+ All Categories
Home > Documents > New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic...

New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic...

Date post: 04-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
51
Materials Sci ence & Technolog y 1 New materials enabling alternative energy technologies Anke Weidenkaff, Solid State Chemistry and Catalysis, Empa, University of Bern, CH-3012 Bern, Switzerland AERI lecture WIS, 10.2.13
Transcript
Page 1: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y1

New materials enabling alternative energy technologies

Anke Weidenkaff, Solid State Chemistry and Catalysis, Empa,

University of Bern, CH-3012 Bern, Switzerland

AERI lecture WIS, 10.2.13

Page 2: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y2

3 Sites Zürich-Dübendorf, St. Gallen, Thun

950 Employees 400 University graduates including 190 PhDs 100 Graduates of universities of applied science 130 PhD students 9 Professors

Budget 90 mill. CHF federal funding 32 mill. CHF third party funding 13 mill. CHF services

Empa, Swiss Federal Laboratories for Materials Research and Technology

Page 3: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y3

Empa's Research Focal Areas

Materials for health and performance

Natural Resources and Pollutants

Nanotechnology

Adaptive materials and systems

Materials for energy technologies

Page 4: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Materials Design for Energy Converters: Solid State Chemistry

Tailoring of Materials and Functions: Structure-composition-property relationship

• 3D‘s Approach: DoS (Theory, band structure design),

Defects (Realstruktur) and Dimensionality (form and architecture)

Dynamics (reactivity, regenerative materials for reversible

processes, e.g. rechargeable battery )

Page 5: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Advanced Materials for Future Energy/Mobility Technologies

TEC

O2 H2

e-

PEC

H2O

BATT

Li x MeO x

Li x C x

e- Li+

Li+

CH4

CO

NOx

H2O

CO2

N2

CAT

heat

cool

• Solar energy technologies

• New solar fuels: H2/CH4

• E- and CNG- mobility

• Efficiency

Page 6: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Outline

6

0.) Materials Design by 3D’s, perovskites

1.) Solar H2 by photoelectrochemistry

Oxynitrides capture sunlight efficiently: appropriate Eg

high catalytic activity: suitable surface of nanocrystallites

→ Gas evolution: 100 mg from 12 to >43 µmole/h

→ PEC: enhanced intergrain connectivity increases photocurrent

2.) High temperature Solar Thermoelectric converters

chemical stability in air up to 1000K: Carnot , energy density

large thermopower in good conductors: correlated electronic systems

Phonon backscattering

Thermoelectric oxides

→ from ZT<<0.1 to ZT > 0.4 to convert

concentrated solar radiation.

O2 H2

e-

PEC H2O

Page 7: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

applications • thermoelectricity, catalysis, batt. • requirements: transp.prop.,

regenerativity, ..

Tailoring of thermoelectric, catalytic and electrochemical materials

synthesis • “chimie douce“, • USC, flame spray • Single Crystals

materials choice • perovskites-type oxides and

oxynitrides • heusler compounds

characterisation • DoS, structure, comp. • Defect structure • Dynamic behavior

function, form, scalability

theory (3 D’s) economy, ecology

test

coated LixHyV3O8

> 400 Ah/kg

>1W/cm2 >0.1 mol/h

Page 8: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Outline

8

0.) Materials Design by 3D’s, perovskites

1.) Solar H2 by photoelectrochemistry

Oxynitrides capture sunlight efficiently: appropriate Eg

high catalytic activity: suitable surface of nanocrystallites

→ Gas evolution: 100 mg from 12 to >43 µmole/h

→ PEC: enhanced intergrain connectivity increases photocurrent

2.) High temperature Solar Thermoelectric converters

chemical stability in air up to 1000K: Carnot , energy density

large thermopower in good conductors: correlated electronic systems

Phonon backscattering

Thermoelectric oxides

→ from ZT<<0.1 to ZT > 0.4 to convert

concentrated solar radiation.

