................................................................................133

    5.2.1. JulyMorningLoadIncrease ...............................................................................133

    5.2.2. MayNightLowLoadLevel ...............................................................................141

    IncreaseManeuverableGeneration ............................................................................144

  • 8/21/2019 __NERC_wind

    5/242

    iii

    TemporaryCurtailmentofWindGeneration ...........................................................148

    RemoveLargeStepsfromLoadProfile......................................................................150

    5.2.3. JuneEveningLoadDecrease..............................................................................153

    IncorporateHourlyWindForecast.............................................................................157

    Temporary

    Wind

    Ramp

    Rate

    Limit ............................................................................1595.3.SummaryofResults...........................................................................................................161

    6.0OperationalImplicationsandMitigationMethods ...........................................................163

    6.1.Validation............................................................................................................................163

    6.2.StatisticalResultsandOperationalFlexibility...............................................................169

    6.2.1. OverallRequirements..........................................................................................170

    6.2.2. LightLoadRequirements ...................................................................................172

    6.2.3. Extremes................................................................................................................174

    6.3.OperationalFlexibility ......................................................................................................175

    6.3.1. Forecasting ............................................................................................................175

    ImplicationsofIgnoringForecasts..............................................................................176

    6.3.2. UnitCommitmentandScheduleFlexibility.....................................................177

    HydroelectricGenerationShift....................................................................................177

    AvailableDispatchRange............................................................................................178

    6.3.3. LoadFollowing ....................................................................................................179

    ImpactofPumpsonLoadFollowing.........................................................................181

    ImpliedCostsofLoadFollowing ...............................................................................182

    6.3.4. Regulation .............................................................................................................183

    ImpactofPumpsonRegulation..................................................................................183

    CPS2Discussion ............................................................................................................185

    ImpliedCostsofRegulation ........................................................................................186

    6.4.MitigationMethods ...........................................................................................................186

    6.4.1. UnitCommitmentandScheduleFlexibility.....................................................186

    6.4.2. LoadFollowing ....................................................................................................187

    6.4.3. Regulation .............................................................................................................187

    7.0ConclusionsandRecommendations ....................................................................................188

    7.1.ObservationsbyTimeFrame ...........................................................................................188

    7.1.1. DayAheadandOverallOperation ...................................................................188

    7.1.2. HourlyScheduleFlexibility................................................................................188

    7.1.3. 5MinuteLoadFollowingandEconomicDispatch.........................................189

  • 8/21/2019 __NERC_wind

    6/242

    iv

    7.1.4. 1MinuteRegulation............................................................................................190

    7.2.Conclusions.........................................................................................................................190

    7.3.Recommendations .............................................................................................................190

    7.3.1. GenerationResourceAdequacy.........................................................................191

    7.3.2. Transmission

    Infrastructure ...............................................................................1957.3.3. RenewableGenerationTechnology,Policy,andPractice ..............................196

    7.4.Closure ................................................................................................................................197

    8.0References ................................................................................................................................198

    Glossary..........................................................................................................................................199

    AppendixA.SummaryofWindProjectsbyScenario.............................................................203

    AppendixB.SummaryofSolarProjectsbyScenario ..............................................................209

    AppendixC.ApplicationofSolarData .....................................................................................221

    Pleasecitethisreportasfollows:

    Richard Piwko et. al. 2007. IntermittencyAnalysis Project:Appendix B: Impact of Intermittent

    GenerationonOperationofCaliforniaPowerGrid.CaliforniaEnergyCommission,PIERRenewable

    EnergyTechnologiesProgram.CEC5002007081APB.

  • 8/21/2019 __NERC_wind

    7/242

    v

    List of Figures

    Figure1.FlowchartofIntermittencyAnalysisProject. ......................................................................14

    Figure2.TimeScalesforGridPlanningandOperations...................................................................16

    Figure3.AverageSystemwideDailyLoad,Wind,Solar,andNetLoadProfilesofJuly2003.....24

    Figure4.AllSystemwideDailyLoad,Wind,andSolarProfilesforJuly2003. .............................. 25

    Figure5.AllSystemwideDailySolarProfilesforJuly2003..............................................................25

    Figure6.AverageSystemwideDailyLoad,Wind,Solar,andNetLoadProfilesofJanuary2002.

    ............................................................................................................................................................26

    Figure7.AllSystemwideDailyLoadandWindProfilesforJanuary2002. ...................................27

    Figure8.AllSystemwideDailySolarProfilesforJanuary2002. ......................................................27

    Figure9.AllIndividualCaliforniaWindPlantProfilesforJuly21,2003........................................ 28

    Figure10.AllIndividualTehachapiRegionWindPlantProfilesforJuly21,2003........................29

    Figure11.Load,Wind,andSolarDurationCurvesfor2010XScenario..........................................30

    Figure12.2010HourlyLoadandNetLoadDurationCurvesfor3Years. ..................................... 31

    Figure13.DetailofLoadandNetLoadDurationCurvesfor2010XScenario. ..............................32

    Figure14.2010XWindProductionandPenetrationDurationCurves. ...........................................33

    Figure15.2010XSolarProductionandPenetrationDurationCurves. ............................................34

    Figure16.2006and2010HourlyAverageWindPenetrationbyDecile..........................................35

    Figure17.2006and2010HourlyAverageSolarPenetrationbyDecile........................................... 36

    Figure18.2020HourlyLoadandNetLoadDurationCurves. ......................................................... 37

    Figure19.2020HourlyAverageWindandSolarPenetrationbyDecile.........................................38

    Figure20.HourlyProfilesand1HourDeltasforanExampleJuly2002Day................................40

    Figure21.2010XHourlyLoadandNetLoadDeltaStockChartbyDecile.....................................44

    Figure22.2006and2010StandardDeviationofHourlyLoadandNetLoadDeltas....................45

    Figure23.2010XAverageHourlyWindandSolarPenetrationbyHourofDay...........................46

    Figure24.2010XHourlyLoadandNetLoadDeltaStockChartbyHourofDay. ........................47

    Figure25.2010XJulyHourlyLoadandNetLoadDeltaStockChartbyHourofDay. ................47

    Figure26.2010XJanuaryHourlyLoadandNetLoadDeltasStockChartbyHourofDay.........48

  • 8/21/2019 __NERC_wind

    8/242

    vi

    Figure27.2010X3HourLoadandNetLoadDeltasStockChartbyHouroftheDay. ................49

    Figure28.2010XJanuary3HourLoadandNetLoadDeltasStockChartbyHouroftheDay...50

    Figure29.20103HourPositiveLoadandNetLoadDeltaDurationCurvesfor2004..................51

    Figure30.20103HourNegativeWindDeltaDurationCurvesfor2004StudyYear....................52

    Figure31.20101HourNegativeLoadandNetLoadDeltaDurationCurvesfor2004................53

    Figure32.20101HourPositiveWindDeltaDurationCurvesfor2004StudyYear......................54

    Figure33.2020HourlyLoadandNetLoadDeltasStockChartbyDecile......................................55

    Figure34.2020JanuaryHourlyLoadandNetLoadDeltasStockChartbyHourofDay............56

    Figure35.2010LoadDurationCurveswith3HourPeriodsofInterestIdentified.......................58

    Figure36.1MinuteProfilesDuring3HourPeriodofExampleJuly2003Day.............................59

    Figure

    37.

    Example

    for

    Load

    Following

    and

    Regulation

    Metric

    Definition....................................60Figure38.LoadFollowingRequirementforJuly2003Example3HourPeriod............................61

    Figure39.RegulationRequirementforJuly2003Example3HourPeriod..................................... 62

    Figure40.2010X5MinuteDeltaDurationCurvesforLightLoad(10thDecile). ..........................63

    Figure41.2010X1MinuteDeltaDurationCurvesforLightLoad(10thDecile). ..........................64

    Figure42.2010XSubHourlyDeltaWindDurationCurvesforLightLoad(10thDecile)............65

    Figure43.2010Load,Wind,andSolarForecastsandActualsDuringanExampleJulyWeek. ..68

    Figure44.2010Load,Wind,Solar,andNetLoadForecastErrorsDuringExampleJulyWeek..69

    Figure45.2010XLoad,Wind,Solar,andNetLoadDayAheadForecastErrorDurationCurves.

    ............................................................................................................................................................70

    Figure46.2006LoadandNetLoadDayAheadForecastErrorStockChartbyDecile. ...............74

    Figure47.2010XLoadandNetLoadDayAheadForecastErrorStockChartbyDecile..............75

    Figure48.2010XLoad,Wind,Solar,andNetLoadHourAheadForecastErrorDurationCurves.

    ............................................................................................................................................................76

    Figure

    49.

    2010X

    Load

    and

    Net

    Load

    Hour

    Ahead

    Forecast

    Error

    Stock

    Chart

    by

    Decile............77

    Figure50.SpotPriceDurationCurvefor2002Shapes(#1). ..............................................................83

    Figure51.SpotPriceDurationCurvefor2002Shapes(#2). ..............................................................83

    Figure52.SpotPriceDurationCurvefor2002Shapes(#3). ..............................................................84

    Figure53.SpotPriceDurationCurvefor2002Shapes(#4). ..............................................................85

  • 8/21/2019 __NERC_wind

    9/242

    vii

    Figure54.SpotPriceDurationCurvefor2002Shapes(#5). ..............................................................85

    Figure55.SpotPriceDurationCurvefor2003Shapes.......................................................................86

    Figure56.SpotPriceDurationCurvefor2004Shapes.......................................................................86

    Figure57.SpotPriceDurationCurvefor2004Shapes(zoom). ........................................................ 87

    Figure58.WECCOperatingCostReductionsDuetoRenewables($M).........................................87

    Figure59.WECCOperatingCostReductionsDuetoRenewables($/MWh). ................................88

    Figure60.LoadPaymentReductionsDuetoRenewables($M). ...................................................... 89

    Figure61.LoadPaymentReductionsDuetoRenewables($/MWh)................................................89

    Figure62.NonRenewableGeneratorRevenueReductionsDuetoRenewables($M). ................90

    Figure63.NonRenewableGeneratorRevenueReductionsDuetoRenewables($/MWh)..........90

    Figure

    64.

