+ All Categories
Home > Documents > Neutrino Physics with Penning Traps at MPI-K

Neutrino Physics with Penning Traps at MPI-K

Date post: 07-Feb-2016
Category:
Upload: karma
View: 42 times
Download: 0 times
Share this document with a friend
Description:
Neutrino Physics with Penning Traps at MPI-K. Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg. SFB-Meeting, 9.07.2009. B. q / m. f z. Confinement Volume D
Popular Tags:
26
Neutrino Physics with Penning Traps Neutrino Physics with Penning Traps at MPI-K at MPI-K Sergey Eliseev Sergey Eliseev Group of Prof. K. Blaum Group of Prof. K. Blaum Trapped and Cooled Ions“ Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting, 9.07.2009 SFB-Meeting, 9.07.2009
Transcript
Page 1: Neutrino Physics with Penning Traps at MPI-K

Neutrino Physics with Penning TrapsNeutrino Physics with Penning Trapsat MPI-Kat MPI-K

Sergey EliseevSergey EliseevGroup of Prof K BlaumGroup of Prof K Blaum

ldquoldquoTrapped and Cooled IonsldquoTrapped and Cooled Ionsldquo MPI-K HeidelbergMPI-K Heidelberg

SFB-Meeting 9072009SFB-Meeting 9072009

z0

r0

ring electrode

end cap

f-

f+

fz

2z

222c ffff - invariance theorem

Principle of Penning trap mass spectrometryPrinciple of Penning trap mass spectrometry

Sergey Eliseev SFB-Meeting 9072009

Cyclotron frequency Bm

q21fc π

B

qm

B

qm

Confinement VolumeDlt10 m

very precise measurements of fcare possible

Detection techniques Detection techniques

Sergey Eliseev SFB-Meeting 9072009

Narrow-band FT-Narrow-band FT-ICRICR

42 K

Q ~ 15 000 voltage noise ~ 700 pVHz12 current noise ~ 3fAHz12

High-precision mass measurementsHigh-precision mass measurements

Single ion sensitivitySingle ion sensitivity

mm lt 10mm lt 10-11-11

Penning TrapsPenning Traps

with an accuracy up to 10-11

Determination ofneutrino amp anti-neutrino

mass

Q-value of a decay (Q=Mi-Mk)

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Mass of neutrino Mass of neutrino ampamp anti-neutrino anti-neutrino

1940 1950 1960 1970 1980 1990 2000 20101

10

100

1000

10000

Year

Lim

it on

m

eV from - decay from decay

3 H

35S

3 H3 H

37A

r amp 22

Na

3 H

3 H16

3 Ho

193 P

t16

3 Ho

3 H

187 R

e

163 H

o

Sergey Eliseev SFB-Meeting 9072009

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 2: Neutrino Physics with Penning Traps at MPI-K

z0

r0

ring electrode

end cap

f-

f+

fz

2z

222c ffff - invariance theorem

Principle of Penning trap mass spectrometryPrinciple of Penning trap mass spectrometry

Sergey Eliseev SFB-Meeting 9072009

Cyclotron frequency Bm

q21fc π

B

qm

B

qm

Confinement VolumeDlt10 m

very precise measurements of fcare possible

Detection techniques Detection techniques

Sergey Eliseev SFB-Meeting 9072009

Narrow-band FT-Narrow-band FT-ICRICR

42 K

Q ~ 15 000 voltage noise ~ 700 pVHz12 current noise ~ 3fAHz12

High-precision mass measurementsHigh-precision mass measurements

Single ion sensitivitySingle ion sensitivity

mm lt 10mm lt 10-11-11

Penning TrapsPenning Traps

with an accuracy up to 10-11

Determination ofneutrino amp anti-neutrino

mass

Q-value of a decay (Q=Mi-Mk)

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Mass of neutrino Mass of neutrino ampamp anti-neutrino anti-neutrino