O2 H2

e-

PEC H2O

Page 9: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

1.) Solar H2 by photoelectrochemistry

Development of better photocatalysts

http://nanopec.epfl.ch A. Mägli (Empa), M. Graetzel (EPFL), L. Meda (ENI), A. Rothschild (Technion), R. van de Krol (Delft), …

Page 10: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

10 http://nanopec.epfl.ch

E/eV

water Conduction band

Valence band

E0 (OH-/O2)

E0 (H2/H+)

Pt-Cathode Electrolyte Photoanode

Bias

Bias

2H2O + 4 hv O2 + 2H2

1.23eV

H2

O2

4 e- + 4 H2O 2H2 + 4OH- 4OH-O2+2H2O+4e-

Page 11: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Band position tuning of semiconductors in contact with aqueous electrolyte

(NHE) normal hydrogen electrode lower edge of the conduction band (red colour) upper edge of the valence band (green colour)

standard potentials of some redox couples

M. Grätzel et al., Nature 414 (2001)338

Page 12: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

12

Perovskites: One structure, many properties

• (Mg,Fe)SiO3 is the most abundant mineral in the lower earth mantel

• One stable structure type with highly diverse chemical compositions, attractive band structures and techn functions

• Correlated electronic system, spin entropy, DoS / band gap management

• Stable distorted structures, super structures, layered structures, polar structures, defects

• A– cation deficient, B– cation deficient, Anion deficient

• Non-stoichiometric regenerative compounds

• Applications: High-κ dielectrics for capacitors, microwaves, high frequency telecommunication, pyroelectric detectors, HTSC based electronics, spintronics, thermoelectrics, FC catalysts, exhaust gas catalysts …

ABX3

Page 13: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y13

Complexing cations

Polymerization for 3h at 353 K

viscous gel xerogel

Low T synthesis (T < 900K) Submicrometer particles Fast & low cost process

Ultra fine perovskite particles

Predrying stage at 423 K

Chimie douce synthesis methods

Diff.

La0.6Ca0.4CoO3 Pellets by hot pressing, MW,

SPS

electr. and heat transport, application test XRD, ND, XAS, TEM, TGA

Sapphire

Thin films

Page 14: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y14

Synthesis methods for low D mat.

20 nm

101

01-1

[-111]

110

USC

Mesoporous (La,Sr)TiO3

Surfactantmolecule

Aqueous solution

• Chimie douce, micelles, sol-gel, … • Ultrasonic and flame spray combustion • Microwave induced plasma: heterostructures

and core-shell particles

Page 15: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Suitable ions to substitute oxygen in perovskites

Oxynitrides: Anionic substitutions in perovskite-type phases

Ion S2- N3- O2- Cl- F-

r (C.N.=6), nm

1.84

1.50 1.40

1.81 1.33

χ 2.60 3.07 3.50 2.83 4.10

Electronic configuration

3s23p6 2s22p6 2s22p6 3s23p6 2s22p6

A2B(O,X)4 A4B3(O,X)10 AB(O,X)3 A3B2(O,X)7

• Structural investigations on perovskite-type oxynitrides are rare

• mainly polycrystalline samples are described

• Physical properties are inadequately characterised until now

Page 16: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

O/N substitution in perovskite-type materials: Band structure

+ NH3

Thin slice after ammonolysis LaTiO2N

Thin slice of LaTiO3.5 crystal

La2Ti2O7 +2 NH3 → 2 LaTiO2N + 3 H2O

Ca1-xLaxTa1-yTiyO2-zN1+z

Jansen, M. and H. P. Letschert (2000). "Inorganic yellow-red pigments without toxic metals." Nature 404 (6781): 980-982. Aguiar, R., Logvinovich, D., Weidenkaff, A., Reller , A., Ebbinghaus, S.G., The vast colour spectrum of ternary metal oxynitride pigments, Dyes and Pigments, 76 (2008) 70-75

0 100 200 300 400100

101

102

103

104

105

106

LaTiO2N

LaTiO3.5

ρ [Ω

cm]

T [K]

Page 17: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Oxynitrides as visible-light driven photocatalysts

• χ (Nitrogen) < χ (Oxygen): smaller bandgap Eg compared to oxide counter-parts Efficient utilisation of solar spectrum due to visible light absorption

[3] H. Zhou et al., Energy Environ. Sci, 2012, 5.

La2Ti2O7 LaTiO2N

VB VB

CB

Eg = 3.3 eV

La2Ti2O7

VB

CB

Eg = 2.1 eV

LaTiO2N

Elec

tron

ene

rgy

O 2p O 2p

N 2p

Aguiar, R., Lee, Y., Domen, K., Kalytta, A., Logvinovich, D., Weidenkaff, A., Reller, A., Ebbinghaus, S.G, Ceram. Res. Adv., ISBN: 1-60021-769-9 (2007).

