+ All Categories
Home > Documents > NETL 2014 Multiphase Conference

NETL 2014 Multiphase Conference

Date post: 01-Jun-2018
Category:
Upload: khairy-elsayed
View: 215 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/9/2019 NETL 2014 Multiphase Conference

    1/26

    1

    Non-intrusive Uncertainty Quantification for

    Reacting Multiphase Flows in Coal Gasifiers

    Performance Measures x.x, x.x, and x.x

    Aytekin Gel1! Mehr"a" #hahna$1

    Arun %& #u'ra$aniyan( )or"an Musser 1

    )ean-Fran*ois +ietiker 1,

    1. National /nergy 0echnology a'oratory Morgantown 23 U&A&

    !. A4/M5 Consulting C 4hoeni6 A7

    (. G/ Glo'al Research Center

    N8 ,. 2est 3irginia University Research Corporation 23

    !91, N/0 Multiphase Flow #cience Conference

    Morgantown 23

    August :-; !91,

  • 8/9/2019 NETL 2014 Multiphase Conference

    2/26

    2

    Outline

    Motivation and Objective Brief review of Gasification

    Overview of Uncertainty

    Quantification Frameworks Used

    Preliminary Findings from Nonintrusive UQ !nalysis"

    • #$emically %eacting case

    Observations and #oncluding

    %emarks

  • 8/9/2019 NETL 2014 Multiphase Conference

    3/26

    3

    Motivation an"

  • 8/9/2019 NETL 2014 Multiphase Conference

    4/26

    4

    Gasification

    Gasification is t$e &rocess w$ere asolid fuel- suc$ as coal reacts wit$

    steam- carbon dio+ide or $ydrogen

    in a $ig$ &ressure- $ig$ tem&erature

    reactor to &roduce a fuel gas- or

    synt$esis gas '12- #O- #O2 *

    (team is added to t$e fuel gas andsent t$roug$ a watergas s$iftreactor- w$ere #O and steam areconverted to 12 and #O2

     !fter removal of #O2- $ydrogen ric$syngas can be utili3ed in a gasturbine or steam turbine for&roducing electricity or used togenerate c$emicals   http://www.netl.doe.gov/File%20Library/Research/Coal/energy 

    %20systems/gasification/gasifipedia/ 

  • 8/9/2019 NETL 2014 Multiphase Conference

    5/26

    5

    Uncertaininputs

    Quick Overview of

    Uncertainty Quantification (UQ) Methods Employed

    .ntrusive UQ

    (everal !vailable Met$ods"

    Polynomial #$aos )+&ansions

    'P#)*

    (toc$astic )+&ansion

    Pro"

    Quick &rediction

    #on"

    (urgery in t$e code and long

    develo&ment time

    Non.ntrusive UQ

    (everal !vailable Met$ods"

    (urrogate Model 4 Monte #arlo

    Polynomial #$aos )+&ansions

    Bayesian 5ec$ni/ues

    Pro"

    ($ort develo&ment time

    #on"

    (am&ling error 

    Stochastic simulation(UQ embedded in the model)

    UncertaintyinformationModel

    Uncertaininputs

    UQ Toolbox

    Model

    UQ achieved by samplingmany deterministic simulations

    (ource" !n .ntroduction to Uncertainty Quantification Met$odologies and Met$ods- #, 5ong '2672* 8 #om&aring Uncertainty Quantification Met$ods Under

    Practical .ndustry %e/uirements- 9ang '2672*

  • 8/9/2019 NETL 2014 Multiphase Conference

    6/26

    6

    0emonstration of a&&licability of UQ met$ods in

    answering /uestions t$roug$ re&resentative &roblems"

    #ase !" Nonreacting :0 5ransient Fluidi3ed Bed %iser

    (imulation1 • #irculating Fluidi3ed Bed riser at N)5; wit$ e+&erimental data

    from 2676 N)5;? Che$ically Reacting 0ransient Flui"i@e"

    >e" Gasifier #i$ulation 'work in &rogress*•

    )+&erimental data available for labscale setu&,• 20 8 :0 reacting multi&$ase flow simulation

    • Bayesian #alibration for reaction rates wit$ available

    e+&erimental data,

    Non-5ntrusive UQ Metho"ology

    0est 4ro'le$s

    1 Gel et al& 3ali"ation an" Uncertainty Quantification of a Multiphase CF+ Mo"elB& 5n"ustrial /ngineering Che$istry Research !91(. :!((.

