+ All Categories
Home > Documents > Neutral Glycoconjugated Amide-Based Calix[4]arenes: … · 2017. 12. 13. · Nikola Cindro, aaJosip...

Neutral Glycoconjugated Amide-Based Calix[4]arenes: … · 2017. 12. 13. · Nikola Cindro, aaJosip...

Date post: 08-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
32
Neutral Glycoconjugated Amide-Based Calix[4]arenes: Complexation of Alkali Metal Cations in Water Nikola Cindro, a Josip Požar, a Dajana Barišić, a Nikola Bregović, a Katarina Pičuljan, a Renato Tomaš, b Leo Frkanec, c Vladislav Tomišić* a a b c ELECTRONIC SUPPLEMENTARY INFORMATION Table of Contents 1. NMR Spectra of New Compounds ...................................................................................................................... 2 2. Spectrophotometric Titration Data .................................................................................................................... 16 3. Microcalorimetric Titration Data ...................................................................................................................... 30 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017
Transcript
  • Neutral Glycoconjugated Amide-Based Calix[4]arenes:

    Complexation of Alkali Metal Cations in Water

    Nikola Cindro,a Josip Požar,a Dajana Barišić,a Nikola Bregović,a Katarina Pičuljan,a Renato

    Tomaš,b Leo Frkanec,c Vladislav Tomišić*a

    a

    b

    c

    ELECTRONIC SUPPLEMENTARY INFORMATION

    Table of Contents

    1. NMR Spectra of New Compounds ...................................................................................................................... 2

    2. Spectrophotometric Titration Data .................................................................................................................... 16

    3. Microcalorimetric Titration Data ...................................................................................................................... 30

    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2017

  • S2

    1. NMR Spectra of New Compounds

    P2 1H NMR (400 MHz, CDCl3)

    P2 13C NMR (101 MHz, CDCl3)

  • S3

    P3 1H NMR (400 MHz, CDCl3)

    P3 13C NMR (101 MHz, CDCl3)

  • S4

    L1 1H NMR (400 MHz, MeOD)

    L1 13C NMR (101 MHz, MeOD)

    Doubling of t-butyl signal, CH aromatic

    and CH3CN signals is a result of Na+

    presence in deuterated solvents which

    leads to some degree of complex

    formation. This was confirmed by ICP

    analysis of solvents used.

  • S5

    P5 1H NMR (400 MHz, CDCl3)

    P5 13C NMR (101 MHz, CDCl3)

  • S6

    P6 1H NMR (400 MHz, CDCl3)

    P6 13C NMR (101 MHz, CDCl3)

  • S7

    P7 1H NMR (400 MHz, CDCl3)

    P7 13C NMR (101 MHz, CDCl3)

  • S8

    L2 1H NMR (400 MHz, MeOD)

    L2 13C NMR (101 MHz, MeOD)

  • S9

    P9 1H NMR (400 MHz, CDCl3)

    P9 13C NMR (101 MHz, CDCl3)

  • S10

    P10 1H NMR (400 MHz, CDCl3)

    P10 13C NMR (101 MHz, CDCl3)

  • S11

    L3 1H NMR (400 MHz, MeOD)

    L3 13C NMR (101 MHz, MeOD)

  • S12

    Figure S1. Concentration dependence of 1H NMR spectra of L1 in D2O at 25 ºC.

    Figure S2. Concentration dependence of 1H NMR spectra of NaL1+ in D2O at 25 ºC.

    c / mol dm−3

    10−4

    10−3

    10−2

    c / mol dm−3

    10−4

    10−3

    10−2

  • S13

    Figure S3. NOESY NMR spectrum of L1 in D2O at 25 ºC.

    Figure S4. NOESY NMR spectrum of NaL1+ in D2O at 25 ºC.

  • S14

    Figure S5. Temperature dependence of 1H NMR spectra of L1 in D2O.

    Figure S6. Temperature dependence of 1H NMR spectra of NaL1+ in D2O.

    t / ºC

    25

    80

    t / ºC

    25

    80

  • S15

    Figure S7. Temperature dependence 1H NMR spectra of P3 in MeOD.

    t / ºC

    25

    50

  • S16

    2. Spectrophotometric Titration Data

    L1

    250 260 270 280 290 300

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    A

    / nm

    (a)

    0 5 10 15

    0.7

    0.8

    0.9A

    n(LiClO4) / n(L1)

    (b)

    Figure S8. a) Spectrophotometric titration of L1 (c = 2.53 × 10−4 mol dm−3) with LiClO4 (c = 5.18 ×

    10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 280 nm on n(LiClO4) / n(L1) molar ratio. ■ experimental, ─ calculated.