Page 18: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y18

Band gap tuning of perovskite-type oxynitride niobates

SrNbO2N Tetragonal Nb-(O,N)-Nb = 173° Gap 1.9 eV

BaNbO2N Cubic Nb-(O,N)-Nb = 180° Gap 1.8 eV

Ionic radii : Ba (1.61 A) > Sr (1.41 A) > La (1.18 A) > Ca (1.12 A)

CaNbO2N orthorhombic Nb-(O,N)-Nb = 153° Gap 2.1 eV

LaNbON2 orthorhombic Nb-(O,N)-Nb = 160° Gap 1.7 eV

Pnma Pm3m I4/mcm Pnma a

c

a

c

a

c

a

b

Logvinovich, D., Börger, A., Döbeli, M., Ebbinghaus, S.G., Reller, A. and Weidenkaff, A, Progr. in Solid State Chem., 35 (2007) 281-290.

Page 19: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Morphology, Realstruktur of LaNbO1.02(5)N1.98(5)

LaNbO4(s) + 2NH3(g) = LaNbON2(s) + 3H2O(g)

• Bandgap 1.7 eV • Hydrogen evolution rate:

12.7 μmol*g-1*h-1*m-2

LaNbON2 (flux assisted)

LaNbON2 (without flux)

O/N1

O/N2

La

Nb

b

a c

Logvinovich, D., Ebbinghaus, S. G., Reller, A. , Marozau, I., Ferri, D. and Weidenkaff, A. , Z. Anorg. Allg.Chem., 636 (2010)905-912.

Page 20: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

SrTi0.95Nb0.05O2.94N0.06

SrTi0.05Nb0.95O2.11N0.8

9 SrTi0.50Nb0.50O2.55N0.45

Niobium content

Nitrogen content

Bandgap

A. Maegli, S. Yoon, et al. J.Solid State Chemistry, 184 (2011) 929-936.

Page 21: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Water photo-electrolysis on perovskite-type oxynitride thin films: surface states and band edge treatment

Reaction for Sr2Nb2O7: Sr2Nb2O7 + 2 NH3 2 SrNbO2N + 3 H2O

0.8 0.9 1.0 1.1 1.2 1.30.0

0.1

0.2

0.3

light offJ/ m

A.cm

-2

V/ V vs. RHE

Bare Sr(TixNb1-x)O1-yNy With ALD ZnO:Al-TiO2 layer With ALD ZnO:Al-TiO2 layer + IrO2 nanoparticles

light on

Leroy, C., M., Maegli, et al Chem. Commun. , Advance Article 48, (2012) 820–822

Page 22: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Watersplitting reaction with oxynitride perovskites

22

Grätzel, Nature (2001)

Test reaction for O2 evolution

CB: Ag+ + e- Ag

VB: 2 H2O + 4 h+ O2 + 4 H+

La2O3 + 6 H+ 2 La3+ + 3 H2O Kudo et al., Chem. Soc. Rev. (2009)

Catalyst: 100 mg, Solution: 250 mL of 10 mM AgNO3 aq containing 200 mg of La2O3, Light source: a 150 W halogen lamp.

0 1 2 3 4 50

20

40

60

80

Amou

nt of

evolv

ed ga

ses (

µmol)

Time (h)

O2

H2

N2

Leroy, C.et al., Chem. Commun. , Advance Article 48, (2012) 820–822

Page 23: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Why LaTiO2N for Water Splitting?

[4] C. Le Paven-Thivet et al., J. Phys. Chem. C, 2009, 113. [5] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38. [6] A. Kasahara et al., J.Phys. Chem. A, 2002, 106. [7] N. Nishimura et al., Thin Solid Films, 2010, 518. [8] C. M. Leroy et al., Chem. Commun., 2012, 6.

• Earth-abundant and inexpensive raw materials • Band structure: Visible light absorption • Band position: Straddle redox-potential of water splitting reaction • High stability and regenerativity

-1

0

2

1

LaTiO2N

E /

V v

s. N

HE

2.1

eV

H2O/O2

H2/H2O

[4,5]

pH 7

3

VB

CB

VB

CB

3.2

eV

VB

CB

2.8

eV

SrTiO3 WO3 O2 evolution in

aq. AgNO3

Ag+ Ag

H2O O2

H2 evolution in aq. MeOH

H+ H2

MeOH CO2 h+

e-

[6]

Page 24: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

LaTiO2N: influence of ammonolysis on defect formations

• Band gap about 2.1 eV • triclinic I-1(Clarke et al., Logvinovich et al.) vs

orthorombic Imma (Masatomo et al.)

