+ All Categories
Home > Documents > New measurements and new physics withand new physics ......New measurements and new physics withand...

New measurements and new physics withand new physics ......New measurements and new physics withand...

Date post: 20-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
25
N New measurements and new physics with and new physics with spinor BEC Lincoln Turner Yi i Li St M ll S b ti J Yingmei Liu, Steven Maxwell, Sebastian Jung Eduardo Gomez, Adam Black Paul Lett Paul Lett
Transcript
  • NNew measurements and new physics withand new physics with

    spinor BEC

    Lincoln TurnerYi i Li St M ll S b ti JYingmei Liu, Steven Maxwell, Sebastian Jung

    Eduardo Gomez, Adam BlackPaul LettPaul Lett

  • Optical trapping

    First suggested by Lekhotov (1978)Demonstrated by Chu (1986)y ( 9 )Applied to BEC (Stamper-Kurn 1998)All-optical BEC (Chapman 2001)

    Some initial experiments on spinor BEC: domain formation and i i (MIT 8 )interactions (MIT group 1998-9)

    Feshbach resonancesTunable interactionsMolecule formationDegenerate Fermi gasesDegenerate Fermi gasesBEC/BCS crossover

  • What is a spinor BEC?

    Magnetic traps hold onlyMagnetic traps hold only one sign of spin projection.

    ( )( ) ( ) in e θψ = rr r

    O ti l t h ld ll i j ti

    ( ) ( )ψ

    Optical traps hold all spin projections

    ⎛ ⎞( )( ) ( ) ...

    ( )

    F

    ψξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

    rr r ( ) ( ) 1T =ξ r ξ r

    ( )Fξ+⎜ ⎟⎝ ⎠r

  • Stern-Gerlach imaging

    Put the BEC in a magnetic gradient

    Spin components separate

    I ith b ti i iBarrett, Sauer,ChImage with absorption imaging ChapmanPRL 87 010404(2001)

  • Symmetry and interactions

    Interactions

    For experimentalists For theorists

    C i l b i h F

    2 2

    1 2 1 24( ) ( )

    F

    f fV a Pπδ− = − ∑r r r r

    Contact potential but with F+1 scattering lengths

    1 2 1 20,2,...

    ( ) ( ) f ff

    V a Pm

    δ=∑r r r r

    Odd f forbidden by Bose symmetry.MDDI small but measurable for F=1MDDI small but measurable for F 1

    Projection ontototal spin

  • Spin-mixing oscillations23Na c>0NIST

    0 4

    0.6

    0.2

    0.4

    Black, Gomez, LDT, Jung, LettPRL 99 070403 (2007)

    0

    20 400 60

    80

    87Rb c

  • F=1 interactionsOnly one spin-changing interaction allowed is

    |+1> |-1> ⇔ |0> |0>

    ⇔( )( ) ( )V δ + F F

    Order parameter has three components

    ⇔( )1 2 1 2 0 2 1 2( ) ( )V c cδ− = − + ⋅r r r r F F

    O de pa a ete as t ee co po e ts

    1

    0

    ( , )( , ) ( ) ( , )

    tt n t

    ξψ ξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟

    rr r r

    Three coupled Gross-Pitaevski equations:

    1 ( , )tξ +⎜ ⎟⎝ ⎠r

  • Topological defects galore

    Spin textures

    Spin knots

    Spin knotsSpin vortex lattices

    Nematic disclinationsSpin solitons

    Coreless vortices

  • Single mode approximation

    Assume that the spatial wavefunction is:– constant – identical for all three spin components

    1 ( )( ) ( ) ( )

    tt n t

    ξψ ξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟r r 0

    1

    ( , ) ( ) ( )( )

    t n tt

    ψ ξξ +

    = ⎜ ⎟⎜ ⎟⎝ ⎠

    r r

    Further break up into populations ρ and phases θ

    1 ( )1 ( )

    i tt e θρ −⎛ ⎞⎜ ⎟

    0

    1

    1

    ( )0

    ( )1

    ( )

    ( , ) ( ) ( )