    Impact

    of

    Intermittent

    Forecast

    on

    Spot

    Price

    (2010T).....................................................92Figure65.ImpactofIntermittentForecastonSpotPrice(2010X).....................................................92

    Figure66.ImpactofIntermittentForecastonSpotPrice(2010Xand2020)....................................93

    Figure67.TotalOperatingCostImpactofIntermittentForecasting................................................94

    Figure68.CaliforniaGeneratorRevenueReductionsbyType(2010T)...........................................95

    Figure69.WECCGeneratorRevenueReductionsbyType(2010T). ...............................................95

    Figure70.CaliforniaEnergyChangeDuetoRenewables(2010T). ..................................................96

    Figure71.WECCEnergyChangeDuetoRenewables(2010T).........................................................96

    Figure72.AnnualDurationCurvesCaliforniaRenewableGeneration. ...................................... 97

    Figure73.AnnualDurationCurvesCaliforniaWindandSolarGeneration...............................98

    Figure74.AnnualDurationCurvesCaliforniaNuclear,SteamandGasTurbines. ................... 98

    Figure75.AnnualDurationCurvesCaliforniaHydroGeneration............................................... 99

    Figure76.OneWeekChangeinCaliforniaHydroOperation(2010T). .........................................100

    Figure77.AnnualChangeinCaliforniaHydroOperation(2010Tand2010X)............................100

    Figure78.AnnualChangeinWECCHydroOperation(2010T)..................................................... 101

    Figure79.AnnualHistogramofHydroShift(2010T). .....................................................................101

    Figure80.AnnualDurationCurves CaliforniaPumpedStorageHydroOperation.................102

    Figure81.AnnualDurationCurves CaliforniaCombinedCycleGeneration............................102

    Figure82.AnnualDurationCurves CaliforniaImports. ...............................................................103

  • 8/21/2019 __NERC_wind

    10/242

    viii

    Figure83.CaliforniaHistoricalHydroOperation SampleMayWeek........................................104

    Figure84.CaliforniaHistoricalHydroOperationMay. ...............................................................104

    Figure85.CaliforniaHistoricalHydroOperationJune. ............................................................... 105

    Figure86.CaliforniaHistoricalHydroOperationJuly. ................................................................ 105

    Figure87.CaliforniaHydroHistoricalMonthlyDurationCurves. ...............................................106

    Figure88.2005CEMSDataDeltaEnergyCenter...........................................................................107

    Figure89.2005CEMSDataHaynesGeneratingStation. ..............................................................107

    Figure90.2005CEMSDataValleyGeneratingStation. ................................................................108

    Figure91.CommitmentWeekofMay10th. ..................................................................................... 109

    Figure92.Dispatch WeekofMay10th. .............................................................................................109

    Figure

    93.

    Ramp

    Rate

    and

    Range

    Capability

    Week

    of

    May

    10th

    . ..................................................110Figure94.RampRateDownCapabilityWeekofMay10th...........................................................110

    Figure95.RampRateDownCapacityWithoutConventionalHydro WeekofMay10th.........111

    Figure96.RampRateDownCapabilityVersusCaliforniaLoad(2010X). ....................................111

    Figure97.RangeDownCapabilityVersusCaliforniaLoad(2010X). ............................................112

    Figure98.RampRateUpCapabilityVersusCaliforniaLoad(2010X). .........................................112

    Figure99.RangeUpCapabilityVersusCaliforniaLoad(2010X)...................................................113

    Figure100.AnnualRampRateDownCapability.............................................................................113

    Figure101.AnnualRampRateDownCapability(zoom). ..............................................................114

    Figure102.OperationofHelmsPumpedStorageHydro(2010X)..................................................114

    Figure103.HistoricalHydroDailyMinimum,Maximum,andRange,2006. .............................. 115

    Figure104.DailyRangeOfHydroOperation,Summer2004and2006. .......................................116

    Figure105.ConstrainedVersusBaseHydroforaSampleMayWeek(2010T). ...........................116

    Figure106.AnnualDurationCurveCaliforniaHydroGeneration(2010T)...............................117

    Figure107.RampDownCapacityWithConstrainedHydro,2010T. ............................................117

    Figure108.RampDownCapacityWithConstrainedHydro,2010T(zoom)................................118

    Figure 109. Annual Duration Curve California PSH Operation with Constrained Hydro

    (2010T). ............................................................................................................................................119

    Figure110.ComparisonofHelmsOperation,Summer2004and2006. ........................................119

  • 8/21/2019 __NERC_wind

    11/242

    ix

    Figure111.SampleWeekofPumpingOperation,January2006. ...................................................120

    Figure112.HistoricalPumpingOperation,2006. .............................................................................120

    Figure113.CaliforniaEmissionReductionsDuetoRenewables(2010T). ....................................121

    Figure114.WECCEmissionReductionsDuetorenewables(2010T). ...........................................121

    Figure115.CaliforniaEmissionReductionsDuetoNewWindandSolarGeneration(2010T).122

    Figure116.WECCEmissionReductionsDuetoNewWindandSolarGeneration(2010T)......122

    Figure117.TransmissionFlowDurationCurvesPath15:SouthofLosBanos.........................123

    Figure118.TransmissionFlowDurationCurvesPath21:ArizonatoCalifornia .....................123

    Figure119.TransmissionFlowDurationCurvePath46:WestofColoradoRiver...................124

    Figure 120. Transmission Flow Duration Curves Total SCIT (Southern California Import

    Transmission). ................................................................................................................................124

    Figure121.AnnualDurationCurvePath66:COI(2010T). ..........................................................125

    Figure122.Path66:COIFlowsforOneWeekinMay(2010T). ......................................................125

    Figure123.AnnualDurationCurveforHourlyFlowChangesonPath66:COI(2010T)...........126

    Figure124.TotalCaliforniaLoadDuringtheJulyMorningQSSStudyPeriod...........................134

    Figure125.TotalCaliforniaWindGenerationDuringtheJulyMorningQSSStudyPeriod. .... 135

    Figure126.TotalCaliforniaSolarGenerationDuringtheJulyMorningQSSStudyPeriod. ..... 135

    Figure

    127.

    Maneuverability

    Variables

    During

    the

    July

    Morning

    QSS

    Study

    Period..................137Figure128.QSSPerformanceVariablesDuringtheJulyMorningQSSStudyPeriod. ...............138

    Figure129.EconomicDispatchUnitChangeDuringtheJulyMorningQSSStudyPeriod. ...... 139

    Figure 130. Impact of Intermittent Variability on Regulation Duty During July QSS Study

    Period...............................................................................................................................................140

    Figure131.ImpactofIntermittentVariabilityonEconomicDispatchandLoadFollowingDuty

    DuringJulyQSSStudyPeriod. ....................................................................................................140

    Figure132.TotalCaliforniaLoadDuringtheMayNightQSSStudyPeriod. .............................. 141

    Figure133.TotalCaliforniaWindGenerationDuringtheMayNightQSSStudyPeriod..........142

    Figure134.ManeuverabilityVariablesDuringtheMayNightQSSStudyPeriod. ..................... 143

    Figure135.PerformanceVariablesDuringtheMayNightQSSStudyPeriod.............................144

    Figure136.ManeuverabilityVariablesforaMayNightwithMoreCombinedCyclePlants...145

    Figure137.PerformanceVariablesforaMayNightwithMoreCombinedCyclePlants..........146

  • 8/21/2019 __NERC_wind

    12/242

    x

    Figure138.ImpactofWindVariabilityonRegulationDutyDuringMayQSSStudyPeriod....147

    Figure139.ImpactofWindVariabilityonEconomicDispatchandLoadFollowingDutyDuring

    MayQSSStudyPeriod. ................................................................................................................. 147

    Figure140.TemporaryCurtailmentofWindGeneration................................................................149

    Figure141.ImpactofTemporaryCurtailmentofWindGenerationonEconomicDispatchand

    LoadFollowingDutyDuringMayQSSStudyPeriod. ...........................................................149

    Figure142.ImpactofTemporaryCurtailmentofWindGenerationonRegulationDutyDuring

    MayQSSStudyPeriod. ................................................................................................................. 150

    Figure143.ModifiedLoadProfileWithoutLargeSwitchingEvents.............................................151

    Figure144.SelectedCAISO1MinuteLoadDatafromMay2002,2003,and2004. ..................... 151

    Figure145.ManeuverabilityVariablesforaMayNightwiththeModifiedLoadProfile..........152

    Figure

    146.