    255 275 295

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    A

    / nm

    (a)

    0 1 2 3

    0.7

    0.8

    0.9A

    n(KClO4) / n(L1)

    (b)

    Figure S9. a) Spectrophotometric titration of L1 (c = 2.56 × 10−4 mol dm−3) with KClO4 (c = 1.46 ×

    10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 280 nm on n(KClO4) / n(L1) molar ratio. ■ experimental, ─ calculated.

  • S17

    255 283

    0.0

    0.3

    0.6

    0.9A

    / nm

    (a)

    0 25 50 75 100

    0.7

    0.8

    0.9A

    n(RbCl) / n(L1)

    (b)

    Figure S10. a) Spectrophotometric titration of L1 (c = 2.52 × 10−4 mol dm−3) with RbCl (c = 3.10 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(RbCl) / n(L1) molar ratio. ■ experimental, ─ calculated.

    265 285 305

    0.0

    0.3

    0.6

    0.9A

    / nm

    Figure S11. a) Spectrophotometric titration of L1 (c = 2.52 × 10−4 mol dm−3) with CsCl (c = 7.78 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(CsCl) / n(L1) molar ratio at the end of titration is 216.

  • S18

    260 280 300

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0A

    / nm

    (a)

    0 200 400 600

    0.7

    0.8

    0.9

    1.0

    A

    n(LiClO4) / n(L1)

    (b)

    Figure S12. a) Spectrophotometric titration of L1 (c = 2.80 × 10−4 mol dm−3) with LiClO4 (c = 3.00 ×

    10−1 mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(LiClO4) / n(L1) molar ratio. ■ experimental, ─ calculated.

    255 275 295

    0.0

    0.3

    0.6

    0.9A

    / nm

    (a)

    0 100 200

    0.7

    0.8

    0.9A

    n(KCl) / n(L1)

    (b)

    Figure S13. a) Spectrophotometric titration of L1 (c = 2.80 × 10−4 mol dm−3) with KCl (c = 1.00 × 10−1

    mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(KCl) / n(L1) molar ratio. ■ experimental, ─ calculated.

  • S19

    255 275 295

    0.0

    0.3

    0.6

    0.9A

    / nm

    Figure S14. a) Spectrophotometric titration of L1 (c = 2.81 × 10−4 mol dm−3) with RbCl (c = 5.00 × 10−1

    mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(RbCl) / n(L1) molar ratio at the end of titration is 1332.

    255 275 295

    0.0

    0.3

    0.6

    0.9A

    / nm

    Figure S15. a) Spectrophotometric titration of L1 (c = 2.81 × 10−4 mol dm−3) with CsCl (c = 5.00 × 10−1

    mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(CsCl) / n(L1) molar ratio at the end of titration is 1330.

  • S20

    L2

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S16. a) Spectrophotometric titration of L2 (c = 3.04 × 10−4 mol dm−3) with LiClO4 (c = 1.00 mol

    dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(LiClO4) / n(L2) molar ratio at the end of titration is 2467.

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    (a)

    0 10 20

    0.68

    0.72

    0.76

    n(NaClO4) / n(L2)

    A

    (b)

    Figure S17. a) Spectrophotometric titration of L2 (c = 3.04 × 10−4 mol dm−3) with NaClO4 (c = 9.94 ×

    10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 280 nm on n(NaClO4) / n(L2) molar ratio. ■ experimental, ─ calculated.

  • S21

    265 280 295

    0.0

    0.3

    0.6

    0.9

    / nm

    A

    (a)

    0 200 400 600

    0.54

    0.60

    0.66

    A

    n(KSCN) / n(L2)

    (b)

    Figure S18. a) Spectrophotometric titration of L2 (c = 3.04 × 10−4 mol dm−3) with KSCN (c = 3.00 ×

    10−1 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution

    and the absorption of KSCN. b) Dependence of absorbance at 285 nm on n(KSCN) / n(L2) molar ratio.

    ■ experimental, ─ calculated.

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S19. a) Spectrophotometric titration of L2 (c = 3.03 × 10−4 mol dm−3) with RbCl (c = 3.05 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(RbCl) / n(L2) molar ratio at the end of titration is 75.

  • S22

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S20. a) Spectrophotometric titration of L2 (c = 3.03 × 10−4 mol dm−3) with CsCl (c = 7.78 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(CsCl) / n(L2) molar ratio at the end of titration is 160.

    265 280 295

    0.0

    0.3

    0.6

    0.9

    1.2

    / nm

    A

    Figure S21. a) Spectrophotometric titration of L2 (c = 3.96 × 10−4 mol dm−3) with LiClO4 (c = 1.00 mol

    dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution. The n(LiClO4)

    / n(L2) molar ratio at the end of titration is 1152.