    ( )

    i t

    i t

    t e

    t n t e

    t e

    θ

    θ

    ρ

    ψ ρ

    ρ +

    +

    ⎜ ⎟= ⎜ ⎟

    ⎜ ⎟⎜ ⎟⎝ ⎠

    r r

    ⎝ ⎠

  • Magnetisation and the linear Zeeman effect

    Magnetisation is m=ρ+ − ρ−Constant of the motion

    E

    Constant of the motion

    Populations normalised

    ρ+ + ρ0 + ρ− = 1

    Whole system described by:One population, say ρ0(t)Overall phase θ = θ + θ – 2θ0

    BOverall phase θ θ+ + θ− 2θ0

    ( )2 20 0 0 01 (1 ) cos (1 )E c mρ ρ ρ θ δ ρ= − + − − + −( )QuadraticZeemanSpin interaction

    c>0 for antiferromagnetic 23Na 

  • Effective Hamiltonian for F=1 in SMA

    ( )2 20 0 0 01 (1 ) cos (1 )E cn n n m nθ δ= − + − − + −E0.6

    0 4

    0 2

    0.4

    ρ0

    ( )2 20 0 0 01 (1 ) cos (1 )E cn n n m nθ δ= − + − − + −

    0

    0.2

    0 π 2π-2π -π0

    θ

    ( )2 20 0 0 01 (1 ) cos (1 )E c mρ ρ ρ θ δ ρ= − + − − + −QuadraticZeemanSpin interaction

  • Destructive Stern-Gerlach measurementsd

    / m

    sti

    on p

    erio

    dO

    scill

    at

    Magnetic field / μTMagnetic field / μT

  • Faraday measurement of transverse magnetisation

    Spin precesses around bias field

    Polarization alternately rotatedleft and right.

    -+

    Faraday signal

    F

    No rotation when spin is perpendicular to beam.

    B

    F

    Put cube at 45° to input polarization, get bright field signal that is nulled for no rotation.

    B

    mF

    that is nulled for no rotation.

    Net effect is a signal oscillating at the Larmor frequency.the Larmor frequency.

  • Faraday measurement, details

    Experimentalist here Theorists here

    2 mm

    0 μm

    Calibrated apertureon xy stage

    2 2

    Image of BEC~0.5mm

    Compound lens:1.8x relay, achromatic pair11x telescope rot x

    F dxθ ∝ ∫11x telescope20x total magnification

  • Faraday measurement: spin oscillations

  • Spin oscillations: period divergence/

    ms

    on p

    erio

    d O

    scill

    ati

    Magnetic field / μT

  • Decoherence in the F=1 SMA system

  • Single-mode ground state

  • Non-linear Landau-Zener tunneling

    γ γ

    Lucas Rutten, Monash

  • Summary: single-mode spin-1 system

    We now understand:

    Free evolution

    Ground state …

    … and how it gets there (decoherence)

    Adiabatic(ish) evolution

  • Anything else?

    Shapiro steps

    Phenomenology in Josephson systemsgy p y

    Add a magnetic field dither

    Macroscopic Quantum State Trapping (MQST)

    Spin echoes of magnetic dipole-dipole interaction (MDDI)

  • Beyond mean-field: Spinor squeezing

    Chang et al, PRL 99 080402 (2007)

  • Beyond single mode

    87Rb Ferromagnetichas lower energy

    23Na Antiferromagnetichas lower energy has lower energyhas lower energy

    Won’t form domains:Robins et al PRA 64 021601R (2001)Robins et al. PRA 64 021601R (2001)

    Zhang et al. PRL 95 180403 (2005)

    Can form domains:Al d l A 8 6 ( 8)Alexander et al. PRA 78 023632 (2008)

  • Application: micromagnetometry

  • Conclusions

    Optical trapping ⇒ spinor order parameter

    Single-mode F=1 model

    F d tFaraday measurement– Well adapted to measuring a single spatial mode

    “NMR” extensions spinor squeezing– NMR extensions, spinor squeezing …

    Microscale atomic magnetometers


Recommended