+ All Categories
Home > Documents > Neuromuscular Junction &Synapses

Neuromuscular Junction &Synapses

Date post: 13-Feb-2018
Category:
Upload: nhan-ly-tran
View: 240 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 7/23/2019 Neuromuscular Junction &Synapses

    1/26

    CHAPTER

    8

    '.::__.rifi'.1,

    a.,:t:..

    '.

    ,:..--

    ):.

    t

    t

    -';;t't'.

    Synaptic

    Transmission

    and

    the Neuromuscular

    f

    unction

    Edward

    G. Moczydlowski

    The

    ionic

    gradients

    hat cells maintatl

    lcLoss hrn mcmhranes rovide

    a

    lbrm of stored

    electrochemical nergy

    cells can use lor electrical

    signalling.

    The

    combination

    of a

    resting membrane

    porential

    of

    -60

    to

    g0

    mV and

    a

    diverse array

    of voltage

    gated on

    channelsallorvsexcitable

    cells to gener

    ate

    action

    potentials

    that propagate

    over long clistances long

    the surlace

    membrane

    o[ a singlenerve axon or musc]e iber. However,

    another

    classol

    mechanisms s

    necessary

    o transmit

    such electrical nfomation

    from cell to

    cell

    throughout

    the

    myriad of neuronal

    netu'orks that link

    the brain lrrrh

    sensoryand effector organs. Electrical signals must pass across he special

    . \ . . ^

    , h 1 ^ 5 : * p

    . . 1 1 6 n 6 1 1 2 r e ,

    r

    . r r -

    ,

    , l l c . l

    a

    " l

    l b

    sy-napse.The

    process underifing this

    cell to-cell transfer of electr.ical

    ig-

    nals is tenned

    synaptic transmission.

    Communication betr,veen

    ells at a

    synapse can

    be erLherelecuical or chemical.

    Electrical synapscspror.icle

    direct electrical

    continuity beti,r,eencells

    by means of gap

    lunctions,

    u,hereaschemicaL

    slnapses link two cells

    iogether by a chemical neuro-

    transmitter thaL

    s released

    rom

    or.re eLland diffuses

    o another.

    ln this chapter

    tve discr-rsshe generalpropertjes

    ol synaptic transnissioli

    and Lhen focus mainly on s1'napttc ransmissionbenveen a notor neuron

    and

    a skeletal muscle fiber. This interface

    betg'een the motor neuron

    ancl

    the muscLe

    ell is called Lheneuromuscular

    uncljon.

    In Chaprer12,

    Lhe

    locus is on

    synaplic t ransmission between neulons in

    the central nen'ous

    s)'stem

    CNS).

    s3@

    w

    MEC}IANISMS

    OF

    SYNAPTICTRANSMISSION

    ElectricalContinuity BetweenCells s Established ither by

    DirectFIow

    of

    CurrentThrough

    Gap

    unct ion

    Channels

    t

    an Electrical

    Synapse

    r by Diffusion

    of a Neurotransmitter

    acrossa Chemical

    Synapse

    Once the cor.rcept

    l bioelectrlcitl' hacl taken l.iold among physiologists

    of

    l h e

    J I L

    e - r .

    r r . b e , a m c ,

    , r ' h . r r e

    q u c < l . o n

    " l

    h o u

    c l . " r r ' . a l

    i g r a .

  • 7/23/2019 Neuromuscular Junction &Synapses

    2/26

    TABLE

    A-I

    CHEMI(AL

    ELICTRICAL l onotropi( M etabotropic

    Agonist

    Membrane

    proteln

    speed

    Effect

    ACh,

    acetylcholine;

    -, membrane

    potential.

    A simiLar

    calculation based

    on the geometry and cable

    propeflies

    of a typical nenre-muscle ).napse uggests

    hat

    an

    action

    polential arriving al a

    nerve terminal could

    depolarize

    he

    posts)'naptic

    membrane by

    only 1

    pV

    after

    crossing

    he s).naptic

    gap-an attenuation of 105. ClearLy,

    Lhe evolution

    of complex

    multicellular organisms

    equired

    the

    development

    of specialsplaptic mechanisms

    or

    elec-

    trical

    signalling

    to seNe as a

    workable means of interceL-

    Lular

    communication.

    lwo

    .ompel inghyoothesesnerged

    -

    the loh cen-

    tury to

    explain

    how closely apposed cells could commu-

    nicate

    electrically. One

    schooLof thought proposed that

    ce

    15 are

    dirpcll) l i nled b; micro,coDic cornecL 8

    bridges

    thar

    enable electrical signals to

    flow directly.

    Other

    pioneering

    physiologists

    used

    pharmacologicobser-

    vations to infer that cell -lo-ceLl ransmissionwas chemicaL

    in nature.

    Ultimate resolution of this

    question awaited

    both the

    developmentof

    electron microscopic echniques,

    which

    permitted

    yisualization

    of

    the intimate contact re

    gion

    between cells,

    and further studies n neurochemistry,

    which

    identifred

    the small, organic molecules that are

    responsible

    or neurotransmission.

    By 1960,

    accumulated

    evidence

    ed to the

    general recognition that cells use

    borh

    direct electricaland indirect chemical modes of transmis-

    sion

    lo

    communicate

    with

    one another.

    The

    essential tructural

    element o[ interceiLuLarommu-

    nicarion,

    the

    slrrapse, is a speciaiized

    point

    of

    contact

    between

    the

    membranesof two different, but connected,

    cells.

    Electrical

    and chemical

    rynapses

    have unique mor-

    phologies,

    distinguishable by electron

    microscopy.

    One

    major

    distinction is the dismnceof

    separationbetween he

    two apposingcell membranes.At electrical s)mapses, he

    acljacent

    cell

    membranes are

    separaled

    by about 3 nm

    and

    appear

    to be nearly sealed together by a

    plate-1ike

    structure

    lhat is a lraction of a micrometer

    in diameter.

    Freeze-fracture

    mages of the intramembraneplane

    in

    this

    region

    reveal a cLusterof closely packed

    ntramembranous

    particles

    that

    represent a gap

    junction.

    As described n

    Svnaptic

    ransmissionnd the

    NeuromuscLrlar

    unction

    8

    is

    as large as 50

    nm

    at lhe

    vertebratenewe-muscle syn-

    apse.An additional

    characteristicof a chemtcal

    $mapse

    s

    the

    presenceof numerous s)'naptic

    vesicles

    on

    the side

    of

    the slnapse that

    initiates the signal transmission,

    ermed

    the

    pres).napticside. These vesicles

    are

    sealed,

    sphedcal

    membranebound structures that mnge in diameter tiom

    40

    to 200 nm and contain a

    high concentrationof chemi-

    cal

    lreurotransmitter.

    The contrasting

    morphologiesof electricaland chemical

    s1-napsesnderline

    the contrasting

    mechanisrnsby which

    they

    function

    (Table

    8 l). Electrical

    slnapses pass volt

    age

    changesdirectly from one

    cell to another across he

    low-resistance continuity that

    is provided by the con

    nexon channels. On the other hand, chemical syrapses

    link

    two ceLlsby the diffusion

    of a chemica l transmitter

    across he large

    gap

    separating

    hem. The neurotransmlt

    ter rhat

    is

    stored

    in the

    ry.naptic

    vesicles

    s

    released nto

    the synaptlc

    space,diffusesacross

    he cleft of the slrrapse,

    and

    activates he

    posts)'naptic

    ell by blnding

    to a specifrc

    receptor

    protein

    on the

    posts).naptic ell membrane.

    Direct evidence

    or the existenceof chemical transrnis-

    sion

    predated the experimental confirmalion of

    electrical

    slnapses.

    The foundations of

    s),Traptic hysioLogycan be

    traced back io

    early studies of the aulonomic

    newous

    system.

    Early in the 1900s,

    researchers oted that adrenal

    gland extracts,which contain

    epinephrine, elicited

    physio

    Logicaleffects

    (e.g.,

    an

    increase n heart rate) that were

    similar to those

    elicired by stimulation of sl.mpathetic

    nerve

    hbers. ln 1904, ElLiot

    proposed

    that

    sympathelic

    nenes

    might release a subsmnce

    thal is analogous to

    epinephrine that would functlon in chemicaL ransmission

    beLueen

    ner reand rs

    r , i rget

    "gar . ' r 'a r

    < lLd.es

    ug-

    gested that the vagus nerve,

    which is parasyrpathetic,

    produces re ld ted ub5lan\e

    hat

    L re 'oons ib 'e r de-

    nrp

  • 7/23/2019 Neuromuscular Junction &Synapses

    3/26

    8

    /

    Synaptic ransmissionnd

    he Neuromuscular

    unction

    /

    I

    (eleclrotonic

    urrent)

    Ce

    l-cel l

    gap

    juncl ion

    FICURE

    8

    1 An eleclr ical

    ryrpse

    All e lecrr ic. l l

    \

    n ipsc

    consinsol

    cules.

    Electrical nd ChemicalSynapsesBoth

    Convey

    Signals romOne

    Cell o Another,

    but

    Differ Greatly n the Particulars

    ELECTRI(AI"

    YNAPSES.

    hereas

    overwhelnT

    ng

    sullporl

    lo" . l r ,

    -n . . l l

    . y r .

    l . .

    Jn . n s r to t r

    ac \unu la

    eJ

    in h \

    lirst hall ol the

    20th

    century. Lhe irst direct evidence or

    p l c . l . . , .

    r ' : ] nm r - - . o

    r d n

    r u . h

    l : r . r f r o r

    c l . . r r o . l l ) ' l

    ologic ecorclingsf a crayfish ervepreparation.n 1959,

    t u , - h 1 " r

    r d P o e r u . e J r r r . '

    D ' r i . o '

    . t

    n

    . r

    r g : n C

    recording

    electrodeso shor,vhat

    depolarization f a pre-

    - ) n J p , r .

    n r , e

    f b e r '

    t l t

    ' . l )

    r - , o J o r ' r

    - . - \ r

    r r -

    sulted

    n excjtation l a

    posts),naptic

    erve

    ce]]

    (the

    mo-

    tor

    nene to fie tail

    nruscle)

    wlth virtually no

    time clelay.

    In contrast,

    chemrcal

    s1'napses xhibiL a characLerjstic

    e-

    J \ o

    df f ro \ lnd l r l .

    r r -

    r

    L l r .

    - . r ,

    -1n" rur .o l r :g ,

    gn. r l [ te" er ,

    t - .

    r

    o l

    1r . pre ,

    n . rp t r ' " L T l re

    c le . ror

    stration

    of an e lectrical s1-napse

    elrveen L\\,onervc mem-

    branes

    highlighted an Lmportant unctional

    differetlcebe

    r \ ^ c c n

    l ( l r

    r r l

    r d . \ e r ' . 1 1

    y r

    - c -

    r r c ' r J . -

    r g

    .

    propagation

    electricaL)

    ersus

    rieilv clelayeclommunlca

    t ion

    (chemrcal)

    hrough he

    lunction.

    An electrical

    synapse rs a true

    strucLrLral onnecLion

    Linearll,rvith the translunctional voltage

    (i.e.,

    the

    y,,,

    dif-

    Ierence

    between

    he tu'o cells). However, the crayfish

    syn

    apse

    described b1. Furshpan

    and Potter allorvs depolariz

    . l

    E . L r

    n l

    t o

    . r , ,

    r e a d

    ' o n l ) - o n , d r r

    r t o

    f f o | . h e

    '

    . . , - - i .

    r

    I . h . n ^ - r . .