1940 1950 1960 1970 1980 1990 2000 20101

10

100

1000

10000

Year

Lim

it on

m

eV from - decay from decay

3 H

35S

3 H3 H

37A

r amp 22

Na

3 H

3 H16

3 Ho

193 P

t16

3 Ho

3 H

187 R

e

163 H

o

Sergey Eliseev SFB-Meeting 9072009

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 3: Neutrino Physics with Penning Traps at MPI-K

Detection techniques Detection techniques

Sergey Eliseev SFB-Meeting 9072009

Narrow-band FT-Narrow-band FT-ICRICR

42 K

Q ~ 15 000 voltage noise ~ 700 pVHz12 current noise ~ 3fAHz12

High-precision mass measurementsHigh-precision mass measurements

Single ion sensitivitySingle ion sensitivity

mm lt 10mm lt 10-11-11

Penning TrapsPenning Traps

with an accuracy up to 10-11

Determination ofneutrino amp anti-neutrino

mass

Q-value of a decay (Q=Mi-Mk)

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Mass of neutrino Mass of neutrino ampamp anti-neutrino anti-neutrino

1940 1950 1960 1970 1980 1990 2000 20101

10

100

1000

10000

Year

Lim

it on

m

eV from - decay from decay

3 H

35S

3 H3 H

37A

r amp 22

Na

3 H

3 H16

3 Ho

193 P

t16

3 Ho

3 H

187 R

e

163 H

o

Sergey Eliseev SFB-Meeting 9072009

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 4: Neutrino Physics with Penning Traps at MPI-K

Penning TrapsPenning Traps

with an accuracy up to 10-11

Determination ofneutrino amp anti-neutrino

mass

Q-value of a decay (Q=Mi-Mk)

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Mass of neutrino Mass of neutrino ampamp anti-neutrino anti-neutrino

1940 1950 1960 1970 1980 1990 2000 20101

10

100

1000

10000

Year

Lim

it on

m

eV from - decay from decay

3 H

35S

3 H3 H

37A

r amp 22

Na

3 H

3 H16

3 Ho

193 P

t16

3 Ho

3 H

187 R

e

163 H

o

Sergey Eliseev SFB-Meeting 9072009

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 5: Neutrino Physics with Penning Traps at MPI-K

Mass of neutrino Mass of neutrino ampamp anti-neutrino anti-neutrino

1940 1950 1960 1970 1980 1990 2000 20101

10

100

1000

10000

Year

Lim

it on

m

eV from - decay from decay

3 H

35S

3 H3 H

37A

r amp 22

Na

3 H

3 H16

3 Ho

193 P

t16

3 Ho

3 H

187 R

e

163 H

o

Sergey Eliseev SFB-Meeting 9072009

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 6: Neutrino Physics with Penning Traps at MPI-K

Mass of anti-neutrino Mass of anti-neutrino 33TT 33He -decayHe -decay

18 575

18 580

18 585

18 590

18 595

18 600

18 605

18 610

18 615

Q-V

alue

[eV]

-Spectrometers(Curie plots)

FTICR

PenningTraps

SMILETRAP(Q=12 eV)

VanDyck

2

2

KATRIN aims for mKATRIN aims for m lt 02 eV lt 02 eV

Independent measurement of Q-value of Independent measurement of Q-value of 33T-decayT-decaybull gives a check on systematic errorsgives a check on systematic errors

bull can remove a free parameter from KATRIN data analysiscan remove a free parameter from KATRIN data analysis

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 7: Neutrino Physics with Penning Traps at MPI-K

hellip hellip in new lab Nr1 (THe) at MPI-K in new lab Nr1 (THe) at MPI-K

We aim for Q (3T rarr 3He) =20 meV (mm)= 7middot10-12

Dr David Pinegar et al

Vibration lsquofreelsquo floor x lt 01 m

plusmn01 K LaboratoryLaboratoryTemperature stabilization 01Kday Pressure stabilization Vibration lsquofreelsquo floor lt01 m Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