  • S23

    265 280 295

    0.0

    0.3

    0.6

    0.9

    / nm

    A

    (a)

    0 3000 6000 9000

    0.72

    0.78

    0.84A

    n(NaClO4) / n(L2)

    (b)

    Figure S22. a) Spectrophotometric titration of L2 (c = 3.03 × 10−4 mol dm−3) with NaClO4 (c = 4.03

    mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(NaClO4) / n(L2) molar ratio. ■ experimental, ─ calculated.

    265 280 295

    0.0

    0.4

    0.8

    1.2

    A

    / nm

    Figure S23. a) Spectrophotometric titration of L2 (c = 3.96 × 10−4 mol dm−3) with KCl (c = 1.00 mol

    dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution. The n(KCl) /

    n(L2) molar ratio at the end of titration is 1148.

  • S24

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S24. a) Spectrophotometric titration of L2 (c = 2.99 × 10−4 mol dm−3) with RbCl (c = 1.67 × 10–

    1 mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(RbCl) / n(L2) molar ratio upon addition of titrant is 418.

    265 280 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S25. a) Spectrophotometric titration of L2 (c = 2.99 × 10−4 mol dm−3) with CsCl (c = 1.67 × 10–

    1 mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. The

    n(CsCl) / n(L2) molar ratio upon addition of titrant is 418.

  • S25

    L3

    255 275 295

    0.0

    0.3

    0.6

    0.9A

    / nm

    (a)

    0 3 6

    0.82

    0.85

    0.88

    0.91

    0.94

    A

    n(LiClO4) / n(L3)

    (b)

    Figure S26. a) Spectrophotometric titration of L3 (c = 2.48 × 10−4 mol dm−3) with LiClO4 (c = 3.01 ×

    10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 280 nm on n(LiClO4) / n(L3) molar ratio. ■ experimental, ─ calculated.

    255 275 295

    0.0

    0.3

    0.6

    0.9A

    / nm

    (a)

    0 1 2

    0.57

    0.59

    0.61

    0.63

    0.65

    A

    n(NaSCN) / n(L3K+)

    (b)

    Figure S27. a) Spectrophotometric titration of KL3+ (c = 2.40 × 10−4 mol dm−3) with NaSCN (c = 1.02

    × 10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 270 nm on n(NaSCN) / n(KL3+) molar ratio. ■ experimental, ─

    calculated.

  • S26

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    (a)

    0 1 2

    0.80

    0.86

    0.92

    A

    n(KClO4) / n(L3)

    (b)

    Figure S28. a) Spectrophotometric titration of L3 (c = 2.48 × 10−4 mol dm−3) with KClO4 (c = 2.96 ×

    10−3 mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution.

    b) Dependence of absorbance at 280 nm on n(KClO4) / n(L3) molar ratio. ■ experimental, ─ calculated.

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    (a)

    0 35 70

    0.91

    0.94

    0.97A

    n(RbCl) / n(L3)

    (b)

    Figure S29. a) Spectrophotometric titration of L3 (c = 2.60 × 10−4 mol dm−3) with RbCl (c = 3.05 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(RbCl) / n(L3) molar ratio. ■ experimental, ─ calculated.

  • S27

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S30. a) Spectrophotometric titration of L3 (c = 2.48 × 10−4 mol dm−3) with CsCl (c = 7.10 × 10−2

    mol dm−3) in methanol at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.4 ml. Spectrum is corrected for dilution. The

    n(CsCl) / n(L3) molar ratio upon addition of titrant is 119.

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    (a)

    0 750 1500 2250

    0.66

    0.72

    0.78

    0.84A

    n(LiClO4) / n(L3)

    (b)

    Figure S31. a) Spectrophotometric titration of L3 (c = 2.66 × 10−4 mol dm−3) with LiClO4 (c = 1.60 mol

    dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution. b) Dependence

    of absorbance at 280 nm on n(LiClO4) / n(L3) molar ratio. ■ experimental, ─ calculated.

  • S28

    255 275 295

    0.0

    0.3

    0.6

    0.9

    / nm

    A

    (a)

    0 5 10 15

    0.70

    0.75

    0.80

    0.85

    A

    n(NaClO4) / n(L3)

    (b)

    Figure S32. a) Spectrophotometric titration of L3 (c = 2.80 × 10−4 mol dm−3) with NaClO4 (c = 3.00 ×

    10−2 mol dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectra are corrected for dilution. b)

    Dependence of absorbance at 280 nm on n(NaClO4) / n(L3) molar ratio. ■ experimental, ─ calculated.

