+ All Categories
Home > Documents > New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

Date post: 05-Feb-2016
Category:
Upload: jontae
View: 50 times
Download: 0 times
Share this document with a friend
Description:
New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing. Anna N. Kim, Tor A. Ramstad. The Classic DPCM Structure. +. Uniform Quanitzer. -. +. Linear Predictor. Rate Distortion Performance of DPCM. Previous Work. Farvardin & Modistino (1985) - PowerPoint PPT Presentation
Popular Tags:
43
1 New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing Anna N. Kim, Tor A. Ramstad
Transcript
Page 1: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

1

New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

Anna N. Kim, Tor A. Ramstad

Page 2: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

2

The Classic DPCM Structure

Uniform Quanitzer

Linear Predictor

+

+

)(nx

)(ˆ nx

)(ne )(neq

)(nz

-

Page 3: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

3

Rate Distortion Performance of DPCM

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)

Page 4: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

4

Previous Work

Farvardin & Modistino (1985) Øien & Ramstad (2001) Guleryuz & Orchard (2001)

Page 5: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

5

Øien & Ramstad: DPCM and The Wiener Filter

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

jeP )(

2)(

)()(

qxx

xx

S

SW

Page 6: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

6

Øien & Ramstad: Simulation Results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)Ø&R

Page 7: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

7

Guleryuz & Orchard: System Structure

UQ EC

C

P1

1L2ED+

+

)(nx )(ˆ nx

1-P L1

jeP )(

Page 8: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

8

Guleryuz & Orchard: Simulation Results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

DPCMR(D)Ø&R O&M

Page 9: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

9

Rate-Distortion Theory

Discrete Time Discrete Amplitude Source

Discrete Time Continuous Amplitude Source

Source With Memory

Page 10: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

10

The Water-filling Principle

Page 11: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

11

Rate-Distortion Bound of AR(1) Process

deS

Rj

xx

2log2

1,0max

2

1)(

deSD j

xx

,min2

1)(

Page 12: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

12

Optimal Mapping

H +

)(nx )(ˆ nx

)(n

Page 13: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

13

Approximations & Assumptions

No correlation between quantizer input and quantization noise

No correlation between samples of quantizer output

Quantization noise variance Entropy of quantizer output as bit rate

12

22 q

Page 14: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

14

Proposed Codec (a)

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

jeP )(

2)(

)()(

qxx

xx

S

SW

L L

Page 15: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

15

Simulation Results: (a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

L+W R(D)DPCM

Page 16: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

16

Proposed Codec (b)

UQ EC

P

P1

1WED+

+

)(nx )(ˆ nx

-

2)(

)()(

qxx

xx

S

SW

r rL L

jreP )(

Page 17: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

17

Simulation Results: (b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

1.5

2

Normalised Distortion

Rat

e in

Bits

/Sam

ple

L+W R(D) DPCM Multi

Page 18: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

18

Discussions

Source Spectral Shaping Bit Rate Reduction Prediction Coefficient Effects of Wiener Filter Multi-Rate Processing

Page 19: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

19

Shaping of Source Signal Spectra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Low-passed Source Quantization Noise Level

Page 20: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

20

Bit Rate Reduction

Bit rate after down-sampling:

Additional bits for maintaining distortion level

Total bit rate reduction

RateSampingDownSampleCoded

Bits

SampleSource

Bits 1Ra :

Ra - Rb

Rb

Page 21: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

21

The Linear Predictor

In classic DPCM

With down-sampling rate r

)()1()( nznxnx

)(~)()( nzrnxnx r

Page 22: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

22

Effect of Prediction Coefficient

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.260.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Normalised Frequency

Rat

e in

Bits

/Sam

ple

Down Sampling Rate: 4

Modified Prediction CoefficientOriginal Prediction Coefficient

Page 23: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

23

Effects of Wiener Filter

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

0.5

1

1.5

2

2.5

3

Normalised Frequency

Rat

e in

Bits

/Sam

ple

Down Sampling Rate: 2

With Wiener Filter Without Wiener Filter

Page 24: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

24

Multi-Rate Processing

Integer Sampling Rate Alteration

Fractional Sampling Rate Alteration

Hd(z) M Hu(z)L

L H(z) M

Page 25: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

25

Conclusions

Rate Distortion Motivated Set-up Simple Configuration Superior Performance Robust System

Page 26: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

26

Future Work

Non-monotonically decreasing spectrum Non-linear mapping Application in low bit rate image coding

Page 27: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

27

Page 28: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

28

Page 29: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

29

Page 30: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

30

PSD of The Source Signal (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 31: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

31

PSD of the Low Passed Source (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 32: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

32

PSD of Downsampled Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-20

-15

-10

-5

0

5

10

15

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 33: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

33

PSD of Quantizer Input (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 34: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

34

PSD of Decoded Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Decoded Signal Quantization Noise

Page 35: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

35

PSD of Upsampled Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Upsampled Signal Quantization Noise

Page 36: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

36

PSD of Interpolated Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Interpolated SignalQuantization Noise

Page 37: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

37

PSD of Wiener Filtered Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Wiener Filtered SignalWiener Filtered Noise Interpolated Signal Interpolated Noise

Page 38: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

38

PSD of The Source Signal (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 39: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

39

PSD of the Low Passed Source (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 40: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

40

PSD of Quantizer Input (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-14

-12

-10

-8

-6

-4

-2

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Page 41: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

41

PSD of Lowpassed Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Lowpassed SignalLowpassed Noise

Page 42: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

42

PSD of Wiener Filtered Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-70

-60

-50

-40

-30

-20

-10

0

10

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Wiener Filtered SignalLowpassed Signal Lowpassed Noise Wiener Filtered Noise

Page 43: New Improvements on Rate-Distortion Peformance of DPCM Using Multi-Rate Processing

43

PSD of Decoded Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-15

-10

-5

0

5

10

15

20

Normalised Frequency

Pow

er S

pect

ral D

ensi

ty in

[dB

]

Decoded Signal Quantization Noise


Recommended