+ All Categories
Home > Documents > Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia...

Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia...

Date post: 14-Jan-2016
Category:
Upload: valentine-underwood
View: 215 times
Download: 0 times
Share this document with a friend
58
Network Dynamics and Network Dynamics and Cell Physiology Cell Physiology John J. Tyson John J. Tyson Department of Biological Department of Biological Sciences Sciences & Virginia Bioinformatics & Virginia Bioinformatics
Transcript
Page 1: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Network Dynamics andNetwork Dynamics andCell PhysiologyCell Physiology

John J. Tyson John J. Tyson

Department of Biological Sciences Department of Biological Sciences

& Virginia Bioinformatics Institute& Virginia Bioinformatics Institute

Page 2: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 3: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

nutrients

repellants

damage

hormones

heat shock

growth & division

movement

geneexpression

death

Page 4: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

BacteriaGlucose

Lactose

lactosemetabolizing

enzymes

1

0 0

Page 5: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Fission Yeast

14 m

7 m

Wild type Mutant (wee1)

Page 6: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Fibroblast

Growth Factor

PROLIFERATION

Extracellular Matrix

Cell-Cell Contact

Page 7: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Fibroblast

ProgrammedCell Death

Page 8: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

http://www.youtube.com/watch?v=I_xh-bkiv_c&NR=1

Page 9: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Suprachiasmatic Nucleus12hL:12hD

ActivityBody temp

Page 10: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 11: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Hanahan & Weinberg (2000)

Signal Transduction Network

Page 12: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Cdk

C K

I

Cdk

Cyclin

C K

I

Cdk

Cyclin

Cdk

Cyclin

P

Cyclin

Cdk

Each icon represents a chemical species. Each arrow represents a chemical reaction that occurs at a certain rate.

CyclinMPF =

M-phase Promoting Factor

Page 13: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

X(t) = [cyclin]

1 0

0 1

, (0)

( )

dXk X X

dtX t X k t

Time (min)

Cyclin(nM)

20

40

4020 60

Interphase arrestedFelix et al. (1990)Nature 346:379, Fig. 1

Metaphase releasedTang et al. (1993)EMBO J 12:3427, Fig. 2

1. Synthesis

Estimate k1 from the “red” data:

Page 14: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

2

2 1/ 2

2 1/ 2

2 1/ 2

2 0

0

1/ 2 0 0 0

1/ 22 2

, (0)

( )

1 1( )

2

ln 2 0.72 , or

k t

k tk t

k t

dXk X X X

dt

X t X e

X t X X e Xe

e tk k

2. Degradation

Estimate k2 from the “blue” and “green” data above.

How can it be that cyclin has different half-lives in

different phases of the cell cycle?

Page 15: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

3 3 0 0

0 03 0 0

0 0

( ) ( ) ( )( ), (0) 0

(1 )( ) , where ( )

t

t

dMk C t X t k C M X M M

dt

C X eM t k C X

C X e

3. Dimerization

X(t) = [cyclin], C(t) = [Cdc2], M(t) = [dimer],

Estimate k3 from the data below, given that C0 = 100 nM.

Time (min)

Dimers(nM)

20

40

105 15

Kumagai & Dunphy (1995)Mol Biol Cell 6:199, Fig. 3B

Page 16: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

2

1 2

1

2

1

2

, (0) 0,

( ) 1

Note: as , ( ) (stable steady state)

k t

dXk k X X

dt

kX t e

k

kt X t

k

From your previous estimates of k1 and k2, estimate the steady state concentrations of cyclin in interphase and late anaphase (end of mitosis).

4. Synthesis and Degradation

Phase k1 k2 Xss

Interphase

Anaphase

Page 17: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

This case is unusual in that one can write down an “exact” solution of the differential equation in terms of elementary functions. When an exact solution is not available, one can always take other approaches…

Numerical1 2

1 2

( ) ( )( )

( ) ( ) ( ( ))

X t t X tk k X t

tX t t X t k k X t t

This always works, but doesn’t provide much insight.