MagnetMagnet 6 Tesla 42 K-bore magnet Magnetic field stability BB lt 17 ppth

04062009 12C4+

Sergey Eliseev SFB-Meeting 9072009

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 8: Neutrino Physics with Penning Traps at MPI-K

A Broad-Band FT-ICR Penning Trap System for KATRINA Broad-Band FT-ICR Penning Trap System for KATRINM Ubieto-Diacuteaz et al

Formation of ion clusters (Formation of ion clusters (33TT2n+12n+1))++ which decay with which decay with different end point than different end point than 33TT22 Presence of other species (contaminants)Presence of other species (contaminants)

Resolving Power ~10Resolving Power ~1044

PerformancePerformance

Sensetivity lt1000 ionsSensetivity lt1000 ions

Sergey Eliseev SFB-Meeting 9072009

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 9: Neutrino Physics with Penning Traps at MPI-K

Mass of NeutrinoMass of Neutrino

Sergey Eliseev SFB-Meeting 9072009

Atomic Orbital Electron Capture Atomic Orbital Electron Capture

(ZA) (ZA) ++ e e (Z-1A)(Z-1A)h h ++ Q Q

(Z-1A)(Z-1A)g g ++ B Bii

(Z-1A)(Z-1A)gg

(Z-1A)(Z-1A)hh

(ZA)(ZA)

QEC Bi

Q

neutrino is monoenergetic Q can be as small as ~ 05 keV

Q = E + mc2 = QEC ndash Bi

(Q(QEC EC ndash Bndash Bii)) should be as small as possible

smaller Q rarr higher contribution of m

QQECEC should be as small as possible

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 10: Neutrino Physics with Penning Traps at MPI-K

Mass of NeutrinoMass of Neutrino

Do we need to measure the neutrino mass since the antineutrino mass limit is known

Sergey Eliseev SFB-Meeting 9072009

Yes bull to confirm the results taken from tritium measurements

(with completely different systematic uncertainties)

bull hopefully can be useful for a check of CPT-conservation for neutrinos

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 11: Neutrino Physics with Penning Traps at MPI-K

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

analysis of calorimetric spectrum

mm

163163Ho Ho 163163DyDyhh + + ee (E (E))163163Dy + EDy + Ecc

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 12: Neutrino Physics with Penning Traps at MPI-K

Mass of Neutrino electron-capture in Mass of Neutrino electron-capture in 163163HoHo

QECm

Typical Typical -calorimetric de-excitation spectrum of EC in -calorimetric de-excitation spectrum of EC in 163163HoHo

Sergey Eliseev SFB-Meeting 9072009

end point with accuracy ~ 1 eV end point with accuracy ~ 1 eV

QQECEC--valuevalue with accuracy ~ 1 eVwith accuracy ~ 1 eV

Cryogenic -calorimeters (Group of Prof Enss KIP Uni Heidelberg)

PENTATRAP (Group of ProfK Blaum MPI-K HD) mm ~ 1 eV ~ 1 eV

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 13: Neutrino Physics with Penning Traps at MPI-K

We aim for Q (163Ho rarr 163Dy) asymp1 eV (mm) lt 10-11

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Nuclide Relative uncertainty Reference

4He 1610-11 RS Van Dyck et al Phys Rev Lett 92 (2004) 220802

13C2H2 ndash 14N2 710-12 S Rainville et al Science 303 (2004) 33432S 5010-11 W Shi et al Phys Rev A 72 (2005) 02251016O 1110-11 RS Van Dyck et al Int J Mass Spectrom 251 (2006)

23128Si 2210-11 M Redshaw et al Phys Rev Lett 100 (2008)

093002129132Xe ~10-10 M Redshaw et al Phys Rev A 79 (2009) 012506Existing Penning Traps PENTATRAP

stable nuclides

light masses

closed systems

radiactive highly charged nuclides

masses up to Uranium

open system

Improvement of accuracy by more than one order of magnitude Improvement of accuracy by more than one order of magnitude