    255 275 295

    0.0

    0.3

    0.6

    0.9

    1.2

    A

    / nm

    (a)

    0 2000 4000 6000

    0.76

    0.80

    0.84

    A

    n(KCl) / n(L3)

    (b)

    Figure S33. a) Spectrophotometric titration of L3 (c = 2.71 × 10−4 mol dm−3) with KCl (c = 3.00 mol

    dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.0 ml. Spectra are corrected for dilution. b) Dependence

    of absorbance at 280 nm on n(KCl) / n(L3) molar ratio. ■ experimental, ─ calculated.

  • S29

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S34. a) Spectrophotometric titration of L3 (c = 2.80 × 10−4 mol dm−3) with RbCl (c = 3.00 mol

    dm−3) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.2 ml. Spectrum is corrected for dilution. The n(RbCl)

    / n(L3) molar ratio upon addition of titrant is 5357.

    255 275 295

    0.0

    0.3

    0.6

    0.9

    A

    / nm

    Figure S35. a) Spectrophotometric titration of L3 (c = 2.80 × 10−4 mol dm−3) with CsCl (c = 2.64 × 10−1

    mol dm−) in water at (25.0 ± 0.1) °C; l = 1 cm, V0 = 2.5 ml. Spectrum is corrected for dilution. The

    n(CsCl) / n(L3) molar ratio upon addition of titrant is 943.

  • S30

    3. Microcalorimetric Titration Data

    0 20 40 60 80 100

    0

    2

    4

    6

    8

    10

    12

    14

    P /

    W

    t / min

    (a)

    0.0 0.5 1.0 1.5 2.0 2.5-3.0

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    (

    H)

    / m

    J

    n(Na+) / n(L1)

    (b)

    Figure S36. Microcalorimetric titration of L1 (c = 2.51 × 10–4 mol dm–3) with NaClO4 (c = 3.00 × 10–3

    mol dm–3) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on

    n(NaClO4) / n(L1) molar ratio. The values have been corrected for titrant dilution enthalpy.

    0 20 40 60 80 100 12012

    14

    16

    18

    20

    P /

    W

    t / min

    (a)

    0 5 10 15

    -1.6

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    (

    H)

    / m

    J

    n(Na+) / n(L3)

    (b)

    Figure S37. Microcalorimetric titration of L3 (c = 2.85 × 10–4 mol dm–3) with NaClO4 (c = 2.06 × 10–2

    mol dm–3) in water at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on

    n(NaClO4) / n(L3) molar ratio. The values have been corrected for titrant dilution enthalpy. ■-

    experimental, – calculated.

  • S31

    0 30 60 90 120 150 180

    9

    10

    11

    12

    P /

    W

    t / min

    (a)

    0.0 0.5 1.0 1.5 2.0

    -0.4

    -0.2

    0.0

    (

    H)

    / m

    J

    n(Na+) / n(L3)

    (b)

    Figure S38. Microcalorimetric titration of L3 (c = 1.21 × 10–4 mol dm–3) with NaClO4 (c = 1.12 × 10–3

    mol dm–3) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on

    n(NaClO4) / n(L3) molar ratio. The values have been corrected for titrant dilution enthalpy. ■-

    experimental, – calculated.

    0 50 100 150 200 250 300

    8

    9

    10

    11

    P/

    mW

    t / min

    (a)

    0.0 0.5 1.0 1.5 2.0

    -0.6

    -0.4

    -0.2

    0.0

    (

    H)

    / m

    J

    n(Na+) / n(P3)

    (b)

    Figure S39. Microcalorimetric titration of P3 (c = 1.83 × 10–4 mol dm–3) with NaClO4 (c = 1.87 × 10–3

    mol dm–3) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on

    n(NaClO4) / n(P3) molar ratio. The values have been corrected for titrant dilution enthalpy. ■

    experimental, – calculated.

  • S32

    Table S1. Thermodynamic parameters for complexation of sodium cation with L1 in water at 25 °C

    obtained microcalorimetrically by using different sodium salts.a

    a uncertainties of the last digit are given in parentheses as standard errors of the mean (N = 3)

    Salt used log K rG°/ kJ mol–1 rH°/ kJ mol

    –1 rS°/ J K–1 mol–1

    NaClO4 4.95(2) –28.23(9) –58.6(8) –102(3)

    NaCl 4.891(2) –27.92(1) –59.62(2) –106(1)

    NaBr 4.916(5) –28.06(3) –57.2(2) –97.5(4)

    NaI 4.872(9) –27.81(5) –56.2(2) –95.3(9)

    NaSCN 4.897(4) –27.95(2) –55.8(2) –93.3(8)


Recommended