    Performance

    Variables

    for

    a

    May

    Night

    with

    the

    Modified

    Load

    Profile.................153Figure147.TotalCaliforniaLoadDuringtheJuneEveningQSSStudyPeriod...........................154

    Figure148.TotalCaliforniaWindGenerationDuringtheJuneEveningQSSStudyPeriod. .... 154

    Figure149.TotalCaliforniaSolarGenerationDuringtheJuneEveningQSSStudyPeriod. ..... 155

    Figure150.ManeuverabilityVariablesDuringtheJuneEveningQSSStudyPeriod..................156

    Figure151.PerformanceVariablesDuringtheJuneEveningQSSStudyPeriod.........................156

    Figure 152. Impact of Including Hourly Wind Forecast on Regulation Duty During theJune

    Evening

    QSS

    Study

    Period. ..........................................................................................................158

    Figure 153. Impact of Including Hourly Wind Forecast on Economic Dispatch and Load

    FollowingDuringtheJuneEveningQSSStudyPeriod. ..........................................................158

    Figure154.TemporaryCapwithRampUpRateLimitonWindGeneration. ............................160

    Figure155.ComparisonofRegulationDuringtheJuneEveningQSSStudyPeriod. .................160

    Figure156.ComparisonofEconomicDispatchandLoadFollowingDuring theJuneEvening

    QSSStudyPeriod. .......................................................................................................................... 161

    Figure157.ScheduleandLoadFollowingforaSampleDayofCaliforniaOperation................164

    Figure158.HistoricalInterchangeforaSampleJulyWeek. ...........................................................165

    Figure159.InstantaneousRangeofInterchangeforSampleJulyWeek. ...................................... 165

    Figure160.RegulationandInterchangeforaSampleDayofCaliforniaOperation. ..................166

    Figure161.HistoricalACEData..........................................................................................................167

    Figure162.PseudoACEfromQSSSimulations. ..............................................................................168

  • 8/21/2019 __NERC_wind

    13/242

    xi

    Figure163.HistoricalLoadandProcuredRegulationDatafor2003. ............................................169

    Figure164.StandardDeviationsofHourlyDeltas. .......................................................................... 171

    Figure165.AnnualStandardDeviationChanges. ............................................................................ 172

    Figure166.StandardDeviationsforOneHourDeltasatLightLoad...........................................173

    Figure167.LightLoadStandardDeviationChanges.......................................................................174

    Figure 168. Comparison of Historical Forecast and Actual Load and Simulated DayAhead

    ForecastandActualWind. ...........................................................................................................176

    Figure 169. 2010X Load and Net Load DayAhead Forecast Error Ignoring Wind and Solar

    ForecastStockChartbyDecile.....................................................................................................177

    Figure170.IntermittentGenerationImpactonHydroOperation..................................................178

    Figure171.CommittedGenerationRangeandMaximumHourlyNetLoadChange................179

    Figure172.CommittedGenerationRampRateCapabilityandExpectedLoadFollowingDuty...........................................................................................................................................................180

    Figure 173. Expanded View of Committed Generation Ramp Rate Capability and Expected

    LoadFollowingDuty.....................................................................................................................180

    Figure174.ImpactofWindVariabilitywithPumpsinLoadProfile............................................. 181

    Figure175.ImpactofWindVariabilityWithoutPumpsinLoadProfile ...................................... 182

    Figure176.MayNight:ImpactofWindVariabilitywithPumpSteps..........................................184

    Figure

    177.

    May

    Night:

    Impact

    of

    Wind

    Variability

    Without

    Pump

    Steps ...................................184

    Figure178.ExampleConcentratingSolarProjectProfileforaMayDay. .....................................222

    Figure179.ExampleStirlingSolarProjectProfileforaMayDay. .................................................223

    Figure180.ExamplePVSolarZIPCodeProfilesforaMayDay....................................................224

    Figure181.ComparisonofOriginal15MinuteDataandFinalProfilewith1MinuteVariability.

    ..........................................................................................................................................................226

    Figure182.IrradiationDataUsedasSourceof1MinuteVariabilityinExample. ...................... 226

  • 8/21/2019 __NERC_wind

    14/242

    xii

    List of Tables

    Table1.RenewableGenerationMixforFourStudyScenarios. ........................................................ 18

    Table2.WindandSolarGenerationinCalifornia. .............................................................................19

    Table3.LocationsofWindandSolarResourcesforScenario2010T. ..............................................19

    Table4.LocationsofWindandSolarResourcesforScenario2010X. ..............................................19

    Table5.2006HourlyLoadStatistics(MW)..........................................................................................41

    Table6.2006HourlyNetLoadandIntermittentRenewableStatistics(MWor%).......................41

    Table7.2010HourlyLoadStatistics(MW)..........................................................................................42

    Table8.2010THourlyNetLoadandIntermittentRenewableStatistics(MWor%).....................42

    Table9.2010XHourlyNetLoadandIntermittentRenewableStatistics(MWor%). ...................43

    Table10.2020HourlyLoadStatistics(MW)........................................................................................57

    Table11.2020HourlyNetLoadandIntermittentRenewableStatistics(MWor%). .................... 57

    Table12.StatisticsonLoadFollowingRequirementforJuly2003Example3HourPeriod.......61

    Table13.StatisticsonRegulationRequirementforJuly2003Example3HourPeriod.................62

    Table14.Summaryof2006and2010FullYearStatisticalAnalysis. ............................................... 66

    Table15.Summaryof2006and2010LightLoad(10thDecile)StatisticalAnalysis........................66

    Table16.Summaryof2010and2020HourlyStatisticalAnalysis. ...................................................67

    Table17.2006HourlyLoadForecastStatistics(MW). .......................................................................70

    Table18.2006HourlyNetLoad,Wind,andSolarForecastStatistics(MW). .................................71

    Table19.2010HourlyLoadForecastStatistics(MW). .......................................................................71

    Table20.2010THourlyNetLoad,Wind,andSolarForecastStatistics(MW)................................72

    Table21.2010XHourlyNetLoad,Wind,andSolarForecastStatistics(MW)................................72

    Table22.2010XDayAheadForecastErrorStandardDeviation. .....................................................73

    Table23.2010XDayAheadForecastErrorEnergy............................................................................ 73

    Table24.2010XHourAheadForecastErrorStandardDeviation. ...................................................76

    Table25.2010XHourAheadForecastErrorEnergy. ......................................................................... 76

    Table26.ProductionSimulationScenarioDescription. .....................................................................82

  • 8/21/2019 __NERC_wind

    15/242

    xiii

    Table27.AverageVariableOperatingCostReductionsperMWhofRenewableEnergy(2010T).

    ..........................................................................................................................................................126

    Table28.AverageLoadPaymentReductionsperMWhofRenewableEnergy(2010T).............127

    Table 29. Average NonRenewable Generator Revenue Reduction per MWh of Renewable

    Energy

    (2010T)................................................................................................................................127 Table30.AnnualLoadPaymentReductionsfromIntermittentGeneration(2010T). .................127

    Table31.AverageAnnualEmissionReductions inWECCperMWhofRenewableGeneration

    (2010T). ............................................................................................................................................127

    Table32.CharacteristicsofQSSStudyPeriods. ................................................................................130

    Table33.WeightedAverageRampRateDatabyUnitType...........................................................132

    Table34.MinimumGenerationOutputLevelbyUnitType. .........................................................132

    Table

    35.

    Total

    and

    Light

    Load

    Change

    in

    Flexibility

    Requirements. ............................................170Table36.TotalVariabilityfromStatisticalAnalysis. ........................................................................174

    Table37. LoadFollowingStatisticsofQSSPumpandWindSensitivityCases..........................182

    Table38.LoadFollowingStatisticsofLightLoadConditionsforPumpandWindSensitivity182

    Table39.RegulationStatisticsofQSSPumpandWindSensitivityCases ....................................184

    Table40.RegulationStatisticsofLightLoadConditionsforPumpandWindSensitivity ........ 184

    Table41.WindProjectsIncludedin2006StudyScenario. ..............................................................203

    Table42.IncrementalWindProjectsAddedfor2010TStudyScenario......................................... 204

    Table43.IncrementalWindProjectsAddedfor2010XStudyScenario.........................................205

    Table44.IncrementalWindProjectsAddedfor2020StudyScenario. ..........................................207

    Table45.SolarProjectsIncludedin2006StudyScenario. ...............................................................209

    Table46.IncrementalSolarProjectsAddedfor2010TStudyScenario..........................................209

    Table47.IncrementalSolarProjectsAddedfor2010XStudyScenario. ........................................213

    Table48.IncrementalSolarProjectsAddedfor2020StudyScenario. ...........................................213

    Table49.StandardDeviationofthe15MinuteVariabilityintheCaliforniaPVData................225

    Table50.StandardDeviationofthe15MinuteVariabilityintheGolden,CO,IrradiationData.

    ..........................................................................................................................................................225

  • 8/21/2019 __NERC_wind

    16/242

    xiv

  • 8/21/2019 __NERC_wind

    17/242

    1

    Executive Summary

    Californiahasoneofthemostdiverseelectricitysupplysystemsinthenationwithalarge

    potentialtogenerateelectricityfromrenewablesources,suchaswind,geothermal,biomass,

    hydroelectricandsolar.Withprogressiverenewablepolicies,thechallengefacingthestatewill

    be

    how

    best

    to

    integrate

    and

    manage

    renewable

    energy

    resources

    with

    traditional

    generation

    whileensuringareliableelectricitysystem.

    Study Overview

    TheIntermittencyAnalysisProjectwastailoredtopresentastatewideperspectiveofthe

    transmissioninfrastructureandservicesneededtoaccommodatetherenewablepenetration

    levelsdefinedinthestatesrenewableenergypolicy.TheIntermittencyAnalysisProjectwas

    technicalandwasintendedtoprovidea2020perspectiveonpotentialoperationalneedsand

    impactstomeetfuturegrowthanddemand.