    pp 11,!,-11,(: +

  • 8/9/2019 NETL 2014 Multiphase Conference

    7/267

    Schematic diagram of the lab-scale fluidized-bed gasifier used for experiments

    Coalinlet

    Outlet

    Air inlet

    Uncertainty Quantification

    #tu"y 4roperties?5nput para$eters with Uncertainty

    $in-$a6range? '7* #oal Flow %ate 'g6 @ C66A

    ':* 12O < O2 ratio " >6,C @ 7,6A

    Quantities of 5nterest"'7*#arbon #onversion 'D*'2*Gas Eield 'D*':*Gasification )fficiency 'D*

    '*12

  • 8/9/2019 NETL 2014 Multiphase Conference

    8/268

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    &hysical E'periments

    Reference:(1) Shayan Karimipour, Regan Gerspacher, RajenderGupta, Raymond J. Spiteri, “Study of factors affectingsyngas quality and their interactions in fluidized bedgasification of lignite coal”, Fuel, Vol. 103, January 2013,Pages 308-320, ISSN 0016-2361,http://dx.doi.org/10.1016/j.fuel.2012.06.052.(http://www.sciencedirect.com/science/article/pii/S0016236112004723)

  • 8/9/2019 NETL 2014 Multiphase Conference

    9/269

    #F0 simulations &erformed wit$

     !N(E( F;U)N5 for same set of in&ut&arameters,

    #oal &yrolysis- combustion- steam 8#O2 gasification along wit$ 12- #O

    and #1 combustion are modeledusing 77 c$emical reactions,

    5otal of :: trans&ort e/uations aresimultaneously solved for trans&ort of27 s&ecies and multi&le &$ases,

    #om&utational cost &er simulation"

    • 20 " 2: weeks on 7? cores

    • :0 " H weeks on ? cores

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    Computational "luid ynamics $imulations

    3D CFD Model ofFluidized Bed Gasifier

    Coal inlet

    Air inlet

    Outlet

    Contour plot ofcoal volume fraction

  • 8/9/2019 NETL 2014 Multiphase Conference

    10/2610

    0ue to in$erently com&le+ nature oftransient reacting multi&$ase flows and t$e

    e+&ensive com&utational cost- several

    different strategies were investigated, 20

    and :0 simulations at multi&le gridresolutions 'coarse- medium 8 fine* were

    initiated,

    0ifferent sam&ling strategies were

    em&loyed"

    • O&timal ;atin 1y&ercube (am&ling

    'e,g, :6 sam&les for 20 runs*

    • #entral #om&osite 0esign '2C sam&les*

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    Computational "luid ynamics $imulations

    Contour plot ofCO mole fraction

  • 8/9/2019 NETL 2014 Multiphase Conference

    11/2611

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    llustration of e'periment and C" samplin% in the parameter space

    Scatter plot of the sampling locations in the parameter space for the physicalexperiments (14 samples based on Central Composite Design) and CFDsimulations (30 samples based on Optimal Latin Hypercube sampling)

  • 8/9/2019 NETL 2014 Multiphase Conference

    12/2612

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    Computational "luid ynamics $imulations* +eview of initial results

    Individual comparison of initial Fluent simulation result with the correspondingreplicated experiment data (Runs 8-13) show good agreement for that sampleHowever, review of the full picture with scatter plot matrix tells a different story…

    Discrepancy < 1 %

    Comparison of Fluent simulation (Run # 1) with the corresponding experiments (Run # 8-13)

  • 8/9/2019 NETL 2014 Multiphase Conference

    13/2613

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    Computational "luid ynamics $imulations* +eview of initial results

    ExperimentsInitial Fluent 2D Simulations (v.1)

    Scatter Plot Comparison of Secondary Quantities of Interest

    Opposite trendsobservedbetween

    experiments andsimulations

    triggered furtherinquiry andrevisions inseveral aspectsof the model

    such as reactions

    Individual CO mole fractioncompared in the previous slide

  • 8/9/2019 NETL 2014 Multiphase Conference

    14/2614

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    Computational "luid ynamics $imulations , +eview of results v-.

    Experiments

    New Fluent 2D Simulations (v.2)

    Same trendsobservedbetween

    experiments andnew 2Dsimulations

    Scatter Plot Comparison of Secondary Quantities of Interest

  • 8/9/2019 NETL 2014 Multiphase Conference

    15/2615

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    $urro%ate model for /. mole fraction at the e'it monitor location

    3D plot of the surrogate model for

    H2 mole fraction

    2D plot of H2 mole fraction surrogate modelat Coal Flow Rate = 0.05 g/s

    Cross-validation errors to assess quality ofthe surrogate model

    I PSUADE UQ toolbox from LLNL employed in

    surrogate model construction.I Several surrogate models tested with theavailable simulation data (e.g., 1st, 2nd and 3rd order polynomial, MARS, etc.)