Sample O2 µmol/h Amount catalyst

TiO2 (P-25) 7 0.1 g

LaTiO2N 12 0.1 g

LaTiO2N:IrO2 41 0.2 g

0 4 16 12 8 24 20 28 32

0

100

200

400

?

Flo

w r

ate

NH

3 (

mL/

min

)

Ammonolysis time (h)

9

12 23 21 22

15 O2 evolution (µmol/h)

Catalyst, 100 mg

AgNO3, 10 mM

La2O3, 200 mg

150 W halogen lamp

A. Maegli, T. Hisatomi, et al, Energy Proc. (2012) 61-66.

Page 25: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Structural analysis: La1-xCaxTi(O,N)3

Growth of crystallites with Ca

Precursor: Increasing amorphization with Ca2+

Precursor: Facilitated ion-diffusion pathways Facilitated topochemical condensation

LaTiO2N

LaTiO3.5 [9]

Thermal ammonolysis (NH3, > 800°C)

S. G. Ebbinghaus et al., Solid State Sci., 2008, 10. R. Aguiar et al., J. Mater. Chem., 2008, 18.

Page 26: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Photocatalytic oxygen evolution: Defects

(TiO2)

1st

2nd

3rd

1st generation: LaTiO2N 2nd generation: (Ln,Ca)TiO2N 3rd generation: (Ln,Ca)+TiO2N: 5% A site-backfilled

Maegli, A. E., Structural and Photocatalytic Properties of Perovskite-Type (La,Ca)Ti(O,N)3 Prepared from A-site Deficient Precursors, J. Mater. Chem. 22 (2012) 17906-17913.

Increasing back- ground absorption defects, d-d transitions Ti3+

Eg ~ 2.1 eV

calculated from UV-vis diffuse reflectance

Page 27: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

X-Ray Diffraction: Resulting La1-xCaxTi(O,N)3

Tailing 2-phase model for Rietveld Refinement

Ca-backfilling Ca-substitution

Page 28: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Irradiation: Chopped AM 1.5 Scan rate: 1 mV / s Electrolyte: 0.1M Na2SO4

From powder to the photoanode

Powder: LaTiO2N (reference)

Electrophoretic deposition on conductive substrate (FTO)

Necking with 0.1M ethanolic TiCl4

Calcination: 370 °C, 100 mL / min NH3, 30 min

Facilitate e- transport within porous electrode through TiO2-

x bridges between particles

Page 29: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Electrode Preparation by Electrophoretic deposition (EPD)

SEM cross-section of electrode

3 um FTO

powder

Oxynitride powder, e.g. LaTiO2N, modified LaTiO2N, …

Suspension of powder in acteone-iodine solution Adsorption of H+ onto the

suspended particles Application of an electric

field forces the particles to move to the cathode

Deposition of powder on the substrate Application of different

voltage / time allows to adjust thickness

Fast evaporation of solution, i.e. no removal of binders necessary

Cathodic EPD 1.25 cm

Conductive substrates: Fluorine-doped tin oxide (FTO)

A. Mägli, C. Leroy, T. Hisatomi et al

Page 30: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Electrodes for the PEC water splitting cell

EPD of «LTON» onto FTO by cathodic EPD

heat-treatments under NH3 Improvement of contact between

oxynitride particles

A. Mägli, T. Hisatomi, C.Leroy, M. Grätzel, A. Weidenkaff, et al, Energy Proc., (2012) 61-66.

Page 31: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Comparison of electrodes I

Enhanced photocatalytic O2 evolution of 5% Ca-backfilled LaTiO2N was not reflected in the potential – current measurements

Reference #2 showed only ¼ of the photocurrent compared to reference #1 What is making the difference?