    ThisreportdocumentsthelaststageofthemultistageIntermittencyAnalysisProject.

    Precedingstagesincluded:

    Evaluationofpast,present,andfuturewindturbinetechnologies,andtheireffecton

    transmissionsystemoperationandperformance,byBEWEngineering,Inc.

    Assessmentofworldwideexperiencewithintegratinglargepenetrationsofwind

    energy,byKevinPorterofExeterAssociates,Inc.

    Developmentoffuturerenewableenergyscenariosandevaluationoftheeffectson

    transmissionreliability,byDavisPowerConsultants.

    ThefuturerenewablegenerationscenariosdevelopedbyDavisPowerConsultantswerecritical

    inputstotheanalysisdocumentedinthisreport.DataprovidedfromDavisPowerConsultants

    included:

    Detailedlistsofindividualrenewablegeneratingplantsandtheirsite/ratingforeach

    scenariostudied,consistentwithCaliforniasRenewablesPortfolioStandardgoals

    andlocationsofrenewableresources,and

    Powerflowdatasetswithconventionalgeneration,renewablegeneration,and

    transmissionsystembuildoutsforeachscenario,consistentwiththeprojected

    Californiapeakloadlevel.

    TheIntermittencyAnalysisProjectconsideredfourtypesofrenewablegenerationtomeet

    Californiasrenewableenergygoals:wind,solar,geothermal,andbiomass.Windandsolar

    generationareintermittent,astheirenergysourcesarenotdispatchable:

    Thepowerproducedbyawindplantvariesasafunctionofwindspeed.

    Thepowerproducedbysolargenerationvariesastheintensityofthesunlight.

    Geothermalandbiomassresourcesaredispatchableand,therefore,arenotintermittent

    generation.

  • 8/21/2019 __NERC_wind

    18/242

    2

    Fourscenarioswereanalyzed,asfollows:

    2006BaseCase

    o Existing2006transmissionsystemwithexistingmixofgeneration,including

    2,100megawatts(MW)ofwindand330MWofsolar.

    2010TehachapiCasewith20percentrenewableenergy(designated2010T)

    o 7,500MWwindand1,900MWsolarinCalifornia.

    o Includes4,200MWofnewandexistingwindgenerationatTehachapi,withnew

    500kilovolt(kV)transmissiontosupportit.

    2010AcceleratedCasewith33percentrenewableenergy(designated2010X)

    o 12,500MWwindand2,600MWsolarinCalifornia.

    o Assumesinteriminfrastructurewithmostofthe2020intermittentrenewablegeneration.

    2020Casewith33percentrenewableenergy

    o 12,700MWwindand6,000MWsolarinCalifornia.

    GeneralElectricEnergyConsultingevaluatedtheeffectofintermittentgeneration(windand

    solar)ontheoperationoftheCaliforniapowergrid.Theobjectiveswere:

    EvaluateCaliforniagridoperationwithincreasinglevelsofintermittentgeneration,

    uptotherenewablepolicylevelsofwindandsolarandusingthefourscenarios

    developedforthatpurpose.

    Identifyandquantifysystemperformanceandanyoperationalproblems(for

    example,loadfollowing,regulation,operationduringlowloadperiods).

    Identifyandevaluatepossiblemitigationmethods.

    Theevaluationcoveredtimescalesinvolvedingridoperationandincludedthefollowing

    specifictypesofanalysisforeachscenario:

    Statisticalanalysisofvariabilityduetosystemload,aswellaswindandsolar

    generationovertimeframes(hourly,5minute,1minute).

    ProductioncostsimulationsoftheCaliforniapowergridandtheWesternElectricity

    CoordinatingCouncil,usingtheMultiAreaProductionSimulationprogram,toevaluatehourbyhourgridoperationfor3yearswithdifferentwindandload

    profiles.

    Quasisteadystatesimulations,usingPositiveSequenceLoadFlowprogram,to

    evaluateminutebyminutetimesequencedpowerflowsfortheentireWestern

    ElectricityCoordinatingCouncilgridoverseveralhours,toquantifygrid

    performancetrendsandtoinvestigatepotentialmitigationmeasures.

  • 8/21/2019 __NERC_wind

    19/242

    3

    Theeffectofwindandsolarforecastingingridoperationsandunitcommitmentwerealso

    evaluated.

    Conclusions

    Twoscenarios(2010Tand2020)representedstepsonanexpectedtrajectorytomeetCalifornias

    renewablegenerationgoal.Theartificiallyaccelerated2010Xscenariowasdevelopedto

    increasesystemstressandrepresentsthemostchallengingstudycondition.However,the

    conclusionsandrecommendationspresentedinthissectionapplytoallscenarios,notjustthe

    mostchallenging.Theyareintendedtoenableconsistent,sustainedrenewablegrowththrough

    2020.

    The2010Xscenarioexaminedatotalof19,800MWofrenewablesinCalifornia,including

    12,500MWofwindgeneration,2,600MWofsolar,1,000MWofbiomass,and3,700MWof

    geothermal.Thisscenariorepresentsastressedconditiondesignedtotestthesystemwithmore

    renewablesthanprojectedfor2010.

    ThislevelofrenewablegenerationcanbesuccessfullyintegratedintotheCaliforniagridprovidedappropriateinfrastructure,technology,andpoliciesareinplace.Specifically,this

    successfulintegrationwillrequire:

    Investmentintransmission,generation,andoperationsinfrastructuretosupportthe

    renewableadditions.

    Appropriatechangesinoperationspractice,policy,andmarketstructure.

    Cooperationamongallparticipants,CaliforniaIndependentSystemOperator

    (CaliforniaISO),investorownedutilities,renewablegenerationdevelopersand

    owners,nonFederalEnergyRegulatoryCommissionjurisdictionalpowersuppliers,

    andregulatorybodies.

    Recommendations

    ThestudyscenariosrepresentstagesalongatrajectorytomeetCaliforniasrenewable

    generationgoal.Thefollowingrecommendationsareasetoftargets,actions,andpolicies

    designedtoensuresuccessfulintegrationofsignificantlevelsofintermittentrenewable

    generationthrough2020.Theimplementationoftheserecommendationsshouldproceedwith

    therenewablegenerationgrowth.Suchevolutionaryimprovementswillallowsecureand

    economicintegrationatallstagesalongtherenewablegenerationgrowthtrajectory.

    Thechallengeofaccommodatingsubstantialintermittentrenewablegenerationisincremental

    tothechallengeofservingexistingandnewload.Longtermplanningmustalwaysconsider

    requirementsforgenerationandtransmissionandstrikeanappropriatebalancebetweenthe

    two.Further,newconsiderationsspecifictorenewabletechnologiesmustbeincluded.Thus,the

    planningprocessmustconsiderthreemajorsystemcomponents:

    Generation

    Transmission

  • 8/21/2019 __NERC_wind

    20/242

    4

    RenewableTechnology

    Therecommendationspresentedbelowaregroupedaccordingly.

    Generation Resource Adequacy

    TheCaliforniaEnergyCommission,CaliforniaPublicUtilitiesCommission,andCaliforniaISO

    haveongoingprocessestoprovidethegenerationinfrastructurenecessarytomaintainreliableoperation.Theadditionofbothintermittentandnondispatchablerenewableresourcestothe

    Californiagridincreasestherequirementforgenerationresourceflexibility.Itisessentialthat

    thisrequirementforflexibilitybeincludedintheoverallassessmentandplanningforresource

    adequacy.Itisrecommendedthatspecificattributesofgenerationflexibilitybeinventoried,

    maintained,andincreased.Wherepossible,quantitativetargetsaresuggested;othersmaybe

    adoptedascircumstancesandunderstandingchanges.Toavoidrepetition,specificpolicyand

    technologyrecommendationsaregroupedwiththemostrelevantperformanceissue.However,

    manyrecommendationscouldapplytoabroaderrangeofperformancecategories.Further,

    noneoftherecommendationsareeitherselfsufficientormutuallyexclusive.Anappropriate

    combination

    of

    recommendations

    will

    be

    most

    successful.

    MinimumLoadOperation.TheCaliforniagridshouldtargetacombinationofinstategenerating

    resourcesandpowerexchangecapability/agreementswithneighboringsystemsthatallow

    operationdowntoaminimumnetload(loadminuswindminussolar)intherangeof

    18,000MWto20,000MW.Thesetargetswillmeetthelongterm(2020)needsofthesystemand

    allowforoperationwithminimalcurtailmentofintermittentrenewables.

    MinimumTurndown.Generatingresourceswithlowerminimumpoweroutputlevels

    providegreaterflexibilityandallowsuccessfuloperationatminimumload.New

    generatingresourcesshouldbeencouragedand/orrequiredtohavethiscapability;

    existinggenerationshouldbeencouragedand/orrequiredtoupgradetheircapability.

    Acomparisonoftheloadandnetload(loadwindsolar)forthevariousscenarios

    showsthatminimumsarelesswiththeintermittentgenerationonthesystem.The

    minimumsystemturndowncapabilitywilldeterminetheamountofrenewable

    generationcurtailmentthatisnecessary.Aminimumof20,000MWisexpectedtoresult

    incurtailmentduringafewhundredhoursperyearfortheexpectedgrowthtrajectory.

