+ All Categories
Home > Documents > New Low Cost & High Performance Transmission Line Eun Sub Shim Micro/Nano Systems & Controls Lab....

New Low Cost & High Performance Transmission Line Eun Sub Shim Micro/Nano Systems & Controls Lab....

Date post: 13-Dec-2015
Category:
Upload: stewart-ford
View: 220 times
Download: 4 times
Share this document with a friend
Popular Tags:
22
New Low Cost & High Performance Transmission Line Eun Sub Shim Micro/Nano Systems & Controls Lab. SNU 2004. 6. 21
Transcript

New Low Cost & High Performance

Transmission Line

Eun Sub Shim

Micro/Nano Systems & Controls Lab.

SNU

2004. 6. 21

2June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Contents

• Introduction

• Survey– HRS t-lines

– LRS t-lines

– Best Performances

• New Design– Design Consideration

– Wet-etched CPW

– Structure

– Process

– Properties

• Conclusion

• References

3June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Michigan Microstrip (1993-1998)

• SMM

(shielded membrane microstrip)

• Advantage– No dielectric loss

– Self-packaging

• Loss: < 0.6 dB/cm @ ~110 GHz

• HRS

• SiO2/Si3N4/SiO2, 1.5 µm

• Metal: Ti/Au, 1.2 µm

• Selective etching: EDP

• Bonding: conductive epoxy

HRS

[1]

4June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Michigan CPW (1998-2002)

• Membrane CPW

• MFGC

(micromachined finite ground CPW)

• Advantage– Reduce dielectric loss

– Simple process

• Loss: 0.5 dB/cm @ 40 GHz

• HRS

• SiO2/Si3N4/SiO2, 1.5 µm

• Selective etching: EDP

• Metal: Cr/Au, 1.7 - 2 µm

HRS

[2]

5June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

GEC Marconi Instrument CPW (1998)

• Trenched CPW

• Loss: 1.8 dB/cm @ 40 GHz

• 650 µm-thick 10000 Ohm-cm HRS

• Metal: Al evaporation 1.46 µm

• CF4 plasma etch

HRS

[3]

6June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

SNU CPW (2000)

• ECPW (elevated), OCPW (overay)

• Loss: 1 dB/cm @ 40 GHz

• Glass substrate

• Metal1: Ti/Au electroplate 3 µm

• Metal2: Cr/Au electroplate 3 µm

• Thick PR(AZ 4620): 15 µm

• PR Curing: 200oC

HRS

[4]

7June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

LAAS-CNRS CPW (1997, 2003)

• CPW on Membrane

– Loss: 1 dB for 2,4,6 mm @ 40 GHz

– Access port loss is dominant

– 20 Ohm-cm silicon (350 µm)

– SiO2/Si3N4, 1.4 µm (0.8/0.6)

– Metal: 2.5 µm

– Silicon etch: KOH

• CPW on BCB

– Loss: 4.6 dB/cm @ 40 GHz

– 20 Ohm/cm silicon

– Deep RIE : 10 µm

– BCB: 10 µm

– Metal: Ti/Au, 3 µm

Si

BCB

Metal

LRS

[5]

8June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

NIST CPW (1997)

• Circuit: foundry survice (Magic)– Glass with etch hole

– 0.6 µm-thick Al pattern in glass

– 460 µm-thick silicon

• Hybrid etch process– Isotropic etch: XeF2 (16 min)

– Anisotropic etch: EDP (1h 92o)

• Loss: 4 dB/cm @ 40 GHz

LRS

[6]

9June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

KAIST air gap lines (2002)

• Ground electroplating + LIGA x 4• Ti/Cu electroplating, 12 µm• Thick Oxidized Porous Silicon

(OPS)– 10 Ohm-cm silicon substrate– Oxide thickness: 20 µm

• Air gap CPW– Loss: 0.7 dB/cm @ 40 GHz

LRS

[7]

10June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

KAIST CPW (2003)

• Thick Oxidized Silicon– Oxide thickness: 7 µm– Conductivity: 10 Ohm-cm

• Ground electroplating + LIGA x 2• PR1: AZ 9260 (10 µm) • PR2: ?• Ti/Cu electroplating, 10 µm• Thick Oxidized Porous Silicon• Loss: 0.35 dB/cm @ 25 GHz

LRS

[8]

11June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

SNU Thin Film Microstrip (TFMS) line

• MMIC 설계에 필요한 집중소자를 BCB 위에 제작하여 signal 과 같은 상에 위치시키는 구조 제안

• BCB 식각시 PR mask 사용• 능동소자를 signal 과 같은

위치에 놓기 위하여 기판을 깎아서 ground 를 낮게 형성함

• TFR 과 capacitor 를 signal과 같은 위치에 형성함

• TFMS line loss– 0.26 dB/mm @ 50 GHz

[9]

12June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Best Performance

• HRS– Michigan (1993-1998)– Loss: < 0.6 dB/cm @ ~110 GHz– Three HRS substrates– Bonding alignment– Back side process

• LRS– KAIST (2003)– Loss: 0.35 dB/cm @ 25 GHz– Complicated process

Cheap & si

mple process

13June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Design Consideration

• Substrate coupling– Isolating transmission line from substrate

– Field out of substrate

• Leakage current path– Trench, air gap

• Metal loss– Smooth metal surface, Thick metal line

– Electroplating vs. Sputtering

• Transition– Conventional T-line to New T-line

OLD NEW?