    - i .

    c e l . ) L . n . e L l - d l

    synapsesare called rectifying synapses to inclicate thar

    the underl,vir'rg

    ur.ictional

    conducLance s voltage

    depen-

    d . r r

    - r

    , - ^

    . 1 , . . r

    ' , 1

    " " r r r q , . q 1 l

    . T n . r r n .

    - a v e

    shown that the voltagedependence f electrical

    ynapses

    arises

    rom uniqrie gating properties

    o[ dillerenLconnexjn

    )u

    or rs

    .o

    n. . -o lo , r

    -

    r t r lLage

    eper rJ rnr

    .

    , r ,

    others are

    loltage

    independent. lntdr-rsic -ectilicaLion

    an

    also be altereclbl Lhe brmation of a gap

    uncLion

    Lhat s

    c o n 1 ' o . e d 1 1 1 n" p i . l ; - - c l - . . l c h m a l eu 1 ' t r . l e r

    ' '

    \ l ,

    L

    L _ i d

    c " r n e r t n s a 1 L - J - L o

    heterotyprcchannels.

    CHEMICAL YNAPSES.y

    thejr

    \,ery nalure,

    chemical

    synapses

    re inherently rectif,ving

    or

    polarized.

    They prop-

    J 3 , e , - l

    e n l

    i n o n r d r "

    l t o n

    " r '

    l r e

    f - c . ) n , r l r l i .

    " l l

    Lhat

    releases

    he transnirter ro the posrs).naptic

    ell that

    . r

    ' i n .

    l - r -

    . r r ^ . ,

    h r ' r .

    . o - i

    e

    o T J

    . t n .

    t

    .

    L d 1 5

    _ l r ' '

    Fo r ' r . r h r r ' - -e

    '

    a \ \ .

    i o t

    , , r

    ' a t l l -

    t l l ch .m- -

    . " 1

    - v , f

    i .

    r n - r r

    . "

    n

    h p l

    . t h p p o - - b i l

    r 1

    r l - a . h e

    p . - t : 1 n L p , , . l l

    , . r n

    r r r f r e r . e

    r ) n ,

    p . .

    . . , r J o n o r

    transmittel

    release

    b1' the preslnaptrc cell.

    Studies ol s1n

    apse clevelopment ancl regulation hale sholltr

    that postsy

    naptic

    ceLls also p1a1

    an actrve role in s,r'napse ormation

    n rh r fNS no< t *n rnn r r c l l< m,

    . l \ ' l lSO p roc lU(e r ' o

    grade signall ing molecules,

    such as

    nitdc

    oxide

    (NO),

    that

    d1ffuse back into the presvnaptic Lerminal and modulate

    l c

    '

    ,

    e l

    o h ,

    . ) n . r t .

    c o

    - e c r i o

    r f . 1 2 2 .

    F r r f , c r -

    - , . ' " i l .

    "

    hanh . . - ,

    . , - , , .

    . r l

    ) n m e

    ) n d l

    e

    . O T

    rains receptor-s hat lnay eiLher inhibiL

    or

    facilltate

    the

    le [ - :e

    o

    l r

    n , r r i . ie

    b] b .o , -emi . np. h . r r

    >m' .

    T

    u , .

    . h ' c ; l

    - r

    ; - e ,

    " u l , l

    h e

    ,

    ^

    , 1 .

    ,

    J , u n r d . r e . L i u r r

    pathu.a). or signal propagation

    that can be modulated

    by

    bidirectional chemical commur-rication

    etween two inler-

    actingcells.

    The process o[ chemical transmissic]n

    an be summa-

    rizeclby

    the l,rl lowing

    eries f steps

    Frg.

    8 2):

    \ (e

    ,

    .

    \ c r . to t rdn,n

    le

    - ro lecJ

    e- ._ ' r 'e cL. rgcd r to

    \ )

    d p t .

    \ ( . t

    h -

    ' l r , ( i 5 .

    - d

    l o f l l f , . e i n .

    I n

    I n c

    r \ < t -

    cle membrane use the energl of an H gradient

    Lo

    energizeuptake o[ lhe neurotransniLLern the vesicle.

    \ lcp

    2 . A r

    , .

    on LrJr (

    "

    r r l r i .h

    in ro

    rc ,

    ro l t "ge

    B. r r '

    N r

    . r

    d

    (

    c h , - n e l ,

    . )

    1 8 2 1 .r r , . . - , r

    r h c

    p - c s y - a p

    Ltc

    ne nre Le mtnal.

    Step

    3r Depoladzation opens voltage-gated

    Ca2t channels,

    * h . . l - - l lo ' r

    \

    J '

    lo

    c

    le .

    t

    .e prP)yr l . , rpL

    lermin l l .

    SLep4;

    The increase

    n intracellular

    Cart concentration

    ([Ca2-1,)

    riggers he fusionof s] 'napric esicles ith

    Lhe

  • 7/23/2019 Neuromuscular Junction &Synapses

    4/26

    Synaptic ransmissionnd he Neuromuscular

    unction

    8

    Extfacellular

    space

    i(electrotonic

    current)

    Presynaptic

    nerve erminal

    of he nerve

    cell

    \

    str.ucrion

    f t l.re ransmitler

    e.g..

    hydro\,siso[ ACh b,v

    acetyLcholinesterase

    AChEl),

    (2)

    uptake of transniuer

    lnLo the

    presynaptic erve

    erminal or

    into

    other celLs

    by

    Nr*-dependent ranspor-t) 'stems, r

    (3)

    diffusionoI

    r l - , . r : n < m , r r n r m . l . . r r l . < t r \ \ , \ 1 r

    O l L n ( \ n r P \

    FICUREB

    2. A chcmic al )nrpsc SlnapLic mnsmission1 r rhcmicalstnapsc an

    be rh)rghtu[ . ]soccLrnnsrrs| r . . t .Lr.

    A neurotransmitter

    reaksdown,

    is takenup by the presynaptic

    terminal or oiher cel1s, i

    diffuses

    away ftom the syr'upse.

    h

    .

    t

    u . : .

    , .

    : r - r rd 'd l

    r ln ^b

    l )

    |

    ,

    . , '

    , l

    i

    ' . \B 1 .

    e l y

    .

    . d F .

    . . p r ,

    -

    ' r . h . - . n J u r ' p l

    a J e r

    \ c o h . ' l r n ,

    The

    Transmitter at a ChemicalSynapseCan

    Activate Either an lonotropic Receptor hat

    ls

    . , ^ 2 +vorrage gareoLa

    channels oDen.

    Postsynapticell

  • 7/23/2019 Neuromuscular Junction &Synapses

    5/26

    IONOTROPIC ECEPTOR

    . , :

    Axol

    t\;

    Electr ical

    I l ; : l : i : l

    srmulus

    I |

    '1 ,

    \, ' ,,/ \ . N"./

    . l l

    ";

    -'--"

    @ ,

    . .

    . . . . . .

    :

    ,

    i l , ,

    : . '

    . , , ,

    |

    .

    . . : . . , . . . . . , , .

    . : .

    . . . , . : t . .

    . : . .

    ^

    ' ' .

    - r i

    . . . _ ) , i . , 1 t : 1 , . , , . , .

    , / t

    "

    2Oa 8 Sylapt iL

    -tdn 'Ti. . 'on

    a1d

    t l-" \eL-omJ)culat

    ,LtL

    01

    B METABOTROPICBECEPTOR

    Acetylcholine

    Skeletalmuscle

    fibermembrane

    mate.

    Ellutamete

    receptors

    thaL are ton

    chilt-tr-rels rc

    knorvnas

    ionotropic

    receptors,

    and

    gluLanate

    ecepLors

    cor,4t1ed

    o C proLcinsare

    calleclmetabotropic

    receptors.

    fhis nonenclature is berng increasingly

    used ro

    clescribe

    thc Lwo

    malor l)rpes

    )1

    rcccptols of

    Lfansmitters

    ther

    llun

    llutamate.

    lonotroprc

    ancl metabotropic

    eceptors

    determine he

    ult imate

    unctionll response

    o tftnsmiter re]ease.

    ctiva-

    Atrialmuscle

    cellmembrane

    FICURE 3. id lotropic

    xnd n.rr

    botrof ic . rc. t \ ( l r {r lmr

    fe.eprors A,

    This e\mplc i l lusrf :urs

    nicor ir l ic '

    acel) lchol inc cccptor

    shrch is

    r

    tLg.Lml-gaLcdhannel

    on Lhe

    possr'-

    naptic nembr.rnc In

    r sktleral mLrs

    cle,

    Ihe fnd

    result

    s mrLsclc

    rr

    Lf lcLion B, This

    eramptc l luslratcs

    I rruscrf jr r ic

    ; l .er) lchol inc

    crcp

    1of.uhrrh is couplcd o e Lcrcrour

    mcric

    a;

    t rotern.

    ln I crr . l i rc rrLrs-

    clc. Lhccml Lcsul t s. lecreis. . l

    rcart

    rr te. Noie

    thrt rhc

    frcr\nair t rc

    r. ,

    l .1se l r \ ( lh is \ . r \

    s irr i l r r l1ef .

    . rnd LLr - \Ch.

    arcr\ l .hohnri

    ( ,1P.

    3LLrnonne

    f

    phosphxre

    a a

    95). B) lreir YeD nalure, onotropic

    receptors tecliaLe

    fast ionic slnaptic responses hat occur elt it nillisccond

    t r c

    - . . ' 1 , .

    . l t . r , . - , c . '

    u -

    \ .

    r . . . p r

    r -

    ,

    .

    / r . . , \ \ .

    biochenricalll '

    edirted

    sy'napticesponses

    n rhe range

    of

    seconds

    ominuteS.

    Flgurc B-3 compares

    Lhe basic processes

    mecliare.lb) '

    t\vo prototyPicACh receprors

    AChRs): 1)

    rhe ACh acLi

    vatecl

    on

    channcl lt the neuromuscLLlar

    unction

    of skele

    Nico

    ch

    I

    l

    ,

    L

    : inicACh rece

    annelactivatir

    lr

    IM".b"r*

    lepolarization

    lr-

    "tb"

    p"t""tb

    exctaiion

    ptor

    ln

    IVIusc

    contraction

    [,4uscarinicCh eceptor

    I

    acrvar n

    ]

    lr

    R"b"r"

    "l

    "TP

    -

    P./

    from he

    helerotrimeric

    protein

    -

    ]r

    Activation

    oi

    lnward

    I

    rectifier

    K- channelby

    py

    ----r-

    t-r.,r"-.t

    *.

    l

    I

    nyperporararon

    ]

    t-

    Decrease n

    nean TaIe

  • 7/23/2019 Neuromuscular Junction &Synapses

    6/26

    tinic)

    receptor, opening

    of the AChR channel

    results n

    a

    transient

    increase

    n permeability

    to Na* and K*, which

    directly

    produces

    a brief depolarization

    hat activates

    he

    muscle

    fiber. In

    the caseof the

    metabotropic

    (muscarinic)

    receptor,

    activation

    of the G protein-coupLed

    recepior

    opens an inward rectiFer K+ channel, or GIRK (p. I97),

    via

    p7

    subunits released rom

    an activatedheterotrimedc

    G

    protein. Enhanced

    opening of

    these GIRKs produces

    membrane hyperpoLarization

    and leads to inhibiiion

    of

    cardiac excitarion

    (p.

    488). These

    wo funcLionallydistinct

    mechanisms

    are the

    molecular basis for

    the seemingly

    conflictrng

    observations

    of early physiologisrs

    rhar ACh

    (VagusstofJ)

    ctivates skeletal

    muscle bur inhibirs

    hearr

    muscle.