Page 32: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Synopsis

O2 evolution in aq. AgNO3

Ag+ Ag

H2O O2

Photoanode in photoelectrochemical cell

Efficiency of charge-carrier migration to particle surface

e- h+

H2O

O2 FT

O

Pt H2O

H2

e-

H2O

O2

FT

O

e- h+

e-

Efficiency of electron migration to FTO

difficult and slow

Bulk properties of powder Architecture of electrode

Page 33: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Oxynitride perovskites are interesting materials for PEC

33

efficient absorption of sunlight perovskite-type oxynitrides band gaps are in the range of visible light

chemical stability and durability photo corrosion can be prevented by thin capping layers

catalysis of water splitting reactions

separation and collection of photoexcited carriers defects and traps in perovskite-type oxynitrides , low resistance

Photoelectrode Photocurrent (μA/cm2) at +0.8 V vs. Ag/AgCl

LaTiO2N (our lab) 193

LaTiO2N (Nishimura et al., Thin Solid Films 518, 2010)

30

LaTiO2N (Le Paven-Thivet et al., J. Phys. Chem. C 113, 2009)

40

Page 34: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Outline

34

0.) Materials Design by 3D’s, perovskites

1.) Solar H2 by photoelectrochemistry

Oxynitrides capture sunlight efficiently: appropriate Eg

high catalytic activity: suitable surface of nanocrystallites

→ Gas evolution: 100 mg from 12 to >43 µmole/h

→ PEC: enhanced intergrain connectivity increases photocurrent

2.) High temperature Solar Thermoelectric converters

chemical stability in air up to 1000K: Carnot , energy density

large thermopower in good conductors: correlated electronic systems

Phonon backscattering

Thermoelectric oxides

→ from ZT<<0.1 to ZT > 0.4 to convert

concentrated solar radiation.

O2 H2

e-

PEC H2O

Page 35: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

2.) High temperature Solar Thermoelectric converters

PSI

300 450 600 750 900 1050 1200 13500

10

20 Cold junction at 300 K

Conv

ersio

n ef

ficie

ncy

[%]

Temperature [K]

Z=1*10-3

Z=5*10-4

Z=2.4*10-440 kW 1 sun =1 kW/m2

C. Suter,Clemens, P. Tomeš, A. Weidenkaff, Anke, A. Steinfeld, Solar Energy, 85 (2011) 1511-1518.

Page 36: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Thermoelectric converters (heat → electricity)

thermoelectric n- and p-type thermocouples

load Ra

p p p p n n n n

cold

hot Electr. current

n p n p

RL

e- + e-

e- e-

e-

e- e- e-

e- e-

e- e- + + e- e- + +

TeS

∂∂

−=µ1

V = S ΔT

∆T ∆V

Page 37: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Materials requirements for HT thermoelectric converters

TSZTκσ2

=

Figure of merit Seebeck coeff.

electr. cond.

heat cond. *D. M. Rowe, in Thermoelectric Handbook, 2006

Stable @Tw in air

p- und n-leg with similar S, σ, and κ

High thermoelectric conversion efficiency and energy density

Page 38: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y38

n-SiGe (n)

500 1000 1500 10−4

10−3

10−2

T [K]

Figu

re o

f Mer

it Z

[K−1

] n-Bi2Te3 (n)

GeTe3-AgSbTe2 alloy (p)

PbTe (n)

n-FeSi2 (n) B9C+Mg (p)

ZT = 1

Thermoelektrische Hochtemperatur-Materialien (HT)

CeFe4Sb12 (p)

D. M. Rowe, in Thermoelectric Handbook, 2006 I. Terasaki et al., PRB 56, R12685, 1997

Instabil!

NaCo2O4 (p)

Page 39: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Possible spin states and total degeneracy of ground-states of Co2+, Co3+, Co4+

HS (JH > ∆CF)

LS (JH < ∆CF)

IS (JH ~ ∆CF) Ionic state No

distortion Distortion ( ∆JT >> 0)

No distortion

Distortion ( ∆JT >> 0)

No distortion

Distortion ( ∆JT >> 0)

Gspin = 4 Gspin = 4 Gspin = 2 Gspin = 2 Gorb = 3 Gorb = 1 Gorb = 2 Gorb = 1

Co2+

Gtot = 12 Gtot = 4 Gtot = 4 Gtot = 2

× ×

Gspin = 5 Gspin = 5 Gspin = 1 Gspin = 3 Gspin = 3 Gorb = 3 Gorb = 1 Gorb = 1 Gorb = 6 Gorb = 1

Co3+

Gtot = 15 Gtot = 5 Gtot = 1

×

Gtot = 18 Gtot = 3

Gspin = 6 Gspin = 2 Gspin = 2 Gspin = 4 Gspin = 4 Gorb = 1 Gorb = 3 Gorb = 1 Gorb = 6 Gorb = 1

Co4+

Gtot = 6

×

Gtot = 6 Gtot = 2 Gtot = 24 Gtot = 4

11 154ln,273ln 3

4

3

4

−+

+

++ +=

−=+=

−= +

+

+

+

VKGG

ekSVK

GG

ekS

Comag

ComagB

spinmagComagspin

ComagspinB

orbmag µµ

Adapted from Jiri Hejtmanek, Prague and Ichiro Terasaki, Nagoya

Entropy : kBln6 -> thermopower of kBln6/|e|

Spin-entropy term

Mobile charge carriers produce an entropy current and a charge current.