Graphical

+

dX/dt

X

k1

k1/ k2

dX/dt = 0 at X = k1/k2, called a “steady state” solution

X(t) approaches k1/k2 for t large (“stable” steady state)

Page 18: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 19: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

R

S

0

0.5

0 1 2 3

res

po

ns

e (

R)

signal (S)

linear

0

5

0 0.5 1

S=1

R

rate

(d

R/d

t)

rate of degradation

rate of synthesis

S=2

S=3

Gene Expression

Signal-ResponseCurve1 2

d,

d

Rk S k R

t 1

ss2

k SR

k

Page 20: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

R

Kinase

RP

ATP ADP

H2OPi

Protein Phosphorylation

0

1

2

0 0.5 1

RP

rate

(d

RP

/dt)

0.25

0.5

1

1.5

2

Phosphatase 0

0.5

1

0 1 2 3

res

po

ns

e (

RP

)

Signal (Kinase)

1 R 0

Page 21: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

R

S

EP E0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5R

rate

(d

R/d

t) S=0

S=8

S=16

0

0.5

0 10

res

po

ns

e (

R)

signal (S)

Protein Synthesis:Positive Feedback

Page 22: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Example: Fuse

0

0.5

0 10

resp

on

se (

R)

signal (S)

dying

Apoptosis(Programmed Cell Death)

living

Page 23: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 24: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

0

0.5

1

0 1 2

resp

on

se (

MP

F)

signal (cyclin)

MPF

Cdc25-PCdc25

MPF-P

Wee1

(inactive)

0

0.5

1

0 0.5 1 1.5

MPF

Cd

c2

5-P

0

0.5

1

0 1 2 3

Cd

c2

5-P

MPF

S = Total Cyclin

Page 25: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

centrifuge

Solomon’s protocol for cyclin-induced activation of MPF

cytoplasmic extract

pellet

Ca2+ M

Cyclin

Cyclo-heximide

Cdk1Wee1

Cdc25

Cyclin

Cdk1

Cell 63:1013 (1990)

Page 26: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Threshold

0

20

40

60

80

100

120

0 10 20 30

Cyclin (nM)

CD

K a

ctiv

ity Solomon et al. (1990)

Cell 63:1013.

Novak & Tyson (1993) J. Cell Sci. 106:1153

Pomerening et al., Nature Cell Biology 5:346-351 (2003)

Sha et al., PNAS 100:975-980 (2003)

Page 27: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Testing activation threshold for Mitosis I

Interphase

Mitosis I

90Cyclin B1 and 100 µg/ml CHX

Testing Thresholds in Cycling Extracts

Testing inactivation threshold for Mitosis I

Interphase Interphase

Mitosis I

90Cyclin B1

100 µg/ml CHX

MPFactivity

time

Page 28: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

16 24 32 40 090 cyclin B (nM) :

90 min

0 min

60 min

140 min

090 cyclin B (nM) : 16 3224 40

M

M M M

The activation threshold for Mitosis I is between 32 and 40 nM.

The inactivation threshold for Mitosis I is between 16 and 24 nM.

Page 29: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

0

0.5

1

0 1 2

MP

F

cyclin

MPF

Cdc25-PCdc25

MPF-P(inactive)

cyclin synthesis

cyclin degradationAPC

Page 30: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

If knock-out positive feedback loop, then oscillations become faster and smaller amplitude…

Figure 4. Pomerening, Kim and Ferrell

With + feedback Without + feedback

Page 31: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

• Tyson, Chen & Novak, “Network dynamics and cell physiology,” Nature Rev. Molec. Cell Biol. 2:908 (2001).

• Tyson, Csikasz-Nagy & Novak, “The dynamics of cell cycle regulation,” BioEssays 24:1095 (2002).

• Tyson, Chen & Novak, “Sniffers, buzzers, toggles and blinkers,” Curr. Opin. Cell Biol. 15:221 (2003).

• Csikasz-Nagy et al., “Analysis of a generic model of eukaryotic cell-cycle regulation,” Biophys. J. 90:4361 (2006).

References

Page 32: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 33: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Cdk

C K

I

Cdk

Cyclin

C K

I

Cdk

Cyclin

Cdk

Cyclin

P

Cyclin

Cdk

Wee1

Cdc25

= k1 - (kwee + k2) * MPF + k25 (cyclin - MPF)

= k1 - k2 * cyclin

d MPFdt

d cyclindt

Page 34: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

MPF

Cyclin

Phase Plane dx/dt=f(x,y)dy/dt=g(x,y)

(xo,yo)

x=f(xo,yo) t

y=g(xo,yo) t

Page 35: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

One-parameter bifurcation diagram

parameter

variable

stable steady state

unstable steady state

saddle-nodesaddle-node

Signal Response

t t

p x

OFF

ON

(signal)