    SYNAPTIC

    RANSMISSION

    T

    THE NEUROMUSCULAR

    UNCTTON

    Neuromuscular

    unctions

    re Specialized

    Synapses

    ith Active

    Zones

    of Synaptic

    Vesicles n PresynapticNeuronal)

    Membranes

    nd Highly

    Amplified

    unctional

    Folds n

    Postsynaptic

    Muscle)

    Membrane

    The chemical

    ry.napse

    etween

    peripheral nerve

    terminals

    and skeletal muscle fibers is

    the most intensely

    studied

    synaptic connection in Lhe neryous

    system. Even rhough

    the detailed

    morphology

    and the

    specific molecular com-

    ponents

    (e.g.,

    neurotransmitters

    and receptors)

    differ con-

    siderably among different iypes of slnapses, ihe basic

    electrophysiologic

    principles

    of the neuromuscular

    unc-

    tion

    are applicable o many

    other

    qpes

    of chemical slrr-

    apses,

    including neuronal

    sl.naptic connections

    in the

    brain, to

    which

    we wiLl retum

    in Chaprer 12. In

    this

    chapter, we focus on the neuromuscular

    unction

    in

    dis-

    cu5s inSheba>rc r in . ip les f

    : lnapLic rdnsmi5s ,on.

    Motor

    neurons with

    cell bodies in rhe

    spinal cord have

    long axons that branch extensive lynear the point of con-

    tact

    wirh the target muscle

    (Fig.

    B-4). These axon proc-

    esses

    each inneruate a

    separate iber of skeletal muscle.

    The whole assembly of muscle

    fibers innervated

    by the

    axon from one

    motor

    neuron is

    called a motor unit.

    T1pically, an axon makes

    a single

    point

    of synapdc

    contact

    with a skeletal

    muscle hber,

    midway along

    the

    lengt\

    oi rhe muscle 6oer.

    thrs

  • 7/23/2019 Neuromuscular Junction &Synapses

    7/26

    210 8

    /

    Synaptic

    ransmissionnd

    the Neuromuscular

    unction

    Spinacord

    Nerve ellbody

    Axon/

    Muscle ell

    or

    ber

    Postjunctional

    folds

    Synaptic

    vestcles

    'o

    I

    o

    I

    Acetylchollne

    receprors

    Postjunctional

    folds

    Postsynaptic

    membrane

    FICURE -4.

    Ihc

    \efrcbr: r te

    b o u 1 o n s ' i 1 s s ' c L l l s t h c s p c c i a l i : . r L i o l s o | l 1 r c p o s l s , v n a p l L

    .onL:rLLrirg

    he

    tionrl loltls).

    Depol^iz.rLiorl

    Act ve zone

    Acetylcholine

    (re

    eased rom

    vesrcles

    Presynaptic

    memorane

    ,t

    laT.rna

    @k'

    \@

  • 7/23/2019 Neuromuscular Junction &Synapses

    8/26

    FICURI 8-5.

    End pla ie poterhals

    el ic iredar rhc lrog

    nuro-

    muscular

    lunclion

    by sLmulaturg the mot,:lr neuron. The mag-

    r i r ' ' " o f t l . . . c r . ' r

    \

    I o . w

    1 i .

    r . l I D P

    .

    s , . . . .

    near thc end

    plxre

    and deca)s farther awry

    (De e

    fonr

    Fati I,

    Kelz B: An anal)sis of the end-p1ate otenLial

    ecorddwirh an

    inLracel lu larlectrode. l ,hysio l l5 :120

    370, 195i. )

    cle cell) of

    lhe neuromuscular

    unction.

    Normally,

    nen'e

    stimulatron

    rvouid

    drir.e the V,,, of the muscle

    above

    threshold

    and elici t an action

    potentlal

    p.

    172). How-

    ever,

    Falt and Katz were interestecl

    not in seeing

    the

    Synaptic ransmission

    nd he Neuromuscular

    unction

    /

    8

    0

    Excitatorv

    1o

    postsynaptic

    (or

    end

    plate)

    0

    potenlial

    (mv)

    1 0

    0

    1 0

    0

    1 0

    0

    r h , m r n m . ' ' r r . r n v , . " h o p . i n \

    ' . ' ' ' ' , /

    spoto[ themuscle

    ell.

    \ V h e n

    J l

    " i

    d h a t -

    e l e c t r L " l l r \ ( i r e d h , ' m o r o r

    neNe axon, they' obsen'ed a transient

    depolarizaLion n

    211

    Stimulusf

    motor

    erye

    1 0

    Voltageecordiqg

    \\ llJ-

    MorotneNe

    The muscle s treatedwith

    curare o limit

    ACh

    receptorachvahon

    o

    subthreshold esponses.

    The delay in

    response is a

    function of

    acetylcholi11e

    release,

    diffusion, and

    activation ol

    Pos6ynaPtlc

    aecepto$,

    The delay

    in

    response

    tlme

    increases s

    a

    function

    of the

    distance

    hom the

    end

    plate.

    1 .0

    mm)

  • 7/23/2019 Neuromuscular Junction &Synapses

    9/26

    212

    8

    /

    Synaptic

    ransmissionnd the Neuromusculaf

    unction

    A EXPERII\,lENTAL

    REPARATION

    END-PLATE

    URRENTSOBTAINED

    I

    VARIOUS

    OLDINGOTENTIALS

    400

    200

    End-plate

    current 0

    (nA)

    -200

    -400

    0 1 2 3 4 5 6 7 8

    Time

    msec)

    C I-V

    F]ELATIONSHIP

    ORPEAKEND.PLATE URRENT

    Clamped

    membrane

    potential

    (mv)

    FICURE

    8 6.

    End-plate currents obtained at dillerenr

    membrane

    poten

    tials in a vohage-clamp expenmen . A, Two electrode vokage cLamp s

    used to

    measure

    he end-plate cunent in a frog

    muscle 6ber. The tips of

    rhe rwo

    microelectrods

    are in the muscle fiber.

    B, The

    six

    records

    represenr

    end-plaLe

    currents that \'r'reobiaind while the motor

    nerve

    rvas stimulated

    and the

    poslslnaptic membrane was clamped to

    V,,,

    values

    of

    -I20,

    91, 68, 37,

    +24, +38 mV Not ice that ihe

    peak

    cunem

    reveres

    from inward to out\rard as the

    holding polential shifts

    from

    -37

    to

    +14 mV.

    C,

    The rvelsaL

    potential

    is near 0 mV because

    atory

    postslrnaptic potential. lt

    is produced

    by

    the tran-

    s ienr

    open inB l

    AChR

    thannel . .

    nht ,h

    are >e rL ' \e l )

    permeable

    o monovalent

    calionssuch as Na*and

    K-.

    The

    increase n Na* conductance

    drives V* to a more

    p o c r

    e v d l L e n l \ e

    \ r c r n I )

    o ' t h e e - d - p J a L e

    e B o n .

    n

    rhis expenment, curare blockade al1ows only a small

    number

    o[ AChR channels o open,

    so that the EPP does

    nor reach the

    threshold to produce an action

    polential. If

    the experiment

    s repeatedby inserting

    the microelectrode

    at

    various distances

    rom the end

    plate,

    the amplitude of

    the

    potential change

    is successivelydiminished

    and its

    peak

    is increasingly deLayed.This decrement

    with dis-

    lance

    o. .ur ( becausehe EPPorg

    rate . a t

    the

    ond-p l " te

    region and spreads away from this site according to the

    ^ , . < ' . p

    r h p

    n . o n e r e q

    n

    ' C 0 r

    o [ L h e

    r . u ' . e f b e r .

    Thus,

    the EPP n Figure B 5

    is an example o[ a

    propa-

    gared.

    g raded

    responce.

    ouerer . wrhout t l ' e curd re

    blockade,

    more AChR channels would open and

    a larger

    EPP rvould

    ensue,which would drive

    V,,,

    above

    threshold

    and consequently

    trigger a regenerating

    action potentiai

    (p.

    172).

    What

    ions pass through the AChR channels

    during

    generation

    of rhe EPP?This question can be answeredby

    using

    the same

    voltage-clamp technique that was

    also

    . sed

    ro , t r d1 the

    bac iso f l he dc l

    o ' po ler t l

    r 5ee

    F.8.

    7 5B).

    Figure 8-64 illustrates he

    experimenlal prepara

    tion

    for a two-electrode voltage-clamp

    expedment

    in

    which the motor

    nerve is stimulated

    while

    the

    muscle

    fiber in the

    region

    of

    i|s end plate is voltage-clamped

    o a

    chosen

    V-. The recorded current, which

    is proportional

    to the conductance change at the muscLeend plate, is

    called

    the end-plate

    current

    (EPC).

    The

    EPC has a char-

    acrerisric

    rime course that rises to

    a peak within 2 ms

    after

    stimulation of the motor

    newe and falls exponen-

    L i a l l ;

    a c r

    o

    e r e

    q f ' g

    B - o B ' .

    l h e l i m e c o u - " e f

    , h e

    EPC

    corresponds o lhe opening

    and closing of a

    popula-

    tion

    of

    AChR

    channels,

    governed by the

    rapid

    binding

    and d i

    ,ppearan,e [ ACh as r t d i l lu 'e .

    o

    the

    po. tsynap-

    tic membrane and is hydrolyzed by AChE.

    Aegn -11. .he , :gon. 'L-

    binding site 1or ACh is in

    the extracelLularN-terminal

    domain o1 the a subunit. For

    each of the subunits,

    the

    M2 transmembrane egment ines

    the aqueouspore

    of the

  • 7/23/2019 Neuromuscular Junction &Synapses

    11/26

    214

    8

    /

    Synaptic

    ransmissionnd the Neuromuscur

    unction

    A SINGLE-CHANNEL

    URRENTS

    Single-channel

    currents

    PA)

    Embryonic

    ozJltS

    0

    Single-channel

    ^

    currents

    pA)

    -z

    0 20 40 60 B0 100

    120 140

    Time msec)

    B

    t-v RELATTONSHIPS

    2

    -100

    Embryonic

    crz0t6

    \naut,

    0rP.6

    have

    clilferent

    functional properties. The uniLary conduct

    ence of

    nonjunctionaL

    receptors 1s approximately 50%

    larger

    and

    the single channel

    iletime is longer in duraLion

    rhan thar

    of junciionaL receptors.The basis for this phe-

    nomenon

    is

    a difference n subunit composilion.

    The non-

    y t r ' r ,: . r r tc i

    o

    cn b r r

    onrc l

    ecPFlo15

    c r Den l . r r - rc r ' .o ln

    plex with

    a subunit composition of

    arp76 1n mammals,

    just

    as

    in rhe eLectric

    organ of the TolTedo ay. For the

    .luncriondl

    AChR

    in adult skeletal muscle, subsiitution

    ol

    an

    e subunit

    for the leta]

    7

    subunit

    results n a compLex

    ivlth tl.re

    composition

    arPe6.

    T e l u n . ' r o n " lr o p e r t e s l t . e t u o t ; p . o ' e e p t o - s

    l.ravebeen

    studied by coexpressrng

    he cloned subunits

    r.t

    ) , , ' . ,pu ,

    oocvre ,

    rgLrc

    B-84

    -Los

    pach c lamo eco .d

    ings of

    single

    ACh-activatedchannels n oocytes hat

    had

    been

    injected

    u'ith nRNA encoding either

    a,

    B. 7,

    6

    or

    a,

    B,

    e, 6.

    Measurements f currents at different

    vohages

    yreLded single-cl.rannel

    -V cun'es

    (Fig.