    DiurnalStart/Stop.Anotherwaytomeetminimumloadistoincreasetheamountof

    generationthatiscapableofreliablediurnalcycling.Thiswillbenefitthesystemby

    allowingthecommitmentofunitsthatareeconomicatpeakandshoulderloads,

    withoutrequiringtheirnoneconomicoperationatlightload.

    LoadParticipation.Activeparticipationbylargeloads,especiallypumps,isanotherway

    toassureadequateflexibility.ThepumpscontrolledbyCaliforniaDepartmentofWater

    Resourcesarealreadyparticipantsintheenergymarket,butadditionaltypesof

    participationandcooperationcouldincreaseoverallsystemflexibility.Forexample,

    additionalinvestmentinpumps,controls,orotherloadinfrastructuretotakeadvantage

    oflightloadenergypricingcouldbebotheconomicandeffective[8].

  • 8/21/2019 __NERC_wind

    21/242

    5

    Californiashouldexploreothermeanstoencourageloadshiftingtowardlightload

    conditions.Variousloadshiftingandstoragetechnologies,suchascoldstorage(for

    example.forbuildingcoolingorinletaircoolingforgaspeakinggeneration)hold

    promiseandmayprovetobeeconomic.Arrangementsthatgivethegridoperator

    controloverloadsforacontractualconsiderationorratereductionwillbemore

    attractiveaspenetrationofintermittentrenewablesincreases.

    PumpedStorageHydro.Useofpumpedstoragehydrofacilitieswasshowntoincreasefor

    thescenariosexamined.Theinfrastructureandpolicynecessarytoallowthebestuseof

    existingpumpedstoragehydrowithinCaliforniashouldbeenhanced.Additional

    pumpedstoragehydrocapabilitycouldalsoenhancesystemschedulingflexibilityand

    willlikelyaidotherflexibilityattributesdiscussedbelow.Thisisparticularlytruewhen

    conventionalhydroflexibilityislow,duetounusuallyhighrunoffconditions.

    HourlyScheduleFlexibility.TheCaliforniagridshouldtargetacombinationofinstategenerating

    resourcesthatprovideaminimumlevelofschedulingflexibility.Theanticipatedloadgrowth

    to2020willdrivetheoverallsystemflexibilityneedsfromthepresentlevelofabout4,300megawattsperhour(MW/hr)toabout6,000MW/hr.Theadditionalvariabilityand

    uncertaintyassociatedwithintermittentrenewableswillincreasetheamplitudeofsustained

    loadramps(bothupanddown),andthefrequencyofgenerationstartsandstops.Forthe

    expectedrenewablesgrowthtrajectory(2010T,2020),theoverallhourlyflexibilityrequirement

    isexpectedtobeabout130MW/hrgreaterthanthatrequiredforloadalone.Underthe

    artificiallyacceleratedrenewableexpansionofthe2010Xscenario,thatincrementalrequirement

    isabout400MW/hr.

    Duringlightloadconditions,totalrequirementsaresmaller,buttherelativeimpactof

    intermittentrenewablesislarger.Theanticipatedloadgrowthto2020willdrivethelightload

    systemflexibilityneedsfromthepresentlevelofabout2,000MW/hruptoabout3,000MW/hr.

    Fortheexpectedrenewablesgrowthtrajectory(2010T,2020),thehourlylightloadflexibility

    requirementisexpectedtobeabout1,000MW/hrgreaterthanthatrequiredforloadalone.

    HydroScheduling.Conventionalhydroelectricgenerationplaysakeyroleinlightload

    scheduleflexibilityaswellasloadfollowingandregulation.Economicoperationwillbe

    enhancedbyhighhydroflexibility.Existingflexibilityshouldbemaintainedatleast,

    andinvestmentstoincreasemaneuverabilityshouldbeconsidered.Adocumented

    inventoryofcapabilityisimportant.Californiashouldperiodicallyexaminetheamount

    andtypeofhydroconstraints,andevaluateinvestmentsorcontractualmechanismsfor

    costeffectivereliefofthoseconstraints.

    FasterStart/Stop.Uncertaintiesinforecastscreateasomewhatdifferentflexibility

    requirement.Evenwithstateoftheartwindforecasting,bothdayaheadandhour

    aheadnetloadforecastuncertaintieswillincreaseduetointermittentrenewables.With

    anincreasedriskofanactualnetloadsignificantlydifferentfromtheforecastnetload,

    shortnoticestart/stopcapabilityduringdailyoperationwillbeanimportantpartofthe

    redispatchneededtobalancegenerationandload.TheCaliforniagridshouldtarget

  • 8/21/2019 __NERC_wind

    22/242

    6

    sufficientinstategeneratingresourcecapabilitytomeetdayaheadforecasterrorsinthe

    rangeof5,000MWofgenerationcapacityandhouraheadforecasterrorsintherange

    of2,000MWofgenerationcapacity.Overall,thisrepresentsaboutdoublethepresent

    levelofdayaheadloadforecasterrorandabout20percentmorethanthepresenthour

    aheadloadforecasterror.

    Duringlighterloadperiods,thenetloadforecasterrormaybethreetimestheload

    aloneforecasterrorinthedayaheadforecast.Thetargetsrecommendedabovewillalso

    besufficientforlightloadconditions.

    MultiHourScheduleFlexibility.Flexibilitytargetsshouldalsoaddressperiodsofsustainedload

    increasesanddecreases.TherecommendedtargetsarefortheCaliforniagridtohaveenough

    resourcestomeetamaximummorningloadincreaseof12,000MWoverthreehoursanda

    maximumeveningloaddecreaseof14,000MWoverthreehours.Thisrepresentsanincreaseof

    about1,000MWoverthecapabilityneededtomeettheloadalone.

    LoadFollowingCapability.TheCaliforniagridshouldtargetacombinationofinstategenerating

    resourcesthatprovideaminimumlevelofgenerationrampingcapability,bothupanddown.

    Onaverage,thesystemshouldmaintainontheorderof+/130MW/minuteforaminimumof5

    minutes.Thisisabouta10MW/minuteincreaseovertherequirementduetoloadalone.

    Duringlightloadconditions,approximately70MW/minuteofdownloadfollowingcapability

    arerequired.Uploadfollowingrequirementsarelower.Theloadfollowingcapabilityshould

    besubjecttoeconomicdispatchfromthesystemoperators.Loadfollowingdutyshouldnotbe

    shiftedtounitsprovidingregulation.

    Import/ExportScheduling.TheCaliforniagridshouldrecognizethateconomic

    incorporationofsubstantialinstaterenewableswillinevitablyinvolvesignificant

    displacementofimportedenergy.Regulatoryandcontractualarrangementsforimports

    andexportsshouldbestructuredsuchthatthevalueofschedulingflexibilityis

    recognized,allowed,andappropriatelycompensated.Inparticular,Californiashould

    allowschedulechangestooccurmorefrequentlyandattimesotherthanonthehour.

    RegulationCapability.TheCaliforniagridshouldtargetacombinationofinstategenerating

    resourcesthatprovideaminimumlevelofregulationcapability.TheCaliforniaISOcurrently

    procuresregulationintherangeof300MWto600MW.Theprocuredamountvaries

    substantiallyoverallloadlevels.Theimpactofintermittentrenewablesonregulation(20MW)

    isconsiderablylessthanthenormalvariabilityintheamountprocured.However,regulation

    resourceswillcontinuetobeimportant.Therefore,theCaliforniagridshouldatleastmaintain

    thecurrentlevelofregulationcapability.Thislevelofregulationshouldallowthestateto

    continuetosatisfytheirregulatoryobligationsforinterchangeandfrequencycontrol,suchas

    theNorthAmericanElectricReliabilityCouncilControlPerformanceStandard2compliance

    shouldbecontinuallyscrutinizedasintermittentrenewablesareaddedtothegridtorefine

    regulationrequirementsandprocurement.

  • 8/21/2019 __NERC_wind

    23/242

    7

    RegulationTechnologies.Californiashouldconsiderusingtechnologiesbeyond

    conventionalgenerationtoprovideregulation.Theearlierdiscussionaboutload

    participationinscheduleflexibilityapplieshereaswell.Functionalrequirementsfor

    loadstoprovideregulationaredifferentfromthoseforgeneration.Givenasuitable

    regulatoryandmarketstructure,however,itislikelythatothertechnologiesand

    participantswillemergetoprovidetherequiredservices.Examplesincludesometypes

    ofstoragetechnology,suchasvariablespeedpumpedhydroandthelatestflywheel

    energystoragesystems.Policyandmarketstructureshouldencouragediversityof

    participantsinprovidingancillaryservices,andtechnicalspecificationsforperformance

    shouldbesufficientlyflexibletoallowtheintroductionofnewtechnologies.

    NonTechnicalResourceAdequacyConsiderations.Theprecedingrecommendationswereaimedat

    securingthetechnicalcapabilitiesnecessaryforsuccessfulintegrationofintermittent

    renewables.Thefollowingitemsaddresspolicyandcommercialconsiderations.

    MarketDesign.Itmustberecognizedthatwhileoperationalflexibilityisvaluabletothe

    grid,itcurrentlyholdslittleattractionforpowersuppliers.Deeperturnback,morerapidcyclingandloadfollowing,andmorefrequentstartsandstopsallimpose

    significantcostsandrevenuereductionsonthesuppliers.Marketandregulatory

    structuresmustrecognizethevalueoftheseflexibilityfeatures.Policychangesmay

    includeacombinationofexpandedancillaryservicesmarkets,incentives,and

    mandates.