•strongly correlated 3d (or 4d) electrons

•hybridization of charge carriers energy

•spin of the electrons can also be a source of entropy

Page 40: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y40

Data from (1) K. Fujita et al., Jpn. J. Appl. Phys. 40, 4644 (2001), (2) M. Mikami et al., J. Appl. Phys. 94, 5144 (2003), (3) M. Shikano et al., Appl. Phys. Lett. 82, 1851 (2003), (4) G. Xu et al., Appl. Phys. Lett. 80, 3760 (2002), (5) R. Funahashi et al., Appl. Phys. Lett. 81, 1459 (2002), (6) R. Robert, et al., Acta Mater. 55, 4965 (2007), (7) H. Muta et al., J. Alloys Compd.350, 292 (2003) (Results obtained under argon atmosphere), (8) H. Ohta et al., Nat. Mater. 6, 129 (2007), (9) M. Ohtaki et al., J. Appl. Phys. 79, 1816 (1996), (10) L. Bocher et al., Inorg. Chem. 47, 8077 (2008).

400 600 800 1000 1200 14000.00.20.40.60.81.01.21.41.61.82.02.22.4

Sr0.9Dy0.1TiO3

Ca3Co2O6

Zn0.98Al0.02OCaMn0.98Nb0.02O3

Ca3Co4O9

2DEG-SrTiO3

Bi2Sr2Co2Oy whiskers

Ca2Bi0.3Na0.3Co4O9

NaxCoO2

p-type NaxCoO2 (sc) (1) Ca3Co2O6 (sc) (2) Ca3Co4O9 (sc) (3) Ca2Bi0.3Na0.3Co4O9 (4) Bi2Sr2Co2Oy whiskers (5) DyCo0.95Ni0.05O3 (6)

n-type Sr0.9Dy0.1TiO3 (7) 2DEG SrTiO3 (8) Zn0.98Al0.02O (9) CaMn0.98Nb0.02O3 (10)

ZT

Temperature (K)

ZT = 1

High temperature thermoelectric oxides Empa TEG

Page 41: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Thermoelectric properties of EuTiO3-δ & EuTi0.98Nb0.02O3-δ

• EuTiO3 is one of the oxides with highest |S| = 1081 µV/K at T = 268 K

• Decrease of ρ by Nb 2% substitution: one order of magnitude at high T

Electrical resistivity Seebeck coefficient

L. Sagarna et al, Appl. Phys. Lett. 101, (2012) 033908APL, 2012.

AB(O,X)3

Page 42: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

EuTi0.98Nb0.02O3 ZT = 0.43 at T = 1040 K EuTiO3 ZT = 0.37 at T = 1090 K

Figure of Merit:

Thermoelectric properties of EuTiO3-d & EuTi0.98Nb0.02O3-d

Page 43: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y43

0 5 10 15 20 25 30 35-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Rload = 0.01 Ω Rload = 0.1 Ω Rload = 0.5 Ω Rload = 1.0 Ω Rload = 1.5 Ω Rload = 2.5 Ω Rload = 5.0 Ω

Elec

tric

pote

ntia

l (V)

Length (mm)

Similar material properties Different material properties

Th

Tc

Area

A. Bitschi , P. Tomes- Comsol Multiphysics

Voltage losses due to different resistance values of the p- and n-type

legs.

0 5 10 15 20 25 30 35

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Elec

tric

pote

ntia

l (V)

Length (mm)

Simulation of TE conversion: compatability factor

Page 44: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y44

The power density delivered at operating point for photovoltaic cells made of crystalline Si, crystalline GaAs ( ~ 25 mW cm-2), poly-Si ( ~ 20 mW cm-2), CuInGaSe2 (~ 18 mW cm-2), CdTe (~ 16 mW cm-2) and a-Si (~ 13 mW cm-2).