    8-BB) showing

    FICURE

    8 8. Properties ol embrlonic and

    adrlt acetylcholine

    (ACh)

    receptors

    fron skeletal muscle A, T he resulLsol

    pelch

    cLamp

    expe

    -

    rnenrs,

    sith

    lhe

    p:rlch pipeues in th o utside out configutation

    end the

    parch exposed o 0.5

    pNl

    ACh, are sumnarizcd ln thc rpper

    pdncl, rhe

    ir estigatoE

    expresscciLhc

    emb$onic AChR. $'hich has the subuni

    compositjon

    d:87.5, in Xdrril]rrls oc]tes. ln thc ldv.f

    ldnul,

    thc

    invesli

    garors expresscd hc

    .ldrlt,A.Chlt, $,hich has the subunii co]nposlion

    arB5.

    No(ice thlr rhe

    meen open times ar

    great,rr

    urr he errbfyonic

    forn,

    s'hereas Lhc unitary currens are

    greater lor the adult lornl. B,

    Ihe lrfo

    lires summarize d:ia that are simihr

    to those obtarned rn A.

    The single channel conductance

    of the aduLt lorm

    (i9

    pS) is hiilher

    rhan

    rhaLol Lhe

    eLnbry'tnlicorm

    (40

    pS)

    (Data

    {rori \,lishina M, Takai

    T,

    Imoro K. ei a]: lvloleclrlardisrincrion

    between feLaland aduLt forns

    ol

    muscle ceLl lchol ine

    eccpLofNaLure 21:406-411, 1986.)

    " h l "

    . . f l D r , l i D i r . n D . i r l i ? a ; r ^ 1 . < r r ' ) ' l *PL

    Lrdnrm

    >ro l r

    ier>

    -

    cle\eofrl.c.l i

    a d

    ,1nrp-e

    9r1n"11"n

    MolecuLar

    cloning of

    genes

    hat

    encode AChR subuniLs

    of the TorTedo ay electric organ and mammalian skeletal

    r

    . .1 , r

    cd ro rh " rd r t . f ' o t .on o [

    . . r r rge

    -umbcr

    o [

    relaLed

    genes for AChR channel

    proteins. For example,

    mammals

    have a family ol at

    least eight genes hat encode

    homologous

    a subunits of

    nicotrnic ACh activatecl

    ecep-

    L o

    .

    , l | e

    o

    s ,b r , n . r

    f

    t h ,

    - L r l . t "

    n u r c e

    e c e p l o - , -

    h p

    procluct

    of a gene called al. Seven

    additional genes des-

    iElnatecl

    2

    through

    aB encode a subur-rilsLl-rat

    re ex-

    pressed n neuronal Lissues.Only the proLein producLsol

    genes

    n1, a7, and aB bind the

    snake venom

    protein

    called

    a bungarotoxin.

    In

    addiLion,

    at least lour

    B

    sub-

    units

    exist. Besides he

    B

    subunit

    of the skeletal muscle

    AChR

    which

    is

    calLed

    B]-there

    are three

    neuronaL

    homologs

    (82.

    83. P+).

    Heteromeric associatron

    f differ

    ent combinalions

    oI these subunrts

    could potentially

    pro

  • 7/23/2019 Neuromuscular Junction &Synapses

    12/26

    (5-HT-

    receptor), lycine

    GlyR),

    and GABA

    (GABA,

    re -

    , e f . u i . A q m n t . n c d p c \

    o u r ) .

    \ r h l

    r n d

    5

    H l r e

    ceptor channels are boLh

    permeable

    o cations and

    thus

    produce

    exciLaLory urrents, rl''hereas lycine

    acti\,ated

    ancl

    GAB{,

    chrnnels are permeable

    o anions such as Cl and

    produce rnhibitory crirrenls. Fillure

    8-9 shorvs exanples

    o - r r J \ r o r . n p c

    . r r d

    L r r r i t a r

    l

    .

    r

    c n L -

    n e d

    a L e q

    _

    5 1 ,

    - e

    r .

    r v r t e d

    d u { B A . . h . r

    . l -

    C l " n e d

    e , c >

    e n -

    '

    od i -g

    .u lun t

    -

    o

    hc- .

    a t to r ' r p lu r . rnn , r

    r .oJe

    t ) t r ' . c i r -

    h . r '

    1 , o n o l o o . u . .

    q r

    h R > L r b - '

    .

    f h . r

    primary amino acid sequences harc a common arrangc-

    ment of ML, N {2. M3, and M4 transmembraneegmenLs,

    as

    described arlier or the mcotinicACl.rR

    see

    Fjg. 8-7).

    T L

    - e

    p r o L e L h . s l b . l o n g

    r o

    - J E .

    d c r e

    r . r r y r L J l

    is knoi,vn as the

    ligand-gated

    ion channel

    superfamily

    f p

    L 0 \ .

    . , o r . ,

    . e r l r l , . i .

    o l l - c . c

    I

    n c -

    . u t L , . r - . L J l

    ' h p .

    ' ^ ' "

    . , I n , a , r c e - l o

    h , b

    - j .

    r o r

    . r . L r T

    \ c

    - .

    r r r i , ,

    . ' e . r ' \

    \

    a D D c r o c - i d e

    ' l '

    1

    rvjthin

    the tr42 segmenr. 4utatlon

    of only three resLdues

    ri.ithin Lhe

    M2

    segment of a cation-selective subunit of

    a neuronal

    nicotinic

    AChR is sufFcLent o conven it

    lo an

    anion-selectrve hannel actlr.ated y ACl.r.

    AcetylcholineReceptorChannels

    Cannot

    Open

    Until Two Acetylcholine

    Synaptic

    ransmission

    nd he NeuaomLrscular

    unction

    8

    0

    1

    2

    3

    Equation 8- I

    ln the case of an cgoni-st ctivateclchannel, such as the

    AChR channel, ar least

    one additional state must be

    p r ee n l b ( . l J - \

    t h ,

    . o ' c d

    . r ; n n . c :

    '

    e i t h e r

    ' r n d

    l B

    nisl or not:

    Equation 8-2

    a - la . r.-]

    Closed hannel Closed hannel

    Open

    channel

    No aElonist Agonist lound Aplomstbound

    I t h i . t r ' . . p - h , ' c

    L h c l o : c d L , . L c

    , I

    o t . ' ec . r o

    nel must brnd one molecule of the agonist ACh

    Lo lorm

    J r d s ^ r i - l " u n C \ n n " l

    L . r r

    -

    . l o , " d

    l r

    ' - 1 e

    . ;

    r

    r ,

    . , . - -

    , l _ , n " , I r l - ,

    (AO).

    Llon'evcr. even this scheme s oi'er1y

    simplistic be-

    cause

    u.e knolr,

    that each of the two cv subunits of the

    AChR channel must bir.rd ACh srmultaneously for the

    cl-rannel o open:

    215

    A GLYCINE

    Macro-

    scopic

    current

    (nA)

    2

    0

    S ngle-

    "

    hannel

    '

    current

    -4

    (pA) -6

    -8

    0

    _,1

    0

    _,1

    B GABA

    2 3 4 5 6

    Tinre

    (sec)

    2 3 4 5 6

    Tirne

    sec)

    Macro-

    scopic

    cutrent

    (nA)

    5

    ngre-

    -

    channel u

    curreni

    -2

    (pA)

    4

    1000 1500

    Tme

    msec)

    FICURE B

    9.

    (:ltfrcnrs

    acttrrred by glycrne and 1aminobut).ric Acid

    (cAB,\)

    ,A These e\pernrcnts Nere performed on culLurcd mousc splnaLcord

    neurofs usjng

    palch

    clamp lechniques The lcli pnncl

    sho*,s

    rhe

    macroscopic Cl clrrrcnl,

    *hich

    s rneasured n the rvhole ce11

    on[iguration and

    c a r r i c d b 1 ' g l 1 c L n e | e c c P l o ] ( G \ ' R ) c h a n n c l s t v h e n e \ p o s e d 1 o g ] l c i l 1 ' T h e l l g h t p d n . l s h o r i ' s s l g l c . c h a n n c l

    ouL

    patch

    conngufallof

    In

    both scenariLrs, he hol.ting porenlial \\'rs

    -70

    m\r n, The L/t pancl shoNs rhe mrcros.opic Cl currenr

    ihai

    is

    carried bv

    a;ABA,

    re.eptor chan ncls when exposed

    to CABA. The lighl

    pdncl

    shors single-chamreL

    urrents

    (Det:r

    lroln Bofmann.l,

    Hamill OP. Salinann B:

    \ ' lechxnjsnofaniLrnpernreet iL lL, rLhloughchanrre

    Equation

    8- 3

    2o

  • 7/23/2019 Neuromuscular Junction &Synapses

    13/26

    216 8

    /

    Synapticransmission

    nd heNeuromoscular

    unction

    charLnel,

    ncluding some local

    anesthetics, ct

    by enteing

    rhe lumen

    of rhe channel and

    blocking the flow of ionic

    current.

    Figure B-l0A shorvs he results

    of a patch-clamp

    experiment

    in

    which

    a single AChR

    channel opened and

    closed n

    response o its

    agonist, ACh. After adding

    QX-

    222, an analogof the loca1anestheticagent idocaine (p.

    189), to

    the extracellular slde,

    the channel exhibits a

    rapidly flickering behavior. This flickering represents

    a

    series of

    brief interuptions of the

    open state by numer-

    ous

    closures

    Fig.

    B-

    10B).

    This tlpe of flickering

    biock is

    caused

    by rapid binding and unbinding of the

    anesthetic

    drug to a site

    in the mouth

    of the open channel. When

    the drug binds,

    it block the channel

    to the flow of ioru

    (ArB).

    Conversely,when the drug dissociates,

    he channeL

    becomes

    unblocked

    (ArO):

    Equaron 8-4

    -

    d / O - A r B

    Blocked

    Channel

    blockers have proved

    to be effective tools to

    study the mechanism of ion pemeation. For example,

    QX-222

    helped ln locating

    amino acid residues on the

    M2 transmembrane

    egment hat form part

    of the blocker

    binding

    site, thus identifiring residues hat line

    the aque-

    ous

    pore.

    Miniature

    End-Plate otentials

    eveal

    he

    Quantal

    Natureof Transmitter

    Releaserom

    the Presynapticerminals

    Under

    physiological conditions,

    an action

    potential

    in a

    presynaptic

    motor newe axon produces

    a depolarizing

    pastsynaptic

    PP rhat

    peaks

    at approximately

    40 mV more

    positive than the

    resting

    V.. This large signal results

    rom

    the releaseof

    ACh from

    only about 200 sp.Laptic esicles,

    each containing

    6000 to 10,000

    molecules of ACh. The

    neuromuscular

    unction

    is clearly designed or

    excessca-

    pacity inasmuch as a single end plate is composed of

    numerous

    s)'napric contacts

    (-1000

    at the frog muscle

    end

    plate), each with an active zone that is lined with

    dozenr

    oI

    malure

    Synr'ptrc

    esicles.

    hus, a large

    -rer

    tory

    of ready

    vesicles

    )l0a),

    together with the

    ability to

    s)'nthesize

    ACh and package t

    into new vesicles,allows

    the

    neuromuscular

    unction

    to maintain

    a high rate of

    successful ransmlssion

    without

    significant oss of function

    as a result of presy.rapticdepletionof vesiclesor ACh.

    The originaL

    notion

    of a vesicular mode

    of transmitter

    delivery

    is

    based

    on

    classic observationsof EPPs

    under

    conditions

    of reduced ACh release.

