+ All Categories
Home > Documents > New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a...

New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a...

Date post: 19-Jan-2016
Category:
Upload: gwenda-barker
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
5
Nevada’s Desert Research Institute 1. Chemical fluxes from a moist tundra ecosystem 2. Ground-based remote sensing of ice- crystal properties in cirrus clouds 3. Automated ultra-trace chemistry of ice cores
Transcript
Page 1: New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a moist tundra ecosystem 2.Ground-based remote sensing of.

New and On-going Arctic Research at

Nevada’s Desert Research Institute

1. Chemical fluxes from a moist tundra ecosystem

2. Ground-based remote sensing of ice-crystal properties in cirrus clouds

3. Automated ultra-trace chemistry of ice cores

4. Testing of luminescence methods for dating Arctic Ocean sediments

Page 2: New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a moist tundra ecosystem 2.Ground-based remote sensing of.

A Tundra Isoprene Study at Imnaviat Creek near the Toolik Field Station

(NSF-Atmos-Chemistry & NSF-OPP SGER grant to Mark Potosnak)

• Tundra ecosystems emit significant amounts of isoprene

• Isoprene emissions (though a minor component of tundra carbon

dynamics) in the ‘clean’ arctic atmosphere have a major impact on atmospheric chemistry

• Data will impact models of Arctictropospheric chemistry

Page 3: New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a moist tundra ecosystem 2.Ground-based remote sensing of.

Measuring Small (< 60m) Ice Crystal Concentrations in Arctic Cirrus Clouds

(DOE-ARM grant to co-PI David Mitchell)

Project will use remote sensing (radiance interferometer, Lidar, local sounding) to estimate optical properties and heat

emitted by cirrus clouds

• Cirrus clouds may have a strong feedback to temperature forcing by greenhouse gases• This feedback can be +ve or –ve, and depends on the concentrations of small ice crystals in the particle size distribution

Page 4: New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a moist tundra ecosystem 2.Ground-based remote sensing of.

Ultra-trace Chemistry from Greenland Ice Cores

(NSF-OPP & DRI grants to Ross Edwards)

Analytical Systems:• an ultra-trace, metal, clean, continuous ice-core melter,• a low-level continuous-flow Fe-analysis system,• 2 high-resolution ICP-MS units,• a super-sensitive analytical system for measuring black carbon

in ice-core meltwater

Project Questions:1. Has atmospheric Fe become more soluble during the industrial period

because of pollution?

2. What has been the impact of boreal forest

fires and industrial pollution on the availability of Fe and P?

Page 5: New and On-going Arctic Research at Nevada’s Desert Research Institute 1.Chemical fluxes from a moist tundra ecosystem 2.Ground-based remote sensing of.

Developing Small-sample Luminescence Dating Procedures for Arctic Ocean Sediment Cores

(NSF-OPP grant to Glenn Berger)

Using samples of cores

from the HOTRAX-05 expeditions


Recommended