(response)

x

y

Page 36: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

One-parameter bifurcation diagram

parameter

variable

stable steady state

unstable steady state

saddle-nodesaddle-node Hopf

(signal)

(response)

Page 37: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

MPF

Cyclin

Phase Plane dx/dt=f(x,y)dy/dt=g(x,y)

Page 38: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

MPF

Cyclin

Phase Plane dx/dt=f(x,y)dy/dt=g(x,y)

Page 39: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

MPF

Cyclin

Phase Plane dx/dt=f(x,y)dy/dt=g(x,y)

Page 40: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Hopf BifurcationHopf Bifurcation

x2

p1

stable limit cycle

sss

uss

slc max

min

Page 41: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Hopf BifurcationHopf Bifurcation

x2

p1

sssuss

slc

Page 42: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

parameter(signal)

variable(response)

Hopf

Second Parameter

subcritical

Second Parameter

CF

Page 43: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

parameter(signal)

variable(response)

SNIC

Second Parameter

SL

Page 44: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

SNIC BifurcationSNIC Bifurcation

Invariant Circle

Limit Cycle

x2

p1

node

saddle

Saddle-Node on anInvariant Circle

max

min

max

SNIC

Page 45: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Signal-Response Curve = One-parameter Bifurcation Diagram

•Saddle-Node•Supercritical Hopf•Subcritical Hopf•Cyclic Fold•Saddle-Node Invariant Circle

Page 46: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Outline

1. Cell Signaling: Physiology

2. Cell Signaling: Molecular Biology

3. Chemical Kinetics

4. Sniffers, Buzzers & Toggles

5. Bistability & Oscillations in Frog Eggs

6. Dynamical Perspective

7. Example: Fission Yeast Cell Cycle

Page 47: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

S

G1

DNAreplication

G2Mmitosis

cell division

1) Alternation ofS phase and M phase.

2) Balanced growth anddivision.

3) Checkpoints

Page 48: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Page 49: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

0 50 100 150 200 250 300

0

1

2

3

4

5

mass/nucleus

P Cdk1

CycB

Cdk1

CycB

CKI

Cdh1

Cdc20

Wee1

Cdc25

Time (min)

S G2 MG1 S G2 MG1 S

Page 50: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

Gene Viable? Traitcdc2

No block in G2cdc13

No block in G2rum1

Yes sterileste9

Yes sterileslp1

Yeswee1

Yes smallcdc25

No block in G2

cdc2 OP Yes wtcdc13 OP Yes wtrum1 OP No endoreplic.ste9 OP Yes wtwee1 OP Yes largecdc25 OP Yes small

wee1 rum1 No extremely small

wee1 cdc25 Yes quantized cycles

wee1 cdc25OP No cut

wee1 OP cdc25 No block in G2

Mutants in Fission YeastMutants in Fission Yeast

Page 51: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

mass/ DNA

0.0 0.5 1.0 1.5

Cdc2

/Cdc1

3

10-5

10-4

10-3

10-2

10-1

100

G1

Mmass/ DNA

0 1 2

Cdc2

/Cdc1

3

10-3

10-2

10-1

100

S/G2

M

mass/nucleus

mass/ DNA

0.0 0.5 1.0 1.5 2.0

Cdc2

/Cdc1

3

0.1

1

M

Page 52: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

0 1 2 3 4 5

0

0.4

0.8

3.0

mass/nucleus

Cd

k1:C

ycB

G1S/G2

M

SNICHopf SN1SN2SN3

Page 53: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

mass/nucleus

Page 54: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

wee1

mass/nucleus

Cd

k1:C

ycB

0 1 2 3 4 5

0

0.4

0.8

1.2

G1

S/G2

M

Page 55: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

P

Cdc25

Wee1

Wee1P

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Cdc25

mass/nucleus

Page 56: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

mass/nucleus

Cd

k1:C

ycB

G1S/G2

M

0 1 2 3 4 5

0

0.4

0.8

3.0 cki

The Start module is not required during mitotic cyclesThe Start module is not required during mitotic cycles

Page 57: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

CycB

Page 58: Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute & Virginia Bioinformatics Institute.

0

0.4

0.8

2.0

0 1 2 3 4 5

G1

S/G2

M

cki wee1ts

mass/nucleus

Cd

k1:C

ycB

Unbalanced Growthand Division …

is Lethal !


Recommended