    1n 1950, Fait

    and

    Katz observed

    an interesling kind

    of electrophysioLogic

    "noise"

    in their continuous, high-resolution

    recordings of

    V- with a microelectrode nserted at the

    end-plate region

    normal EPP, they were named miniature

    end-plate po-

    tentials

    (also

    known

    as

    "MEPPs"

    or "minis").

    These ob-

    servations

    suggested

    hat even in the absence

    of

    nerve

    stimulation,

    there is

    a certain low probability

    of transmit-

    ter release at the presl'naptic

    terminal, resulting in rhe

    opening ol a small number of AChRs n the postslnaptic

    membrane.

    An

    examination of the size

    of

    individual

    MEPPs suggested hat they

    occur

    in

    discrete muLtiplesof

    a unitary amplitude. This findlng led to the

    notion that

    ACh release s quantized,

    with the

    quantum

    event corre-

    sponding

    to ACh release rom

    one slnaptic vesicle.

    Another way of studying

    the

    quantal

    releaseof ACh is

    lo stimulate the preslnaptlc motor neuron

    and monitor

    V-

    at the end plate

    under conditions when the probabil-

    ity of ACh release s greatly

    decreased.How can we de-

    crea5p

    he

    probability

    o' ACh release? he a-nplitude

    ol

    the EPP hat is evoked n response

    o nerve stimulation is

    de.reased 1 lowering

    [Ca2

    1.

    ard

    -creasinS

    [tt4g'

    . A

    low

    [,-;2 l.

    decreases

    a

    '

    errD

    nro

    Lhe

    pre'ynapLic

    re r r

    a l

    rF ig .

    B

    2.

    s t ry 3 ) . A h igh

    IVg, ] .

    pan ia l ly

    blocks

    the pres)-naptic

    Ca'z* channels and thus also

    de-

    creases

    Ca2+ entry. Therefore,

    the consequenceof either

    decreasedCa'z*1" r increased Mgz*J. is a falL n [Ca'zt],

    in the

    presFaptic

    terminal, which reduces transmitter

    releaseand thus the amplirude

    of the

    EPP

    (Fig.

    I 11).

    Del e"-tr l lo

    and Kat-

    explorted hrs suppressior

    f trans

    miter

    reLease

    nder conditiors of 1ow

    [Ca,*].

    and high

    fMg'?*1"

    o obsewe the

    V- changescausedby the quantal

    releaseof transmitter. Figure

    B-12A shows seven super-

    imposed

    records

    of MEPPs hat were recorded

    rom a frog

    muscle hber during seven repetitive trials of newe stirnu-

    lation under conditions of reduced

    [Ca'z*].

    and elevated

    l \ , 4 o r I T h e r c , a r d < z r c r l i o n p r l r r r h p n n < r i n n n f r h e

    nerye

    stimulus

    artifact. The amplitudes of the peak re-

    sponses

    occur in

    dlscrete multiples of approximately

    0.4

    mV. Among the

    seyen records were one

    "nonfe-

    sponse,"

    two responses

    of approximately 0.4 mV, three

    response) l approximatell0.8 rV. ard

    o-e re5ponse [

    appro \ lma le l )

    1 .2 mV.

    One o [ the record ing< l .o

    -e -

    vealed a spontaneousMEPP with a quantal amplitude of

    approxlmately 0.4

    mV

    that appeared ater in the

    trace.

    Del Castillo and Katz proposed

    that the macroscopicEPP

    is the sum of many unitary

    events,each having a magni-

    tude of approximately 0.4 mV. Microscopic

    observationo[

    numerous vesicles n the synaplic terminal naturally led

    to the

    supposition

    that a single vesicle eleases relarively

    fixed amount of ACh and therebv

    Droduces a unitary

    MFDP. c.o rd ing o tn jsv iew. he qu in r izedVEPP< nus

    cor

    espond o lhe f l..or of

    d'screte

    urrbers

    of svnapti.

    *

    ves iL .e>

    , l , 2 .

    l ,

    and so on .

    @

    For elucidating the mechanismof

    spraptic transmission

    at the

    neuromuscular

    unction,

    Bemard Kaiz

    shared the

    .

    1970

    Nobel Prize

    n Physiologyor Medicine.

    @

  • 7/23/2019 Neuromuscular Junction &Synapses

    14/26

    Synaptic ransmissionnd he Neuromusculaf

    unction

    8 217

    CONTROL

    FIGURE

    8-10. The ef fectof a local

    anestheric n

    rhe acerylcholLLle

    eceplor channeL

    AChR)

    A, Sin

    gle-charnel

    recording ol nicotinic ACh receplor

    ex

    pressd n a

    .Xenopfts ocyre The patch

    rvas n rh

    ou[side

    out conllguralion, and the holding potentia]

    rvas

    -150

    mV. The continuous presence

    of

    L

    pM

    A r

    ' . u * d

    b

    "

    \ , r r e o p r g B . l l - ,

    e ' l

    i

    ment is similar

    to

    lhai

    in A,

    excepr hat in addition

    Lo rhe ACh,

    the lidocaine

    analog

    QX

    222

    (20

    /rM)

    was

    preseni

    at

    the

    exrracellularsur{acof th recp-

    1 . . -

    - ,

    | , c l

    \ o

    p

    ' r r

    e

    t r "

    r r " l

    o p n . r g . - d ,

    ^ r p , n r

    o b .

    r . T , .

    l i

    r " r

    " g

    a . : d L , r n a n o r c f

    channel

    closures

    The

    dme scale of th lower

    panel

    is expanded

    10 fold.

    (Data

    rom Leonard RJ, r-abarca

    CG. Charnet

    P, et al: Il,rdence that

    lhe M2

    mem

    brane'spanning

    region lines rLle on

    channel

    pore

    ol

    rhe nicot in ic

    recepror.

    Science

    242:1578-1581,

    l9BB.)

    500

    750

    Time

    msec)

    B LIDOCAINE

    NALOG

    close to the

    pres).naptic

    erminal membmne o[ a leech

    neuron lhat uses serolonin as its only neurotransmitler.

    The carbon liber is an electrochemica]detector of sero-

    ronin

    (see

    Flg. B-13A), the currenl measured

    by this

    electrode

    corresponds

    o

    four

    eLectrons

    er

    serotonin

    mol

    ecule

    oxidized at the

    tip. Stimulating the

    leech neuron

    to

    produce an action potential aLsoelicits an

    oxidation cur-

    rent, as measuredby the carbon hber, that corresponds

    o

    rhe releaseo[ serotonln. At a

    [Ca'?*].

    of 5 mM, rhe cur-

    enr

    J arge nd

    r

    omposed 'man, 'mal l

  • 7/23/2019 Neuromuscular Junction &Synapses

    15/26

    218

    8

    /

    Synaptic

    ransmission

    nd he NeLrromuscular

    unction

    A MINIATURE

    ND-PLATE OTENTIALS

    MEPPS)

    0.9

    (rnv)

    0.3

    molecules.

    Thus, the

    amount of serotonin releasedby the

    small

    slnaptic

    vesicles of the leech

    neuron is about half

    l.JLrfiber of

    q',jania

    the str.englh

    f a particular

    slnapse and thereby

    give

    rise

    ro

    dn l l t c rar .on bchauor . hree

    ype-

    o

    5) r r , : rpr

    moo

    -0.3

    22

    20

    1 8

    1 4

    1 2

    1 0

    B

    6

    4

    2

    0

    0 5 1 0 1 t

    Time

    msec)

    DISTRIBUTION

    F

    \,1EPPN4PLITUDES

    Number f

    observations

    0.8 1 .2 1 .6 2 .0 2 .4

    Amplitudef EPP

    mV)

    Number

    of

    quanta

    released

    x)

    FICURE 8-12. Evoked and sponlaneousminiature end-plate potentiaLs MEPPS)A, The rnvstrgators ecorded y,,, in trog skeleral nuscle ibcrs LhaL

    rvere exposed o

    extracellular

    solulions having a

    tca'z'l

    of 0.5 mM and a

    IMg,'l

    of 5

    mN4.These alues mininrize

    lransrnifter

    release,

    nd

    (herefore

    t

    rvas possible o

    resolve he srnallesrpossible

    MEPP, whrch correspondsLo

    the

    reLease f a single synaptic vesicle

    (i

    e

    ,

    1 quantum) The invenjgators

    stimulatd

    Lhe molor

    neuron

    seven consecutive imes and recordd the

    evohed MEPPS

    ln

    one irial, ihe stimulus eloked no

    response

    0

    quanta).

    In

    rwo lrials,

    the

    peak MEPP was

    ebout 0.4 mV

    (1

    quantum). In LhreeoLhers,

    he

    peek responsewas

    abour 0.8 mV

    (2

    quanla)

    Finally, in one, rhe

    peak

    was about

    l.2mV

    (l

    quanta)

    ln once

    case,e MEPP ol Lhe smallest magnirude appeardspontaneously.B, The histogram summarizes

    claLa

    rom 198

    trials

    on a ca

    neuromuscular

    unctioLl

    in

    Lhe

    presencc

    of 12 5-mM extracellularMgz . The data are in bins $'r h a width of

    0.1

    mV The

    disiribution

    has ight

    peaks The first represenls

    limuli that evoked no responses. he

    olher seven

    epresentslimuli that eYokecL EPPS haLwere

    rcLlghlyLntcgral

    muhiples

    of the smallesr

    MEPP

    Thc cur.,'eoverlying each clusrer ol bins

    rs a

    gaussianor'normal" luncuon

    and facjliralescalculaiion of the average

    MEPP for each cluster

    of

    bins

    The peak

    r,rlues of these

    gaussians

    ollow

    a PojssoLl

    istribution.

    (Data

    trom Magleby KL: Neuromuscular

    ransmission.

    In Engel AG, Franzini-Armsuong C (eds):Myolo$/, Basicand Clinical, 2nd ed r.welv orL. Mccraw-Hil1, pp 442 ,163,1994.)

    3.2

    .4

    Gaussian

    urve

    for5

    quanta

  • 7/23/2019 Neuromuscular Junction &Synapses

    16/26

    A EXPERIMENTALPREPARATION

    Synaptic ransmissionnd the Neuromuscur

    Junction

    8 219

    SEROTONIN

    ELEASE

    (mv)

    Current

    orcatoon

    fiber

    pA )

    80

    ./Serotonin

    Postsynaptic

    membrane

    /iled

    and

    pronour]ced

    ncrease n transmitter release

    hal

    , . . - r ' :

    I

    . t r

    i ' , , -

    1 -

    ' d o l r i g l rf c . . u c r r c )

    \ ' .

    i r - r - u -

    larion. This ellect can lasL br minuLcsafter the conclition

    lng stimulus.

    Petentiatior-l av

    be causecl y' a

    ll.rtoc,

    ol

    1 r ,

    r e

    e

    \ L

    F i r e . ^ , h I . - L a . e .

    (

    "

    i n

    L c

    I ' r . - . -

    naptic erminaL

    nd thus rncreases

    he

    probability

    of exo-

    cytosis.

    Sl-naplic

    depression Ls a lr.l sicnt decrease n the

    elfr-

    L c r ' . )

    o L

    J . . r ' r . 1 . . -e l . J

    - r r , l .

    o r . n , l .

    n l

    ) .

    J . , o r \

    It ' luoo

    L i

    "

    10msec

    Sn-a clea.,a., .a'n,""*ne.h ra,+'v,'*.y-.*.-^

    +

    vesces

    \ l

    r.^,,*"*-.-**"*****"*.4

    Curreri

    \

    I

    o ' carbon

    '

    \ /

    fioer

    pAr

    [*.' t

    ",*"*,,."*.