Sergey Eliseev SFB-Meeting 9072009

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 14: Neutrino Physics with Penning Traps at MPI-K

Accelerator Hall of MPI-K (Heidelberg)

PENTATRAP Lab (basement)

Temperature stabilization 01Kday Pressure stabilization Damping of vibrations lt1 m (active amp passive) Screening from E-fields Al-walls Active compensation of B-fields Helmholtz coils

EBIT

highly charged ions

~34

met

ers

3He4He ion source

EBIT ion source

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 15: Neutrino Physics with Penning Traps at MPI-K

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

MagnetMagnet MagnetMagnet InsertInsert

Tower ofTower offive trapsfive traps

Sergey Eliseev SFB-Meeting 9072009

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 16: Neutrino Physics with Penning Traps at MPI-K

hellip hellip in new lab Nr2 (PENTATRAP) at MPI-K in new lab Nr2 (PENTATRAP) at MPI-K

Monitor trap

Preparation trap

Precision trap

112

2mm

Preparation trap

Monitor trap

monitoring of B-Field flactuations over the measurement cycle

storagecooling of reference ion ion of interest

substantial reduction of cycle time

reduction of systematics due to temporal B-field flactuations

high precision mass measurements

accuracy ~10-11 eV-level

Sergey Eliseev SFB-Meeting 9072009

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 17: Neutrino Physics with Penning Traps at MPI-K

Mass of Neutrino search for new candidatesMass of Neutrino search for new candidates

Proposal IS473 to the ISOLDE Committee CERN (2008)ldquoSEARCH FOR NEW CANDIDATES FOR THE

NEUTRINO-ORIENTED MASS DETERMINATION

BY ELECTRON-CAPTUREldquoYu Novikov K Blaum S Eliseev et Al

Qε=

(69plusmn

14)

keV

T12=444 y

EE=(-12plusmn14) keV=(-12plusmn14) keV

194Hg0+

194Au

80725 K

1-

Qε=

(50plusmn

15)

keV

T12=50 ky

EEasympasymp(-35plusmn15) keV(-35plusmn15) keV

202Pb0+

202Tl

1535 L1

2-

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 18: Neutrino Physics with Penning Traps at MPI-K

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Type of neutrinoMajorana or Dirac

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellipDetermination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 19: Neutrino Physics with Penning Traps at MPI-K

Type of Neutrino Majorana or DiracType of Neutrino Majorana or Dirac

neutrinoless double beta decay

neutrinoless double EC decay

Sergey Eliseev SFB-Meeting 9072009

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 20: Neutrino Physics with Penning Traps at MPI-K

ResonantResonant-less double EC decay-less double EC decay

(ZA)

(Z-1A)

(Z-2A)

ГГεεεε

QQεεεε

BBii(2)(2)

BBjj(1)(1)

22)2()1(

2221

200

41)0()0(

ji

eeres

BBQmMc

Sergey Eliseev SFB-Meeting 9072009

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 21: Neutrino Physics with Penning Traps at MPI-K

εε- transition Qεε (keV) E=Eγ+B1+B2 (keV) Δ=Qεε-E (keV) First prediction

74Se+74Ge 12097(6) 120714(1)(γ+L1+L2) 26plusmn06 D Frekers (2005)

112Sn+112Сd 1919(4) 19256(2)(γ+K+K) -66plusmn40 J Bernabeu et al (1983)

152Gd+152Sm 546(12)5626(K+L1)5428(L1+K)

-16plusmn12-032plusmn120

Z Sujkowski andS Wycech (2004)

164Er+164Dy 237(21) 1901(L1+L1) 47plusmn21 ldquomdashmdashmdashmdashmdashrdquo

Candidates for resonant neutrinoless double-Candidates for resonant neutrinoless double-capturecapture

Starting Project for PENTATRAP Starting Project for PENTATRAP

Sergey Eliseev SFB-Meeting 9072009

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 22: Neutrino Physics with Penning Traps at MPI-K