    ContractualObligations.Muchoftheanalysispresentedinthisreportisbasedonthe

    presumptionthatthegridisoperatedrationallythatis,theavailablegeneration

    resourcesareusedasefficientlyandeconomicallyaspossible.Theanalysisdidnot

    includehistoricalconstraints,suchaslongtermcontractualobligations,thatforcethe

    systemtorunlessefficientlythanpossible.Newcontractsunderconsideration,existing

    longtermcontractsupforrenewal,orindeedanyexistingcontractsthatcouldbe

    renegotiatedshouldbereviewedwithalloftheprecedingresourceadequacy

    recommendationsinmind.TheCaliforniagridmustmaintainoperationalflexibility,

    andtodoso,itmusthavenotonlythephysicalresourcesnecessary,butalsothe

    businessandcontractualarrangementsnecessarytoenabletherationaluseofthose

    physicalresources.

    Retirements.Generatingplantretirementsthatwerefirmlyscheduledwhenthe

    databaseswereassembledwereincorporatedintothisstudy.However,increased

    competitionfromnewresources,renewableorotherwise,willtendtopushmarginally

    profitablegeneratingresourcesoutofbusiness.Suchspeculative,economicretirements

    werenotconsideredinthestudy.Successfulimplementationoftherecommendations

    abovewillensurethatresourceswiththenecessaryflexibilityareavailable.Inaddition,

    itisrecommendedthatretirementsbeprojected,monitored,andevaluatedduringthe

    resourceplanningprocess.

  • 8/21/2019 __NERC_wind

    24/242

    8

    Inventory.Duringthisstudy,itwasnotedthatgeneratorcharacteristicsandcapabilities

    (forexample,minimumturndown,rampratecapability)werenotalwaysknownwith

    sufficientdetailorcertainty.Somedegreeofuncertaintyisinevitable.However,with

    theincreasedneedforresourceflexibility,Californiashouldimplementaprogramto

    measure,verify,andcataloguetheflexibilitycharacteristicsofthegenerationresources.

    AprogramsimilartotheWesternElectricityCoordinatingCouncilgeneratordynamic

    testingmightprovesuitable.

    Transmission Infrastructure

    TheadditionofthousandsofMWofnewgenerationofanyvarietywillrequireexpansionof

    thetransmissionsystem.Thisstudyincludedtheadditionofenoughbulktransmission

    necessaryforconnectionofthenewrenewablestothegridasdeterminedanddocumentedby

    DavisPowerConsultants[6].However,itwasnotadetailedtransmissionstudyandisnota

    substituteforone.Policiesmustrecognizethatlocalproblemsmightdevelop,andenablethe

    necessarytransmissionadditions.Practiceandpolicythatcorrectproblemsandstrikeabalance

    betweeninfrastructureinvestmentandcongestionarenecessary.Toanappreciableextent,this

    observationholdsforalltransmissionplanningandallgenerationadditions.Californiacan

    economicallybenefitfromchangesinplanningandoperationofthetransmissioninfrastructure

    byrecognizingthelocationalandvariablenatureofintermittentrenewables.Thefollowing

    recommendationsarespecifictotheseneeds.

    ExistingConstraints.Californiahasexistinginfrastructurethatcontributessubstantiallytothe

    secureandeconomicoperationofthegridwithhighlevelsofintermittentrenewables.Insome

    circumstances,theuseofthatinfrastructureforsystemwidebenefitisconstrainedbylocal

    transmissionlimitations.OneexampleofsuchaconstraintistheoccasionalinabilityofHelms

    pumpedstoragehydrotoreachfullpumpingpower.Planningandpolicyshouldrecognizeand

    enable

    correction

    of

    such

    local

    limitations.

    RatingCriteria.Windgenerationisvariable,andthespatialdifferencesbetweenplants

    substantiallyeffectsthecoincidentproductionofpowerfromthoseplants.Clearly,awindplant

    willreachratedoutputformanyhoursperyear.Thus,normalplanningcriteriarequires

    sufficientcapability,suchasthermalrating,onthetransmissioninterconnectiondedicatedto

    thatplanttoaccommodateratedpoweroutput.

    However,asmorewindplantsvieforaccesstospecifictransmissioncorridors,itwillbe

    increasinglyunlikelythatallwindplantswillsimultaneouslyreachtheirmaximumoutput.

    Notethatinthreeyearsofdata,allwindplantsinthisstudyneversimultaneouslyreached

    maximumoutput.Andthe12,500MWofwindgenerationexceeded10,000MWofproduction

    lessthan1percentofthetime.Thus,transmissionplanningtoaccommodatemultiplewind

    plantsshouldconsidertheirspatialdifferencesandthestatisticalexpectationofsimultaneous

    highpoweroutputlevels.Plantsclosetogetherwillgenerallyrequiretransmissioncapability

    equivalenttotheaggregateratingoftheplants.Plantsthatarefartherapartmayrequireless

    transmissioncapability.Hence,itisnotnecessarytoguaranteesufficientratingonthebulk

    transmissioninfrastructuretoaccommodateallwindprojectsatfulloutput.Existingcriteria

    shouldbesufficienttoprovidethisplanningflexibility.

  • 8/21/2019 __NERC_wind

    25/242

    9

    Technology.Policyshouldrewardinvestmentintechnologytomaximizeuseoftransmission

    infrastructureforrenewables.Suchpoliciesshouldrecognizethatwindgenerationisa

    relativelypoorresourceforcapacityandthatcreativeuseoftechnologymayoptimizeuseof

    transmission.Regulatoryandcontractualpracticeshouldallowtechnologiessuchasrealtime

    lineratings,controlsthatmanageoutputfromintermittentrenewableresources,localshort

    termforecasting,andothernonstandardapproachestobalancerenewableenergydelivery

    withtransmissioninfrastructurecosts.

    Renewable Generation Technology, Policy, and Practice

    Withsignificantlevelsofintermittentrenewablegeneration,operationmaybechallengingat

    extremelylightloadlevels,underaconstrainedtransmissiongrid,orwithhighwindvolatility.

    Undertheseconditions,renewablegenerationmustparticipateinoverallgridcontrol.The

    followingrecommendationsarespecifictorenewabletechnologyandareaimedatassuringthat

    intermittentrenewablesplayanactiveandpositiveroleinthesecureandeconomicoperationof

    thegrid.

    Curtailment.Undertherareoccasionsofcoincidentminimumload,highwindgeneration,andlowconventionalhydroflexibility,itmustbepossibletocurtailintermittentrenewables.The

    gridoperatorshouldhavetheabilitytoordersuchareductioninproduction.Regulatoryand

    contractualarrangementsforintermittentrenewablesshouldbestructuredsuchthat

    curtailmentsarerecognized,allowed,andappropriatelycompensated.Rampratecontrols

    couldalsobeconsidered.

    AncillaryServices.Intermittentrenewablesmaybeabletoprovideancillaryservicesthatare

    bothvaluableandeconomicundersomeoperatingconditions.Forexample,windgeneration

    canprovidefrequencyregulation.Suchfunctionalityisarequirementinsomeregions[10].

    Regulatoryandcontractualarrangementsforintermittentrenewablesshouldbestructuredsuch

    thatprovidingsuchservicesarerecognized,allowed,andappropriatelycompensated.

    Forecasting.SuccessfulandeconomicoperationoftheCaliforniagridrequireswindandsolar

    forecasting.Thisstudyverifiedsubstantialbenefitsfromtheuseofstateoftheartdayahead

    forecastingintheunitcommitmentprocess.Substantialbenefitsareexpectedforimprovements

    inbothlongerterm(multiday)andshortterm(hoursandminutesahead)forecasting.

    Investmentandpolicymustencouragedevelopmentofhighfidelityintermittentrenewable

    forecastingforallintermittentrenewablegenerationinthestate.

    Monitoring.Thewindproductionprofilesusedinthisstudyarebasedonhistoricalweather

    dataandsophisticatedcomputermodels.Recordeddatafromrealoperatingexperiencewillbe

    invaluableinrefiningoperatingpractice,performance,andflexibilityrequirements.Timesynchronizedproductionandmeteorologicaldatafrommanyplantswillprovidevalidationor

    correctionofthetrendsandresultspredictedbythisstudy.Theywillshowthebenefitsand

    limitationsofspatialdifferences,mesoscalemodeling,andvariouswindplantcontrols.Itis

    recommendedthatCaliforniacontinueandexpand,asnecessary,programstomonitor,analyze,

    anddisseminateperformanceinformationregardinggridoperationsandplanningfor

    intermittentrenewables.

  • 8/21/2019 __NERC_wind

    26/242

    10

    ThetargetedlevelsofrenewablegenerationcanbesuccessfullyintegratedintotheCalifornia

    gridprovidedappropriateinfrastructure,technology,andpoliciesareinplace.

  • 8/21/2019 __NERC_wind

    27/242

    11

    1.0 Introduction

    Californiahasoneofthemostdiverseelectricitysupplysystemsinthenationwithalarge

    potentialtogenerateelectricityfromrenewablesources,suchaswind,geothermal,biomass,

    hydroelectricandsolar.WithprogressiverenewablepoliciesasintheRenewablesPortfolio

    Standard

    (RPS)

    and

    state

    Energy

    Action

    Plan

    [1],

    the

    challenge

    facing

    the

    state

    will

    be

    how

    best

    tointegrateandmanagerenewableenergyresourceswithtraditionalgenerationwhileensuring

    areliableelectricitysystem.