    ****,

    I

    l-*'

    {ywdl"airp.n****r,r,,r+,,r,.r*r.y,

    ' /

    : : i : " " "1" ,J: :

    . ' ' * * , ' t *u ' t , i . . , t t t - ; , , , - .n^* t /

    I

    --_1

    u

    oo

    .

    10msec

    Stimulus

    artilact

    F | c U R E 8 ] 3 ' D c t e c 1 i o ] r 0 [ s c r o L o n l n d r a L L s l c l c a s c d | r o n s Y n t 1 p t i . v e s i c l e s 1 , . I h c s c r o ( D L n

    n c u r n . l n b c d e t e c t e d e l e c t r o c h e n l i c e l l 1 ' u s L n g a c l t b o n | r b e r n r l c r o c L c c L r o c l c I h e c u [ e n | c l r r ] e d b 1 l h e

    rccordccl

    ront

    ( b l g h l e \ ' e ] o | 5 c r o t o n i n r e L e a s c ) a n d a [ ( - ^ : - ] . , ' o |

    rd illLlsrLiLes

    h.rt the Ielease

    \ ' e s i C 1 c s l n d l a L g c d c n s c c o l e R s i c I e s ' b o t h o | w h i c h c 1 n l l . l l 1 ) s e r \ c d

    .-ensmilrcf

    fele.rse rom single

    s)'napric

    csiclcs

    N.{urc 377:62 65. l9g5

    )

    ' C . - . '

    r , . h . '

    - r r .

    f

    r r , . d o J - rt

    l n ,

    - . a n d . n g

    o , r r ,

    dir iclual

    nene

    ternrinalsmay

    learn"

    p.

    318)

    Synaptic

    Vesicles

    Package,Store, and Deliver

    Neurotransmitters

    f n e D h . . o . " , o l - \ n

    r . . r

    r . r . i . r ' r o nr

    h . - r r ,

    . r l

    t h , n c ' r - . b )

    . n J o .

    , n , .

  • 7/23/2019 Neuromuscular Junction &Synapses

    17/26

    22O 8

    /

    Synaptic

    ransmission

    nd he Neuromuscular

    unction

    A B IOGENES]S

    Endoplasmic

    reticulum

    ,/+s.

    N,4yelin

    heath

    W)

    . Y Y

    cts. trans

    Golgi

    Golgi

    ---.-.

    Endosomes

    (veslcles)

    ucleus

    CELLBODY

    Nerve

    Terminal

    B EXOCYTOSIS

    FIGURE 14. Slnihesisrnd ,eclcJmg

    f sy'naprLr:

    resrcLes

    nd hcif

    onLcnL

    . . ,

    q

    o r .

    p , r L . \ , .

    L .

    .

    i J . r [ ' e J . r

    o

    .

    f r ,

    . l L ,

    ,

    LhaL are

    homologous

    Lo those associatecl \ritlt

    s).naptic

    vesiclesol higl-tervertebrates.Thus, the processesuncler-

    I ) n -

    . l u . i o n | c t c t

    1 L ,

    r J r

    ' , a

    lular exocl,Losis nd encLocytosis.

    Synaptic

    r.esrcles

    are sphelical

    organelles

    wtrh

    a cliame

    Ler of

    '10

    to 200 nm. ,\s

    shou,n rn Flgure

    8 14A, syrap,

    r ic

    vesicles are procluced n

    rhe neuronal

    cel1 boc\, by a

    process similar ro Lhc secretory pathway

    (p.

    36).

    - lhus,

    port

    (p.

    26) mediated

    1.the microtubule

    system, 'hich

    alsocarrLes itochondria

    o the ten-ninal.

    VesiclesdestinedLo c ontain pepti,le eurotransmjtters

    travcl

    down

    the axon with Lhe presynthesizecl eprLdes

    r

    pcplide

    precursors

    already .rside. On arrival

    at the ner\.c

    terninal

    (Fig.

    8-148). the vesicles-now

    calledsynaprlc

    vcsicles Lhat carry pepticle

    -reurotransmrtters

    ecome aL

    tached o the acrinbasecL

    yLoskeleLaLet\\'orh.

    Other ves

    . . 1 , . . ' c .

    ' l c J

    , r i h

    r o n f . . J n ,

    u o d r - n

    r ,

    r -

    c . g . .

    Vesicleand peptide

    neurotransmitter

    recursors

    nd

    enzymes

    rc synlhesizedn ihe

    cell and are released

    rom Colgi.

    Vesicles

    ravel through the

    axon

    on

    rnicrotubr e tracks

    via

    fast axonal ransport.

    Peptidc

    ncurotransmitters

    are

    already n somevesicles.

    Nonpeptide

    neurotransmitters

    rc

    sy1'Ithesized

    nd transported nto

    vcsicles he n nerue ern]inal.

    A nonpeptide

    neurotransmitters

    svnihesizedn the nerve erminal

    and transported

    nto a

    vesicle.

    **:;oii

    a. ) - f l

  • 7/23/2019 Neuromuscular Junction &Synapses

    18/26

    OUTSIDE YNAPTIC

    ESICLE

    INSIDE YNAPTIC ESICLE

    Synapticransmission

    nd heNeuromuscular

    unction

    8 221

    cles

    p..12)

    recolers

    membrane ompenents

    nd recycles

    them to an endosorne

    omparLmentn Lhc erminal.

    Syn-

    ap1lc

    vesicles

    may then be reformed

    within rh e rerminal

    for

    reuse in

    neurotransmission,

    or the)' ma)' be

    trans-

    ported

    back ro Lhe ccll bod).for tu].nover

    nd degrada

    Lton

    ,

    i r .

    r

    r L .

    b . u r . ,

    d . .

    . L u

    ,

    n , n l l , " I ' e n o u .

    ) s -

    tem zrnd heir- elatively'

    niform sizeand

    molecular om

    posit ion,

    ynaptic esjcles

    an be obrained n largequantr-

    t ies

    trom

    ya

    ous sources

    uch

    as

    the rat bra in and

    the

    eleciricorganol the loipf, lo ray. The puril ication

    of

    syn,

    aptrc

    veslcleshas

    n.rade t possible

    to anal)'zeLheir com,

    position, r,vhichhas

    hciLitaLedgene cloning

    ancl the mo-

    lecularcharacterizatjonl nra[y proteins hat are ntrinsic

    to

    s)'napticvesicle

    function. Figure

    8 15 sunmarizes

    a number ol the n-rajor

    lasses f s)'naptic esiciepro-

    te ins .

    l

    .

    , L e

    ,

    n l ,

    l t . J (

    t . , l o 1 a '

    r .

    1 e

    - .

    r , ,

    u r . .

    phshedb1.the combinaLion

    l a vacuolar

    ype

    H' ATPase

    ' t

    l

    t .

    r

    ' r r o

    , I

    r L

    t . . n

    - o t .

    r l r o . c t n .

    p

    \ a c u o l a r .

    type

    H+ pump

    is a large, n.rulLjsultur.rir

    omplex

    thar

    cat;r1,vzeshe inr'varclmovemenl of H- into

    the vesicle,

    coupled Lo the hvdrol l,sis

    [ cyrosolicATP

    to adenosine

    diphosphrte

    ADP)

    and inorgar.riclosphaLc

    p.

    64). The

    resulting pH

    ancl

    voltage gradients

    across

    tlte vesicle

    ' ' _

    "

    ,

    . . , . t o l r

    ) n t L e r J i n L J

    the \esicle by a unique fami\'

    ol neurotransmitter

    trans-

    por t pro te ln< l

    \ . h"

    I

    Pur^ l r .n-

    r ' l '

    -

    In

    |

    .

    c )

    tosol

    for Hf in

    the r.esicLe.hls family'

    of transporrers

    includes members

    specilic br ACh, monoanines

    (e.g..

    serotonin).catccholaminese.g., norepineplrrine), lr,rta

    male, i1nd

    GABA,/glycine

    Another cl onccl sYnaltt ic esicle protein

    named

    SV2

    (Ior

    synaptic vesiclcproteln2)

    structurally esembles

    transpor-t

    rotein:

    hou'er.er,

    transpor-t ubsLrateor

    SV2

    l.urs

    not

    been icLentillccl ncl is function

    is unknor,r'n.

    Synaptobrevin is an lg-kDa

    s).naptjc vesicle

    prorcin

    contalning one transnembrane scgntent.

    SlmapLobrevin,

    which is a v-SNARE p. 39), ]s essentialor transmitter

    ielease.As

    discussecln the next section,

    slnapLobrei' in

    nn

    tL.

    , t

    i , n r

    , r ' ,

    -

    I

    ' - r ' .

    . - r

    . r '1p | .1

    \ '1

    . \ \

    . -s

    ' p r T

    o n

    r , ,

    . . . I 1 ; .

    , .

    r 1 L r .

    , n C

    " ,

    p - d t \ .

    . c .

    .

    ,

    l . r .

    n l f . , c . ' .

    1

    r , 1

    1 t

    1 , " 1 , 1 i . 1 , 1 1 . '

    ) : r .

    B , D , l , . n J

    { .

    are

    encLoproteinases

    hrt digestsynaptobrevin

    nd a re po-

    , . n t r n h h r n ' - n l - . n , ' r r i . . - ' . 1 ,

    ' | \ o

    ) ' o

    Rab3 is a mcmber

    ol a

    large anrily

    of lou-molecular-

    rveightGTP

    binding

    proreins

    har appears o be unl\,er-

    sally invoLvecl n cellular membrane

    rafllcking

    (p.

    39)

    via

    the blnding and hydroLysisf

    GTP.Synaptotagmin s he

    slnaptic

    :esicle

    az' recepLor, proLein

    'ith two external

    repetiti\'e

    domains tl.iaL re homologous

    o the C2 clonuin

    of

    protein l

  • 7/23/2019 Neuromuscular Junction &Synapses

    19/26

    @

    222

    8

    /

    Synapticransmissionnd heNeuromuscular

    unction

    s).naptic

    Yeslcle

    proteins that are phosphorylatedby both

    cyclic adenosine

    monophosphate

    (cAMPldependent

    and

    calmoduLin-dependent

    protein kinases. Interactions

    of

    sl,napsins

    wlth

    cytoskeletalproteins

    and their

    inhibition

    by

    phosphorylation

    have led to the notion thar s)'napsins

    normally mediate the attachment o[ synaptic vesicles o

    lhc ac

    n cytos l ,e le to l

    W' t l ^ r , rL -edsen

    [ (

    a

    I

    ; r rd

    subsequent

    phosphorylation, the synapsin detaches and

    permi ts

    e . lc

    e ' to

    ro \e

    io a t . i re ' i tes a r ,he ' y .nao- i ,

    membrane.

    Neurotransmitter

    ReleaseOccursby

    Exocytosis f SynapticVesicles

    Al houg.

    rhe

    necha-

    sn by

    wn.L

    s1-ap t ic

    es ' .

    e ,

    fu ,e

    with the plasma

    membrane and release

    heir

    contents is

    far from

    fuLLy nderstood, ve have working models

    (Fig.

    8-16)

    for the function of various ke)' co-Oon"rlrr und

    steps

    involved in s)'naptic

    vesicle

    release.These models

    are based

    on a

    variety

    of

    in vitro

    experimenls.

    The

    use of

    speciflc

    toxins

    that acr at nerve

    slnapses

    and elegant

    functional studies of genetic mutanls in Drosphiha, C.

    elegans,

    nd

    gene knockout mice have provided important

    information

    on the roLeo[ various components.