    I Gaussian Process Model (GPM) provided thebest fitted surrogate model for H2 molefraction at the exit monitor location as shown.

  • 8/9/2019 NETL 2014 Multiphase Conference

    16/2616

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    terative &rocess to Construct the Best $urro%ate model for each Qo

    3D plot of the surrogate model for

    CO mole fraction

    2D plot of CO mole fraction surrogate modelat Coal Flow Rate = 0.05 g/s

    Cross-validation errors to assess quality ofthe surrogate model

    I PSUADE UQ toolbox from LLNL employed in

    surrogate model construction.I Several surrogate models tested with theavailable simulation data (e.g., 1st, 2nd and 3rd order polynomial, MARS, etc.)

    I Gaussian Process Model (GPM) provided thebest fitted surrogate model for CO molefraction at the exit monitor location as shown.

    Surrogatemodel isperforming

    poorly for COmole fraction> 0.14

  • 8/9/2019 NETL 2014 Multiphase Conference

    17/2617

    Case B !ransient "luidi#ed Bed Gasifier $imulation (work in pro%ress)

    nput uncertainty forward propa%ation for /. , Mi'ed Uncertainty

    Forward propagation of input uncertaintiesI Deciding on the proper treatment of uncertainties with adequate characterization is quitechallenging.

    I For demonstration purposes, some of the input parameters treated as epistemicuncertainty and the rest as aleatory.

    I Coal flow rate treated as epistemic uncertainty between interval of [3.47e-2,6.56e-2]

     

    Enlarged view of the region marked with circle:

    0.795

    0.761

    76 % < Prob (H2 mole fraction ≤ 0.14) < 80 %

    Prob (H2 mole fraction ≤ 0.14) ≈ 78 %

  • 8/9/2019 NETL 2014 Multiphase Conference

    18/2618

    •  !nalysis of t$e simulation and e+&erimental results wit$ Bayesian

    framework &erformed J Global sensitivity analysis for #O mole fraction

    Case B !ransient "luidi#ed Bed Gasifier $imulation

    Glo0al $ensitivity 1nalysis with Bayesian "ramework

  • 8/9/2019 NETL 2014 Multiphase Conference

    19/26

    19

    •  !nalysis of t$e simulation and e+&erimental results wit$ Bayesian

    framework &erformed J Global sensitivity analysis for 12 mole fraction

    Case B !ransient "luidi#ed Bed Gasifier $imulation

    Glo0al $ensitivity 1nalysis with Bayesian "ramework (continued)

  • 8/9/2019 NETL 2014 Multiphase Conference

    20/26

    20

    •  !nalysis of t$e simulation and e+&erimental results wit$ Bayesian

    framework &erformed J Global sensitivity analysis for gasification efficiency

    Case B !ransient "luidi#ed Bed Gasifier $imulation

    Glo0al $ensitivity 1nalysis with Bayesian "ramework

  • 8/9/2019 NETL 2014 Multiphase Conference

    21/26

  • 8/9/2019 NETL 2014 Multiphase Conference

    22/26

    22

    Case B !ransient "luidi#ed Bed Gasifier $imulation

    /. mole fraction surro%ate model with discrepancy ad2ustment

    Predictions of ExperimentSample # 4

          +

       =

     P r e d i c t i o

     n  o f 

     t h e  e m u l a

     t o r 

     c o n s t r u c t

     e d  f r o m 

     b o t h  s i m u l a t i

     o n  & 

     e x p e r i m e

     n t s

    Gaussian processmodel based modeldiscrepancy

    Model discrepancy corrected emulator prediction of # 4

  • 8/9/2019 NETL 2014 Multiphase Conference

    23/26

    23

    Case B !ransient "luidi#ed Bed Gasifier $imulation

    CO mole fraction surro%ate model with discrepancy ad2ustment

    Predictions of ExperimentSample # 14

          +

       =

  • 8/9/2019 NETL 2014 Multiphase Conference

    24/26

    24

    #o$e o'servations an" conclu"ing re$arks

    Our goal continues to be e+&loring different nonintrusive UQ tec$ni/ues to identify t$ose t$at are best

    suited for reacting multi&$ase flows,

    ;arge &art of t$e effort is s&ent on constructing

    ade/uate surrogate models, Bayesian met$ods a&&ear to offer various favorable

    features suc$ as /uantification of model discre&ancy

    and inclusion of &rior information- w$ic$ can be used

    effectively to alleviate lack of data,

  • 8/9/2019 NETL 2014 Multiphase Conference

    25/26

    25

    "uture 3ork

    Bayesian calibration for t$e most

    uncertain model &arameter"

    KJ kinetic reaction rates

  • 8/9/2019 NETL 2014 Multiphase Conference

    26/26


Recommended