14June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Zo=49 Ohm

Loss= 0.57 dB/cm @ 40 GHz

Wet-etched CPW

15June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Structure

54.7o

100 um

71 um100 um

10 um

SiliconMetal

• Minimize substrate coupling

• No leakage current path

• Rigid structure (thick metal)

• Smooth metal surface

• Simple process

280 um

16June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Process

1. Photolithography

2. KOH etch

3. Electroplating

4. CMP

5. TMAH etch

SiliconPRMetal

Single mask process!!

Cheap & Simple Process!!

17June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Attenuation

• Attenuation

– 0.21 dB/cm @ 20 GHz

– 0.57 dB/cm @ 40 GHz

– 1.19 dB/cm @ <100 GHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100Frequency (GHz)

Att

enua

tion

(dB

/cm

)

18June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Attenuation

• KAIST CPW paper (20 GHz) – Fabricated: 0.35 dB/cm– Simulation: 0.22 dB/cm

• KAIST CPW simulation– Loss: 0.34 dB/cm @ 40 GHz

• Wet-etched CPW simulation– 0.21 dB/cm @ 20 GHz– 0.57 dB/cm @ 40 GHz– Comparable to world’s best CPWs

GEC Marconi

HRS(1998)

Michigan HRS

(2002)KAIST LRS

(2003)

0.2 This workLRS

19June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Rigid structure

• Other CPWs

– Membrane type : Michigan, LAAS-CNRS, NIST

• SiO2/Si3N4 membrane (t<1.5 µm)

– Suspended metal : KAIST

• Cu (t=10 µm, w=100 µm)

• Wet-etched CPW

– Suspended Metal bar

• Cu (tmax= 71 µm, w=100 µm)

20June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Simple process

• Single mask process

– No misalinement effect

– Cheap process

Cf. other lines

• Membrane type : Michigan, LAAS-CNRS, NIST– Minimum 2 mask is needed

• Suspended metal : KAIST– Minimum 3 mask is needed

21June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

Conclusion

• CPW survey– HRS

• Michigan (1993-1998)• Loss: < 0.6 dB/cm @ ~110 GHz

– LRS• KAIST (2003)• Loss: 0.35 dB/cm @ 25 GHz

Expensive & Complicated process

• New Design: Wet-etched CPW

– Low loss: 0.12 dB/cm @ 20 GHz, 1.19 dB/cm @ <100 GHz

– Rigid structure

– Single mask process

Low cost & High performance CPW fabrication is possible!!!

22June 21, 2004Eun Sub Shim, Micro/Nano Systems & Controls Lab.

References[1] L. P. B. Katehi, G. M. Rebeiz, T. M. Weller, R. F. Drayton, H. Cheng and J. F. Whitaker, “Micromachined Circ

uits for Millimeter- and Sub-millimeter-Wave Applications”, IEEE Antennas and Propagation Magazine, Vol. 35, No. 5, Oct. 1993.

[2] K. J. Herrick, T. A. Schwarz, and L. P. B. Katehi, “Si-Micromachined Coplanar Waveguides for Use in High-Frequency Circuits”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 6, June 1998.

[3] S. Yang, Z. Hu, N. B. Buchanan, V. F. Fusco, J. A. C. Steward, Y. Wu, B. M. Armstrong, G. A. Armstrong, and H. S. Gamble, “Characteristics of Trenched Coplanar Waveguide for High-Registivity Si MMIC Applications”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 5, June 1998.

[4] J. Park, C. Baek, S. Jung, H. Kim, Y. Kwon and Y. Kim, “Novel Micromachined Coplanar waveguide Transmission Lines for Application in Millimeter-Wave Circuits”, Japanese Journal of Applied Physics, Vol. 39, No. 12B, Dec. 2000.

[5] F. Bouchriha, K. Grenier, D. Dubuc, P. Pons, R. Plana, and J. Graffeuil, “Minimization of Phassive Circuits Losses realized on Low Resistivity Silicon Using Micro-Machining Techniques and Thick Polymer Layers”, 2003 IEEE MTT-S Digest., 2003.

[6] V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. Zaghloul, “Micromachined Microwave Transition Lines by Commercial CMOS Fabrication”, IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 5, May 1997 .

[7] I. Jeong, S. Shin, J. Go, J. Lee, C. Nam, and D. Kim “High-Performance Air-Gap Transmission Lines and Inductors for Millimeter-Wave Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, Dec. 2002.

[8] E. Park, Y. Choi, B. Kim, J. Yoon, and E. Yoon, “A LOW LOSS TRANSMISSION LINE WITH SHIELDED GROUND”, IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003., Jan. 2003.

[9] 송생섭 , 노훈희 , 서광석 , “Structural improvement of Thin Film Microstrip line for MMIC applications using MCM-D”, 제 11 회 한국 반도체 학술대회 , Feb. 2004.


Recommended