    We

    have already

    ntroduced

    the key proteins located n

    the s)'naptic

    vesicle. Of these,

    we

    now focus on the

    v

    SNARE

    yrap tobrer -

    and the

    La sen)o- )mdPlo lag

    min.

    ln addition,

    several other protelns-Located in the

    rarget area

    o[ the presynaptic membrane of the nerve

    terminal-play

    an

    important role

    in the fusion

    process.

    S).ntaxin

    is anchored n lhe preslnaptic membrane by a

    single

    membrane-spanningsegment. SNAP-25

    (slnapto-

    come-eqsocir ' led

    rote1

    -21

    kDa)

    i. tethe-ed o tle

    pr e

    - ) r - ldpr r

    memhran(

    ia

    pc r

    to )

    ,de cLa in ,

    BoLh

    yr-

    taxin

    and SNAP-25 are I-SNARES

    (p.

    39).

    Borulinunr

    ro^ ; rsA ar rd

    t . r r \ch a -c e dop loLea 'e ' .

    ' pecf i , r1 ly

    cleave

    SNAP-25,

    whereas another endoproteinase,botuli-

    num toxin

    C],

    specifically

    cleavessyntaxin.

    These

    toxins

    b lock he us ion l synapt rcestc1c. .

    According

    to the

    model

    shown in Figure 8 16, dock

    ing of

    the vesicle

    o the pres)-naptic

    membrane occurs as

    n Secl

    dissoclates

    rom slntaxin. The free

    ends of s1'nap-

    tobrevin,

    s)'ntaxin,

    and SNAP-25

    begin

    to coil around

    each other.

    The result is a ternary compLex,an extraordi-

    narily

    stable

    rod-shaped

    structure o[ a helices. As the

    energeticaliy

    avorablecoiling of the three

    SNARES

    ontin-

    ues, th vesicle membrane is pulled ever closer to the

    pres),'naptic

    membrane.

    Car+

    enters

    through

    voltage-gated

    Ca2*

    channels

    ocated in register with the active zone

    of

    Lhe

    pre .w. rp t ic

    membrane.

    'o . : l

    in . e rse n

    [Cr ]

    triggers

    he

    final event, usion and exocytosis.The synap-

    ric vesicle

    protein synaptotagmin is believed to be the

    actual

    sensor

    of increased

    [Ca2+],

    because

    knockout n-rice

    whereas he , l ,n ra^ inand SNAP

    5

    on lhe p res)Tapl ic

    membrane are availabLe

    or

    the

    next round

    of

    vesicle

    fusion.

    The

    modeL

    ust

    presented eavesunanswered

    some

    im-

    portant queslions. For example, whal is the struclure of

    the fusion pore detectedby electrophysiologicalmeasure-

    menLsas a

    primary

    event

    in membrane fusion? Also,

    the

    model

    does not fuily explain the basis for the rapid catal-

    ysis of lusion by Ca'z*.Neuroscientists re very interested

    in the

    deLailso[ synaptic vesicle usion because his exo-

    cytotic

    process might be a target lbr controlling synapllc

    srrengrh

    and may thus play a role in the synaptic plasric-

    ity that is responsible or changes n animal behavior.

    Re-Uptake r Cleavageof the

    NeurotransmitterTerminates

    Its Action

    Eflective transmission across chemical syeapses equires

    not only

    releaseof the neurotransmitterand

    aciivaiion of

    the

    receptor on the postsynapticmembranebut aLso apid

    and e lh . ien tmechdn i ,msor removing he ran .m.L te r t

    synapses

    where ACh is released, hls removal is

    accom-

    plished by enzymatic destruction of the neurotransmitter.

    However, the more

    general mechanism in

    lhe nervous

    - r . re r

    r ro l res

    -e- r . t rLe

    n f

    the

    neJroL-dnsr ' t

    Ler

    ned. -

    ated by

    specific, high-affinity transporl systems ocated n

    the

    presynaptic plasma membrane and surrounding glial

    cel

    .

    fl-ese secordaryaclive r-d->po-L ys .emsu5e lhe

    normal

    ionic gradients

    of

    Na+, K*, H*, or

    Cl to

    achieve

    concentralive

    uptake of transmilter. Vertebrateshave two

    ots nct

    [a r ' res

    o f

    neL-oL_a

    n

    t re r

    I rdn5porL roLe >

    The first

    family is

    characterized y

    a

    common

    motif

    of

    12

    membrane-spanning

    segments and incLudes

    ransporte$

    wi ln

    >pec

    c i t l fo cr rec l -o lan ines.

    e roron ,n .

    ABA.

    1-

    c ine .

    and ,ho l ine . rnergy coup l ingo I l ranspo l in lh ic

    class

    o[ 'v,rems is generally asedon tor"ansporto[ the

    substrate

    with Na* and

    Cl

    . The second farnily is repre-

    sentedby transporters or the excitatory amino acids glu

    lamaLe

    nd asparLaLe.n

    i l -e 'e

    a t te '

    .1 te ' r ' .

    sub ' t -a te

    t r rnspor t

    Bener r l l )

    o

    rp l " ,

    o

    co l ra rcLdrunct ,o r . ALhF acl i l ) can be de-

    tected throughout

    the nervous system.The enz).meoccurs

    in a

    variety of physical forms. The globular or G forms

    exist

    as monomers, din-rers,or tetramers of a common,

    approximately

    72 kDa glycoprotein catalytic subunit.

    These molecules can be lound either

    in

    soLuble

    orm

    or

    bound

    to cer m.nb-a-e .v ia a CPI Ln lage

    p.

    t5 ) in

  • 7/23/2019 Neuromuscular Junction &Synapses

    20/26

    E

    Vesicles

    with svnaptotagrrinand

    synaptobrevin

    a

    V-SNARE)

    move

    to

    the nerve

    erminal membrane,

    h.hich contains

    yntaxinand

    SNAP-25

    both

    SNAREs).

    Synaptic

    ransmlssionnd he Neuromuscular

    unction

    8

    INITIALSTATE

    FORI\,1ATION

    F

    TEBNARY

    COIVIPLEXF SNARES

    q-SNAP

    and the ATPaseNSI bind

    to

    the ternary SNAREcomplexand

    use

    the energyof

    ATP

    hydrolysis

    o

    disassemblehe SNARES.

    TIGHTENING F TERNARY

    SNARECOI\,4PLEX

    The entry

    of Ca2*and ts binding

    to synaptoiagmin

    riggers usion.

    Synaplotagmin

    Synaptic

    I

    vesrcle_

    |

    .

    ,,,.,,,,

    ,,,

    l(

    . - t

    . ,F

    "

    ' ' a " /

    ' '

    . . t . .

    - \ l

    .

    - : -

    )

    .::

    :.

    . .,.. ::

    ::.:

    -

    ;hravin

    -

    '

    n-Sec-1

    l*

    ?

    n'Sec

    1

    memorane

    RECYCLING

    FSNARES

    0-SNAP\

    Zt

    n sec 1 dissociatesrom syntaxin,

    allowing

    the

    syntaxin

    ard

    SNAP-25

    o

    Iorm

    a

    complex.The distal end of synaptobrevin

    begins o

    l\rind

    around

    the syntaxin/SNAP-

    25 complex, onning a temary conplex.

    It

    The three SNARE5 synaptobrevin,

    syntaxinand SNAP-25-continue

    to form a tight bundle of o helices,

    draliring

    he vesicleand presynaptic

    membranes nto closeapposition.

    Syntaxin

    DISASSEI\,lBLY F TERNARY

    SNARECOMPLEX

    FUSIONNDEXOCYTOSIS

    fr

    ,-il

    ]

    With

    the endocytosis f the

    vesicle,

    he synaptobrevin

    is

    effectivel)'

    ecycled.The

    syntaxinand SNAP-25are

    now ftee

    for an additional

    cycleof

    vesicle usion.

    F | c U R E 8 - 1 6 ' N l o d e ] o | s ] n a ] r r i c ' e s i c ] e l u s i o n a n c | e r o c \ ) S i s , { D P .

    scnsiri|r

    lacLori sN.{l'-25.

    slnaptosone-associared

    rorein

    2i

    l{Da: d

    S\AP. solublc

    NSF rt(dchlnenr

    pforern:

    SN-\RF. SNAP

    r.LtPio

    o-SNAP

    D

    &

    NSF

    I

    I

    . )

  • 7/23/2019 Neuromuscular Junction &Synapses

    21/26

    8

    /

    Synaptic ransmission

    nd

    the Neuromuscular

    unction

    DISEASES

    FTHE

    HUMANACETYLCHOLINE

    ECEPTOR:

    MYASTHENIA

    RAVIS

    ND A

    CONGENITAL

    YASTHENIC

    YNDROME

    The term "myasthenia"means

    muscle

    weakness

    from

    the Creek

    mys

    and asthenia)

    nd is

    used clinically

    o

    usually

    mean

    weaknessn

    the absence

    f

    primary

    muscle

    disease, europaLhy,

    r central ervous

    yitem

    d'isorder.

    Myasthenia

    gravls,

    one specific

    ype of myasthenia

    and the mostcommon

    adult orm,

    afflicts 5

    to 125 of

    every1 mill ion

    people.

    t

    can occur

    at any age

    but hasa

    bimodaldistribution, ith peak

    ncidences

    ccurring

    among

    people

    n th eir 20s

    and

    60s.Those lf l icted

    t an

    early age tend to be women

    with

    hyperplasia

    f the

    thymus, whereas hosewho are older are more

    likely o

    be

    men wilh coexisting

    ancer

    t the

    thymus

    gland:

    Th e

    cellsof the thymus possess

    icotinic

    acetylcholine

    ecep-

    tors

    (AChRt,

    and the

    disease

    rises sa result

    f antibod-

    iesdirected gainst

    hese eceptors.

    he

    antibodieshen

    lead o skeletalmuscle

    weakness

    ausedn

    Dart

    bv com-

    petit ive

    nLagonism

    f AChRs.

    ymptomsnclude'fatigue

    and weakness f skeletal

    muscle.

    Two maior

    forms of the

    disease re recognized:

    ne hat

    involves eakness

    f

    only the extraocular uscles nd another hat resultsn

    generalized eakness

    f

    all skeletal

    muscles.n

    either

    (ase,

    myastheniaravis

    s

    ypilied

    by

    flucLuating

    ymp-

    toms,

    with weaknessrealesl

    oward

    he end ot the

    day

    or after exertion. n severe

    ases,paralysis

    f the respira-

    tory muscles an lead to

    death. Treatment

    directed

    at

    enhancing holinergicransmission,

    loneor combined

    with thymectomy r immunosuppression,

    s highly

    effec-

    tive

    in most

    patients.

    Progressowardachieving n understandingf the

    causeof myasthenia

    gravis

    was

    first made

    when electro-

    physiologic

    analysis

    f involved muscle

    evealed

    hat the

    amplitude f the miniature

    nd-plate otential

    was de-

    creased,although the

    frequency

    of

    quantal

    events

    was

    normal.This inding

    suggested

    ither

    a defect n the

    postsynaptic

    esponse

    o ACh

    or a reduced

    concentration

    of ACh n the synaptic

    esicles.

    major

    breakthrough

    occurred n 1973,when

    Patrick

    nd Lindstrom

    ound hat

    symptoms imilar o th oseof humanswith myasthenia

    developed

    n rabbits

    mmunized

    with

    AChR

    piotein puri-

    l ied rom the eleclric

    el.This indinq

    was

    shortlv ol-

    lowed by the demon stration

    f anti-AchR

    ntibodiesn

    human

    patients ith

    myastheniaravis

    nd a severe

    e-

    duction

    n the

    surface ensity

    f AChR

    n the

    iunctional

    folds.