    1.1. Challenges

    Withpolicytargetsof20%renewableenergyby2010and33%by2020,afewofthemain

    challengesfacingthestateinclude:

    Buildingsufficienttransmissioninfrastructuretosupportandsustainthe

    developmentenvisionedfor2020

    Balancingtheneedtointegrateincreasinglevelsofrenewableenergywhile

    minimizingadverseimpactsonthesurroundingenvironment

    Developingtoolswiththeindustrytoproperlyintegratevariablerenewable

    resourcesincludingwindandsolar

    1.2. Background

    TheIntermittencyAnalysisProject(IAP)soughttoaddressthefollowingquestions:

    Whataretheimpactsofincreasingrenewableenergyprojectsonsystemreliability

    anddispatchability,withaparticularfocusonwindandsolarenergy?

    Whatwillthefuturesystemlooklikeandwherewilltheresourcescomefrom?

    Howwillthefuturegridneedtorespond?Willitrespondbymarketstructure,

    services,ortechnologies?

    TheIAPwastailoredtopresentastatewideperspectiveofthetransmissioninfrastructureand

    servicesneededtoaccommodatetherenewablepenetrationlevelsdefinedinthestates

    renewableenergypolicy.TheIAPwastechnicalinnatureandwasintendedtoprovideayear

    2020perspectiveonpotentialoperationalneedsandimpactstomeetfuturegrowthand

    demand.Asaresult,certainassumptionsweremadeontechnologyavailability,system

    conditionsandconstraints,aswellasmarketconstraints.

    Inthisproject,powerflowandproductioncostmodelingwereconductedtoestablishthe

    operationalbaselineoftheCaliforniagridasof2006andtodeveloptherenewableresource

    mixesforthe2010and2020scenarios.Renewableportfoliomixesaswellasthetransmission

    neededtointerconnecttheresourceswereevaluatedinthescenariosbasedonatransmission

    benefitcriteria.ThemodelingbuiltandexpandedonpreviousCaliforniaEnergyCommission

    (EnergyCommission)fundedtransmissionstudiesthatfocusedonconnectingstatewide

    renewableresourcepotentialandtheassociatedtransmissionconsiderations.

  • 8/21/2019 __NERC_wind

    28/242

    12

    ThisprojectbuiltuponworkthatwascompletedfortheEnergyCommissionaspartofthe2005

    IntegratedEnergyPolicyReport(IEPR)process[2].Moreinformationmaybefoundrelatedto

    IEPRontheCommissionwebsite(www.energy.ca.gov).TheIAPeffortleveragedwork

    conductedbytheCaliforniaWindEnergyCollaborative(CWEC)[3],theConsortiumfor

    ElectricReliabilityTechnologySolutions(CERTS)[4],andtheStrategicValueAnalysis(SVA)

    workbyDavisPowerConsultants(DPC).UndertheSVAproject,PublicInterestEnergy

    Research(PIER)andDPCassessedtheavailabilityofrenewableresourcesanddefinedan

    approachthatminimizestransmissioninfrastructurechangesandmaximizesbenefitsfor

    integratingrenewablesontotheCaliforniagridbyavoidingcongestion.Availabilityofinter

    stateandintrastaterenewableresourcesandtransmissionrequirementswerealsomodeled

    usingtheSVAapproachtoalleviate,oratleastminimize,transmissionconstraints[5].

    1.3. Intermit tent Generation Defin ition

    TheIAPconsideredfourtypesofrenewablegenerationtomeetCaliforniasrenewableenergy

    goals;wind,solar,geothermal,andbiomass.Windandsolargenerationareintermittent,as

    theirenergysourcesarenotdispatchable:

    Thepowerproducedbyawindplantvariesasafunctionofwindspeed

    Thepowerproducedbysolargenerationvariesastheintensityofthesunlight.

    Geothermalandbiomassresourcesaredispatchable,andthereforearenotintermittent

    generation.

    1.4. Overview of Project Objectives, Tasks and Participants

    ThisreportdocumentsthelaststageofthemultistageIAP.Precedingstagesincluded:

    Evaluationofpast,present,andfuturewindturbinetechnologies,andtheirimpact

    ontransmissionsystemoperationandperformance,byBEWEngineering,Inc.

    Assessmentofworldwideexperiencewithintegratinglargepenetrationsofwind

    energy,byKevinPorterofExeterAssociates,Inc.

    DevelopmentoffuturerenewableenergyscenariosconsistentwithCaliforniasRPS,

    andevaluationoftheimpactsontransmissionreliability,byDavisPower

    Consultants(DPC).

    ThefuturerenewablegenerationscenariosdevelopedbyDPCwerecriticalinputstothe

    analysisdocumentedinthisreport.Figure1isaflowchartshowingthemajortasksthat

    assessedgridimpactsandmitigationmethodsforintermittency,aswellasthetasksthat

    producedthescenariosanddatanecessaryforthatanalysis.DPCassessedthepotentialforfuturerenewableresources(wind,solar,geothermal,biomass)anddevelopedaseriesof

    scenarioswithincreasinglevelsofrenewablegeneration,consistentwiththegoalsofthe

    CaliforniaRPS.AlloftherenewablegenerationwaslocatedinsideCalifornia.TheDPCteam

    alsodevelopedcorrespondingtransmissionexpansionplansforeachrenewablegeneration

    scenario.

  • 8/21/2019 __NERC_wind

    29/242

    13

    Thus,theresultsoftheDPCtaskincludedthefollowingforeachscenario:

    Detailedlistofindividualrenewablegeneratingplantsandtheirsite/rating,

    consistentwithCaliforniasRPSgoalsandlocationsofrenewableresources,and

    Powerflowdatasetswithconventionalgeneration,renewablegeneration,and

    transmissionsystembuildoutsconsistentwiththeprojectedCaliforniapeakloadlevel.

    Thescenariosare:

    2006BaseCase

    o Existing2006transmissionsystemwithexistingmixofgeneration,including

    2,100megawatts(MW)ofwindand330MWofsolar.

    2010TehachapiCasewith20%renewableenergy(designated2010T)

    o 7,500MWwindand1,900MWsolarinCalifornia.

    o Includes4,200MWofnewandexistingwindgenerationatTehachapi,withnew

    500kilovolts(kV)transmissiontosupportit.

    2010AcceleratedCasewith33%renewableenergy(designated2010X)

    o 12,500MWwindand2,600MWsolarinCalifornia.

    o Assumesinteriminfrastructurewithmostofthe2020intermittentrenewable

    generation.

    2020Casewith33%renewableenergy

    o 12,700MWwindand6,000MWsolarinCalifornia.

    CompleteresultsofthisportionoftheIAParedocumentedinthereportIntermittencyImpacts

    ofWindandSolarResourcesonTransmissionReliability,byDavisPowerConsultants[6].

  • 8/21/2019 __NERC_wind

    30/242

    14

    Powerflow Data and

    Renewable Generation Mix

    for 4 Study Scenarios

    (from DPC)

    Wind Power Profiles(from AWST)

    Solar Power Profiles

    (from multiple sources)

    Load Profiles and

    Historical Operation Data

    (from CAISO)

    Analysis of Impacts

    on

    Grid Operations

    Statistical Analysis

    Quasi-Steady-State

    Simulations

    Production Cost

    Simulations

    Conclusions and

    Recommendations

    Evaluation of Potential

    Mitigation Methods

    Renewable Resource

    Potential and Availability

    Assessment

    (by DPC)

    Transmission

    Assessment

    Development of Study Scenarios(by DPC Team)

    Analysi s of Grid Impacts and Mi tigat ion Methods(by GE Energy Consu lting Team)

    Figure 1. Flowchart o f Intermittency Analysis Project.

    Note:AWST=AWSTruewind,LLC.;CAISO=CaliforniaIndependentSystemOperator;

    GEEnergy=GeneralElectricEnergyConsulting.

    GeneralElectricEnergyConsulting,(GE)evaluatedtheimpactofintermittentgeneration(wind

    andsolar)ontheoperationoftheCaliforniapowergrid.Theobjectiveswere:

    EvaluateCaliforniagridoperationwithincreasinglevelsofintermittentgeneration,

    uptotherenewablepolicylevelsofwindandsolarandusingthefourscenarios

    developedforthatpurpose.

    Identifyandquantifysystemperformanceandanyoperationalproblems(e.g.,load

    following,regulation,operationduringlowloadperiods).

    Identifyandevaluatepossiblemitigationmethods.

    Theevaluationcoveredmultipletimescalesinvolvedingridoperation,asillustratedinFigure

    2,andincludedthefollowingspecifictypesofanalysisforeachscenario:

    Statisticalanalysisofvariabilityduetosystemload,aswellaswindandsolar

    generationovermultipletimeframes(hourly,5minute,1minute).

  • 8/21/2019 __NERC_wind

    31/242

    15

    ProductioncostsimulationsoftheCaliforniapowergridandtheWesternElectricity

    CoordinatingCouncil(WECC),usingGeneralElectricsMultiAreaProduction

    Simulation(GEMAPSTM)program,toevaluatehourbyhourgridoperationfor3

    yearswithdifferentwindandloadprofiles.

    Quasisteadystatesimulations,usingPositiveSequenceLoadFlow(PSLF)program,

    toevaluateminutebyminutetimesequencedpowerflowsfortheentireWECCgrid

    overseveralhours,toquantifygridperformancetrendsandtoinvestigatepotential

    mitigationmeasures.

    Theimpactofwindandsolarforecastingingridoperationsandunitcommitmentwerealso

    evaluated.