Penning TrapsPenning Traps

with an accuracy up to 10-11

Q-value of a decay

Determination ofneutrino amp anti-neutrino

mass

helliphelliphelliphelliphelliphelliphelliphellip

Type of neutrinoMajorana or Dirac

Determination ofmixing angle 13

Sergey Eliseev SFB-Meeting 9072009

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 23: Neutrino Physics with Penning Traps at MPI-K

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

)LL(sin2θsin)L

LΔmΔm(sin2θsin1)P(

32

213

2

32221

2322

122

ee ππυυ

Probability of electron-neutrino Probability of electron-neutrino e e disappearance disappearance

meters tens few akeVEmL32 υ

Sergey Eliseev SFB-Meeting 9072009

L32

10 m

eter

s

Liquid Argon

EC-Nuclidesource of monoenergetic e

Proposal NeOsProposal NeOs YN Novikov A Vasiljev Y Giomataris S Eliseev amp JD Vergados

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 24: Neutrino Physics with Penning Traps at MPI-K

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

Nuclide Produced amount (g)

T12 Eυ =Qε-Bi (keV) L32 (m) Neutrino Flux (s-1)

157Tb 0003 70 y 98(3) ge52 hellip 10 2109

163Ho 0004 4500 y asymp05 asymp08 asymp22 23 26 05-26 109

178W 216 d 239(20) ge803 hellip 24

179Ta 00004 665 d 403 943 40 94 1010

193Pt 100 50 y 438(3) 538(3)hellip 44 54 21014

194Hg 440 y 14(3) 25(3) hellip 14(3) 25(3)

202Pb 5104 y 35(15) 46(15) 35(15) 46(15)

205Pb 200 107 y 35(1) 35(1) 109

Sergey Eliseev SFB-Meeting 9072009

Possible candidates for the neutrino source Possible candidates for the neutrino source

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 25: Neutrino Physics with Penning Traps at MPI-K

Neutrino oscillation length LNeutrino oscillation length L32 32 amp amp mixing angle mixing angle 1313

10 m

eter

s

Liquid ArgonnatPt

Neutrino source Neutrino source 100 kg of natPt contains 01 kg of 193Pt after

1 year of irradiation at a reactor

Count rate Count rate e ndash flux from 01 kg of 193Pt ~ 2middot1014 1s

number of e ndash e interactions ~ 100 eventsyear

Detection of 10 keV recoil electronsDetection of 10 keV recoil electronsChallengeChallenge

1 meter

LAr

Ar-gas

Vee

e

MicromegasMicromegas

Porous shell

Sergey Eliseev SFB-Meeting 9072009

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26
Page 26: Neutrino Physics with Penning Traps at MPI-K

SummarySummary

Sergey Eliseev SFB-Meeting 9072009

Penning traps can have a significant contribution to the neutrino physicsPenning traps can have a significant contribution to the neutrino physics

bull At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN ndash experiment (determination of mto assist the KATRIN ndash experiment (determination of m--))

bull We are reviving the neutrino physics in the EC ndash sector byWe are reviving the neutrino physics in the EC ndash sector by contributing to determination of neutrino mass contributing to determination of neutrino mass (PENTATRAP(PENTATRAP 163163Ho) Ho)

determination of mixing angle determination of mixing angle 3232 (PENTATRAP(PENTATRAP NeOs NeOs 193193Pt)Pt)

contributing to neutrinoless double EC decaycontributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)

  • Folie 1
  • Folie 2
  • Folie 3
  • Folie 4
  • Folie 5
  • Folie 6
  • Folie 7
  • Folie 8
  • Folie 9
  • Do we need to measure the neutrino mass since the antineutrino mass limit is known
  • Folie 11
  • Folie 12
  • Folie 13
  • Folie 14
  • Folie 15
  • Folie 16
  • Folie 17
  • Folie 18
  • Folie 19
  • Folie 20
  • Folie 21
  • Folie 22
  • Folie 23
  • Folie 24
  • Folie 25
  • Folie 26

Recommended