    These nti-AChR

    ntibodies

    re

    directed

    gainst

    one or

    moresubunits

    f

    the receptor, here

    hey

    bind

    and activate ompl ement

    nd

    accelerate

    esLruction

    f

    the receptors,The most common target of theseantibod-

    ies s a reg ionof the AChR

    d subunit

    calledMIR

    main

    immunogenic egion).

    Myasthenia

    ravis

    s now

    recognized

    o be

    an acquired

    autoimmune isordern which

    he

    spontaneous

    roduc-

    Lionol anti-AchR ntibodies

    esulGn

    proqressive

    oss f

    muscleAChRs nd degeneration

    f poatju;ctional

    olds.

    patient's erum).Somepatients ith mya sthenia ravis

    havea thymoma

    a

    tumor of

    the thymus

    gland)

    hat is

    often readily eenon routine

    hest

    adiographs.n

    these

    patients,

    emoval f the

    thymoma eads

    o clinical

    m-

    provement

    n

    nearly75o/o

    f the cases.Enhancement

    f

    cholinergic ctivity

    s achieved

    hrough he

    useof AChE

    inhibitors,

    ith

    pyridostigmine

    eing he

    mostwidely

    usedagent.The dosage

    f thesedrugs

    must be

    carefully

    monitored

    to

    prevent

    oyerexposure

    f

    the remaining

    AChRs o ACh.

    Overexposure

    an lead o overstimuiation

    of the

    postsynaptic

    eceptors,prolonged

    depolarization

    f

    the

    postsynaptic

    embrane,nactivation

    f

    neighboring

    Nat

    channels, nd thus

    synaptic

    lockade.

    Another

    condition characterized

    y progressive

    muscle

    weakness

    nd fatigue s

    the Lambert-Eaton

    syndrome

    (see

    box on

    p.

    193).Lambert-Eaton

    yndromes

    caused

    by antibodieshat attack

    he

    presynaptic

    a2"

    channel

    and can be distinguished

    rom myasthenia ravis

    n sev-

    eral

    ways.First,

    t

    primarily

    ttackshe limb

    muscles,

    ot

    the ocularand bulbarmuscles. econd, epetit ive

    timula,

    t ion of a

    particular

    muscle eads

    o enhanied

    amplitude

    of the

    postsynaptic

    ction

    potential,

    whereas n

    patients

    with myasthenia, epetitive

    stimulation

    eads

    o

    progres-

    sive essening f

    the action potential.

    Thus, repeated

    muscle t imulationeads

    o increasinq

    ontractile

    trenqth

    in

    patients

    ith Lambert-Eaton

    yndr-omend

    to decreis-

    ing strength n

    patients

    with

    myasthenia.

    The term congenital

    myasthenic

    syndromes

    (CMS)

    refers o a variety of inheriteddisorders,presentat birth,

    lhal aflectneuromuscular

    ransmissionn

    a

    varietv

    f

    ways.Because

    pecif ic ases

    an nvolve cetylcholinester-

    asedeficienc, abnormal presynaptic

    elease

    f ACh,

    or

    defective

    AChR

    unction

    (without

    the

    presence

    f antire-

    ceptorantibodies),he signs

    and symptoms

    an alsovary

    widely. n 1995,an

    unusual xample

    f a CMS

    d;sorder

    was raced o a mutation

    n the

    o

    subunit

    of the human

    AChR.Single-channel

    ecordings

    rom

    biopsiedmuscle

    i-

    bers of a young myasthenicpatient revealeda profound

    alterationn AChR

    inetics. he

    burstduration

    of AChR

    openingswas

    greatly

    prolonged

    n

    comparison

    ith that

    of normalhumanAChR

    hannels. he

    molecular

    efect s

    a

    point

    mutation

    of Thr to Pro

    at

    posit ion

    64

    in the

    adult subunit

    of the AChR. his

    bminoacid

    esidue

    correspondso an

    evolutionarily

    onserved

    osit ion

    n the

    M2 membrane-spanning

    egment,which

    is nvolved

    n

    Jormation

    f the channel ore.

    Thus,a human

    mutation

    in the pore egionof the AChRprotein esultsn failure f

    the channe l o

    closenormall,

    thereby ausjng

    xcessive

    depolarizationnd pathologic

    onsequencest

    the mus-

    cle end

    plate.

    The aforementioned

    utation

    s only one

    of at least

    3

    mutationsn

    55 different

    inshipshat have

    been denti-

    f ied n the AChR.

    Someof

    the othe r mutations

    esult n

  • 7/23/2019 Neuromuscular Junction &Synapses

    22/26

    FICURE

    B 17. Pharma.oLogr of

    rhe rcrlebrate

    neuronuscular

    jun.

    lion N1:uy

    of thc pnneins rhal are

    jnvohed in slrapl ic lransmissron

    at

    rhe mammalian

    neuromuscLrlar

    lLrncrion

    a.c

    thf 1.rr8ers

    l

    narLrnll)

    occurnng or

    slnLLleLi.

    drugs

    The

    anugonEts rfe

    sbown

    :rs

    '

    signs

    highlithtd

    jn

    fcd

    Thc agonisLs re

    shown

    as

    +'

    signs hiilhlighted in

    gr..n

    . e r n \ d , r c

    " h , .

    I

    \

    d \ e . a L e

    l f o u p

    r

    . o . - r e n L

    )

    . . r .

    . l r l , o ' - r i n e u r n r r n n n , h n n n ; . , n f h F - F ^ . d - ' ,

    is the

    hydrolysLs and release

    ol this acetate.

    as

    \\,eLl

    - - r h e t c p

    p n / . n .

    \ r h

    " h - . f F .

    r r \

    - . o

    n , , i

    uplake

    syslem, he nerve lerminal recovers he chollne

    formed in Lhrs eactionand uses t lor the svnthesis f

    ACh.

    TOXINS

    AND DRUGS FFECTING

    SYNAPTIC

    RANSMISSION

    Much ol our

    knou'ledge

    of the s)'naptic

    physiology

    of

    the

    neuromuscularunction and the identltres f its various

    molecular

    components have

    been derived from experi

    , r l f . . F , m , n l n o r . o p n , , . , 1 , \ n - L - i

    l l e - r

    f r .

    i " n ; l

    d i

    - '

    o r o h ,

    )

    p - r

    - g . e 8 . 7

    illustrates he reLative yl.Iap lic ocation and corresponding

    pharmacology

    of AChE, as well as several on channeis

    irnd

    pfoteins

    involved 1n

    exocytosis.

    Synaptic

    ransmissionnd the Neuromuscular

    onction

    8

    entire

    process.

    s cliscussecln Chapter7, LhedepoLarlz-

    ing

    phase

    ol LheacLion

    otential s mecliated

    y voltage

    dependent

    Na'

    channels hat are specif ically Jocked ,v

    nanomolar oncentratiolrsl the small

    guanidiniun

    neu

    rotorins tetrodotoxin

    (TTX)

    and saxitoxin

    (STX)

    (see

    F ig.7 5C) .

    The mamba snaLe to)iin dendrotoxin

    (p.

    19.1)has

    an

    effccL haLs precisely pposi Le hatol TTX: it facilitates

    tl ' le

    release

    f

    ACh

    that

    is

    evoked by

    nerve

    stimulation.

    1pr ' .

    ^ r^ 1 \ / ' / ' |

    " f

    ,

    ) o \ rnr te \ , r . l

    e r . tLr -

    proteinsuJiih

    hreedisulf idebonds that block certain

    so

    f . m . , f , k . h ' n n l - h . n r n

    , r r - . . ] I ' r l i , r

    .

    . n . h P r . . , J . , t r n

    " t \

    L 6

    . l [

    -

    '

    " h . . .

    n r

    -

    - e

    r

    -

    - . -

    I n

    - c l .

    . , 1

    . .

    . l ' a . e ,

    in terminating he process [ transmltter elease. lockadc

    ol

    preslnapticK

    clrannels l dendrotoxin

    nhibiLs epo

    l a r z , t n o l

    i \ ,

    1 - , - 1

    , f l . r r ' n ' - h , r c L

    ; 1 r " l " r r g

    I n g l . J r ' i o n o ,

    c . , t o

    p t (

    r .

    , r d f u . r t - t . g

    L l r c

    releasc o[ transmittel in responsc to the entry of extra

    Caz-

    nLo

    he nen'e e rmLnaL.

    Acetylcholine

    Nicotine

    E

    d-Tubocurarine

    E.r-Bungarotox

    unction

  • 7/23/2019 Neuromuscular Junction &Synapses

    23/26

    226

    8

    /

    SynapticTransmission nd the NeuromLrsculaf

    TABLE

    A_2

    TARGET

    "

    h r n ,

    r

    i n l p , i n n

    L r

    h e c e

    l o q 1 q 1 , c d n l e d d t o

    death

    because he toxins that they slnthesize are potent

    inhibitors of neurotransmitter release.This inhibition oc-

    cum

    becauseboth tetanus and botulinum toxin proteins

    harez ' - t -depedenL ndopro re ina.e- r i \ i l y

    lab le

    8 2)

    These toxins enter nene terminals and specificallycleave

    three

    different proteins required for slnaptic

    vesicle exo-

    cytosis.

    Tetanus

    toxin and botulinum toxils B, D, F,

    and G

    cleave s1-naptobrer.in, n inlegral membrane pro-

    tein of the s)'naptic vesicle membrane. Botulinum toxins

    ( 1

    " - A

    a r r

    . " . - . . , , , . " t . . . , , . c y r t d y r n

    n J S \ A l 2 5 .

    two

    proteins associated

    with the

    preslrraptic

    membrane.

    These

    neurotoxins can have

    uselul

    medical

    applications.

    For example, botuLinum toxin is used Lo treat cenain

    disorders characterizedby muscle spasms. njection of a

    smal1

    amount of botulinum toxin into the eye muscles

    of

    a patient

    with

    strabismus

    a

    condition in which both eyes

    cannot

    focus

    on the same object because of abnormal

    hyperactivity of

    particular

    eye

    muscLes)s

    able to suppress

    aberrant

    muscLe pasmsand restorenormal vision-

    Both Agonistsand Antagonistsof the

    Nicotinic

    Acetylcholine

    ReceptorCan Prevent

    Synaptic

    Transmission

    The ionotropic

    (nicotinic)

    AChR channeL ocated in the

    posts)'napticmuscle membrane

    (see

    Fig. 8- 17) aLsohas a

    rich and diverse

    pharmacology

    har can be expLoi ted or

    clinical applications,as

    weLl

    as

    for

    elucidating many func-

    to-a l a .pecr . f t he neuro. rus ,u lar1 . - rn ,.o . . F igu reB-

    lB shows the chemical structures of two classes f agents

    that

    act on the nicotinic AChR. Theseagentsare

    cLassifred

    as

    agonistsor antagonistsaccording to whether they acti-

    \ a le

    open ingo1 the .hannel or prevent rc ac l iva l ion.

    Many agonists have a structure similar to that of the

    ' , lu rJ l

    neuroLrdn) r r . tLereh. In

    genera l .

    uch agonis t '

    activate

    the

    opening of

    AChR

    channels

    with

    the same

    u r i t a r y

    o n d u , t a n c e.

    t h o . e

    a . n v a t e d1 A ( h . b u r

    ^ h

    d. f ferenL e l ' c , o l chan ne ope-

    rg

    a-d

    co, ng rhe

    synthe


Recommended