    Thisreportpresentstheresultsofthatanalysis,aswellasconclusionsandrecommendations

    drawnfromtheresults.

    1.5. Participants

    Inconductingthisproject,GEEnergyConsultingcollaboratedwithseveralotherorganizationsonthefollowingessentialtasks:

    AWSTrueWindwindprofiledataforexistingandfuturewindgenerationsites[7]

    RumlaproductioncostmodeldatafortheCaliforniapowergridandWECC.

    CaliforniaIndependentSystemOperator(CaliforniaISO)loadprofilesand

    historicaloperationdatafortheCaliforniapowergrid.

    Solardatawasobtainedfrommultiplesources,includingCaliforniaISO,the

    UniversityofCaliforniaatDavis,theNationalRenewableEnergyLaboratory

    (NREL),StirlingEnergySystems,theCaliforniaPublicUtilitiesCommission(CPUC)

    SelfGenerationIncentiveProgram,andAtmosphericResearchScienceCenterattheStateUniversityofNewYorkatAlbany.

    GEEnergyConsultinggratefullyacknowledgesthevaluablecontributionsofallofthese

    organizations.Thisprojectcouldnothavebeenperformedwithoutthem.

  • 8/21/2019 __NERC_wind

    32/242

    16

    U n i t C o m m i t m e n tan d

    Day-AheadS chedu l i ng

    Load Fo l l ow i ng(5 Minu te D ispatch)

    F r equency and

    Tie-L ine Regu la t i on(AGC)

    Day-ahead andMul t i -Day

    Fo r ecas t i ng

    Faster(seconds)

    TimeFrame

    Slower(Y

    ears)

    Plann ing and

    Opera t ion ProcessT e c h n o l o g y

    Issues

    H our - A headFo r ecas t i ng

    a n dP lant Ac t i ve Pow erM aneuve r ing and

    M anagem en t

    R esou r ce and

    Capac i t y P lann ing

    (Rel iabi l i ty)

    Unit Dispatch

    0

    100

    200

    300

    400

    500

    600

    700

    0 2000 4000 6000 8000

    Hour

    MW

    Real -T ime andA u to n o m o u s Pro tec t io n

    and C on t r o l Func t i ons(AGC, LVR T, PSS,Govern or , V -Reg, e t c . )

    Capac i t y Va luat i on(UCAP, ICAP)

    an dLong - Te r m Load

    G r ow t h Fo r ecas t ing

    2001 Average Load vs Average Wind

    0

    5,000

    10,000

    15,000

    20,000

    25,000

    30,000

    1 6 11 16 21

    Hour

    NYISOLoad(MW)

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    WindOutput(MW)

    J u ly lo ad A u g u s t l o ad Se p te m b e r lo ad

    J u ly w in d A u g u s t w in d Se p te m b e r w in d

    0

    50 0

    1 0 0 0

    1 5 0 0

    2 0 0 0

    2 5 0 0

    3 0 0 0

    1 6 1 1 2 1

    M i n u t e s

    MW

    S ep tem be r M or ni ng A u gu s t Mo rn in g M ay Ev e nin g O ct ob er Ev e nin g A pr il A f te rn oo n

    1 Year

    1 Day

    3 Hours

    10 Minutes

    Figure 2. Time Scales for Grid Planning and Operations.

    UCAP=uniformcapacity,ICAP=installedcapacity,AGC=automatedgeneratorcontrol,

    LVRT=lowvoltageridethrough,PSS=powersystemstabilizer,VReg=voltageregulation

  • 8/21/2019 __NERC_wind

    33/242

    17

    2.0 Study Approach

    Theoverallstudyapproachisoutlinedinthissection.Thestudyscenarios,typesofanalysis,

    dataprovided,andterminologyarealldescribedbelow.

    2.1. Study ScenariosTherenewablegenerationmixforeachofthefourstudyscenariosissummarizedinTable1.

    Thevariousscenarioscanbedescribedintermsofincreasinglevelsofrenewablegeneration

    penetration.Butthedefinitionofpenetrationcanbeconfusing.ManyRenewablePortfolio

    Standards(RPS)usepenetrationtodescribethepercentofenergytobeprovidedbyallofthe

    renewablegeneration,includingwind,solar,geothermal,biomassandsometimeshydroelectric.

    TheenergytargetsdiscussedintheIAPfallintothiscategorywith20%penetrationby2010

    and33%penetrationby2020.Theenergydefinitionisimportantbecauseitisameasureof

    theamountoffossilfuelgenerationthatcanbedisplaced.However,intheanalysisof

    intermittentgenerationthetermpenetrationisoftenusedtodescribetheratioofthenameplate

    capacityofintermittentgeneration(windandsolar)dividedbythepeakloadofthesystem.Thisis

    becausetheimpactonoperationsisoftenafunctionoftheintermittentrenewablepoweroutput

    relativetothesystemload.Bothdefinitionsareimportantandbothwillbeusedwithinthis

    report.

    In2006,theStateofCaliforniahadapeakloadof58,900MW,ofwhich48,900MWwaswithin

    theCaliforniaISOoperatingarea.Therewas2,100MWofwindand330MWofsolar

    generation,yielding4%intermittentgenerationpenetration(as%ofpeakload)statewideand

    5%penetrationwithinCaliforniaISO.

    Case2010Trepresentsafuturescenariofortheyear2010,withatotalof7,500MWofwindand

    1,900MWofsolargenerationinCalifornia.Inthisscenario,theintermittentgenerationpenetrationis15%statewideand18%withintheCaliforniaISOoperatingarea.Thisscenario

    includesover3,000MWofnewwindgenerationintheTehachapiregion,whichisconsistent

    withexistingdevelopmentplans.Forthisstudy,theTehachapiregionwasbroadlydefinedto

    includeallwindgenerationinregion8(fordetailsseetheAWSTruewindreport,[7]).

    Case2020representsafuturescenarioforyear2020with33%renewableenergy,consistentwith

    theCaliforniaRPSgoal.Itincludes12,700MWofwindand6,000MWofsolargeneration,

    yieldinganintermittentpenetrationof25%inCaliforniaand31%withinCaliforniaISO.

    Case2010Xrepresentsanacceleratedscenariowhere33%renewableenergyisintegratedintoa

    transmission

    system

    similar

    to

    what

    is

    anticipated

    for

    the

    year

    2010.

    Although

    this

    scenario

    is

    notarealisticprojectionofrenewableintegrationforyear2010,itprovidesvaluableinsights

    relativetotheimpactofintermittentgeneration.The2020scenarioincludesnumeroussystem

    expansionassumptionstoaccommodateaprojectedpeakloadof74,300MW,includingnew

    transmissionlinesandconventionalgeneratingresources.The2010Xscenario,withapeakload

    of62,600MW,doesnotincludethoseextensivegenerationandtransmissionadditions.Assuch,

    gridperformanceofthe2010Xscenariocanbedirectlycomparedwithscenarios2010Tand

    2006.Theprimarydifferencesbetweenthesescenariosarethelevelsofintermittentgeneration.

  • 8/21/2019 __NERC_wind

    34/242

    18

    Similarcomparisonswiththe2020scenarioaremoredifficulttointerpret,sincedifferencesare

    notlimitedtointermittentgeneration,butalsoincludesignificantdifferencesinconventional

    generation,loadlevel,andtransmissionsysteminfrastructure.

    Table 1. Renewable Generation Mix for Four Study Scenarios.

    Scenario2006 2010T 2010X 2020

    California Peak Load, MW 58670 64336 64336 80742

    California Minimum Load, MW 22804 25006 25006 31383

    California Load Factor, % 60% 60% 60% 60%

    California ISO Peak Load, MW 48466 53147 53147 66700

    California ISO Minimum Load, MW 19066 20908 20908 26239

    California ISO Load Factor, % 61% 61% 61% 61%

    Total Geothermal Capacity, MW 2,400 4,100 3,700 5,100

    Total Biomass Capacity, MW 760 1,200 1,000 2,000

    Total Solar Capacity, MW 330 1,900 2,600 6,000

    Total Wind Capacity, MW 2,100 7,500 12,500 12,700Wind Capacity in Tehachapi Region, MW 760 4,200 5,800 5,800

    CA Wind+Solar Capacity Penetration, % 4% 15% 23% 23%

    California ISO Wind+Solar Capacity Penetration,% 5% 17% 26% 25%

    California ISO Wind+Solar Energy, GWH 6201 26,111 43,255 49,933

    California Wind+Solar Energy, GWH 6201 27,220 44,365 51,042

    CA Wind+Solar Energy Penetration, % 2% 8% 13% 12%

    California ISO Wind+Solar Energy Penetration, % 2% 9% 15% 14%

    Notes: LoadFactor=(TotalEnergy)/(PeakLoadx8760hours)

    CapacityPenetration=(Wind+SolarCapacity)/(PeakLoad)

    EnergyPenetration=(Wind+SolarEnergy)/(PeakLoadxLoadFactorx8760hours)

    Thewindandsolargenerationresourcesinthisstudyaredistributedamongnumeroussites

    acrossCalifornia.Table2summarizesthenumbersofindividualwindandsolarsites

    representedineachscenario.Forexample,the2010Tscenarioincludes12concentratingsolar

    facilities,136photovoltaicgenerationsites,and98windgeneratingplants,40ofwhicharein

    theTehachapiregion.The2020scenarioincludes43concentratingsolarfacilities,228

    photovoltaicgenerationsites,and147windgeneratingplants.Detailedlistsofindividualwind

    generationandsolargenerationsitesforeachscena