Packing density ~ 60 %. Pmax from 267 mW (1st generation) to 987 mW (2nd generation), VOC of ~ 2.44 V at Thot = 774 K.

The 34-leg TOM with ZT<< 0.1 (La1.98Sr0.02CuO4) p-legs

O. Brunko, M. Trottmann, P.Tomes et al

p-type: La1.98Sr0.02CuO4 (ZT = 0.05)

n-type: CaMn0.98Nb0.02O3 (ZT = 0.15)

Page 45: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y45

HT Solar converter

P. Tomes, C. Suter, A. Steinfeld, et al, Materials, 3 (2010) 2801-2814

proof of principle

qin

Page 46: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Summary and Outlook

Interesting candidates: oxynitridefluoride perovskites, doped ZnO, 2D-oxides, nitrides, Heussler compounds, MIT structures, nanoinclusions, nanocomposites

New perovskite-type thermoelectric oxides and photo-electrocatalytic oxynitrides : direct solar energy conversion (hν and kT way): band gap and defect control by innovative synthesis processes

10 times higher electrode activity large thermopower in correlated electronic systems Giant Seebeck in EuTiO3 derivates (S>1000 µV/K)

low thermal conductivity by hindering phonon transp. on grain boundaries synthesis method for titanate nanocubes / composites with 3 times lower κ

convert concentrated solar radiation. high T thermoelectric conversion: from 0.2 W to 1 W power output

thermoelectric conversion at T>700°C demonstrated

Page 47: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y47

Acknowledgements

• Materials: Andrey Shkabko, Alexandra Maegli, Songhak Yoon, Lassi Karvonen, Leyre Sagarna, Dmitry Logvinovich

• Devices: Matthias Trottmann, Oliver Brunko, Sascha Populoh, Petr Tomes, Celine Leroy, Takashi Hisatomi, Michael Grätzel, EPFL

• FE-simulations: C. Sutter, A. Bitschi, ETHZ • Funding: Swiss Federal Office of Energy (BfE), Swiss

Nat. Sci. Foundation (SNF), DfG, EU 7thFP, KTI • Beamtime: Swiss Spallation Neutron Source (SINQ),

superSTEM, and HASYLAB-DESY

Page 48: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Trends in TE: heusler, nanostructured and regenerative

0.0

0.1

0.2

0.3

0.4

0.5

300 400 500 600 700 800 9000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Heat

Cap

acity

Cp [

J/gK

]

Cp

1.4

1.6

1.8

2.0

2.2

α

Ther

mal

diff

usivi

ty α

[mm

2 /s]

ZT

Temperature (K)

Ti0.37Zr0.37Hf0.26NiSn: XRD and HRTEM

Nanostructuring and phase transitions in half heuslers

S. Populoh, L. Sagarna, et al, Scripta Mat., 66, (2012) 1073–1076.

Page 49: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

(Sr,Eu)Ti1-xNbxO3+δ and (Sr,Eu)Ti1-xNbx (O,N)3 (0<x<1)

4 nm

[001] zone axis: image and Fast Fourier Transform-calculated diffraction pattern

Soft chemistry synthesis method for nanostructured titanates κ from >7 W K-1 m-1 to <2.5 W K-1 m-1

ZT @1000 K in air < 0.1

A. Maegli, L. Sagarna , A. Shkabko et al

Page 50: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y50

Plasma Nitridation of titanates: EuTi(O,N)3

• HR-TEM images, SEM and XRD of EuTiO3:N similar. The arrows indicate the size of the cubic unit cell: a≈4 Å

• ND and ED of oxynitride: symmetry lowered to orthorhombic Pnma.

• Low res. TEM: porous particles, not well sintered

Microwave Induced Plasma Ammonolysis (MIP)

Page 51: New materials enabling alternative energy technologies · Tailoring of thermoelectric, catalytic and electrochemical materials synthesisLi • “chimie douce“, • USC, flame spray

Materials Sci ence & Technolog y

Grain boundaries scattering ( ) Complex crystal structures High atomic weight (decreasing of ) Crystal defects, domains or pores “misfit” structures Phase transitions

ph

ephtotal κκκ +=

phSph C υκ ∝

Increasing phonon scattering by:

C : Heat capacity per unit volume : Phonon velocity (speed of sound) : Phonon mean free path ph

T S2 ZT κ σ =

Reducing the thermal conductivity

„phonon glass - electron crystal“


Recommended