+ All Categories
Home > Documents > New Metamaterials (MMs) based on an Extended...

New Metamaterials (MMs) based on an Extended...

Date post: 05-May-2018
Category:
Upload: tranhanh
View: 229 times
Download: 2 times
Share this document with a friend
12
Microwave Electronics Lab New Metamaterials (MMs) based on an Extended Transmission Line (TL) Approach for Novel Microwave Components, Antennas and Reflectors Applications Microwave Electronics Lab Outline I. Anisotropic RH / LH 2D Structures II. RH/LH Surface Plasmons III. Novel Class of Leaky-Wave Reflectors ______________________________________ IV. 2D Distributed Meta-Structures Exhibiting Focusing, Frequency- Scanning Radiation, SP next time
Transcript

1

Microwave Electronics Lab

New Metamaterials (MMs) based on

an Extended Transmission Line (TL) Approach

for Novel Microwave

Components, Antennas and Reflectors

Applications

Microwave Electronics Lab

Outline

I. Anisotropic RH / LH 2D Structures

II. RH/LH Surface Plasmons

III. Novel Class of Leaky-Wave Reflectors______________________________________

IV. 2D Distributed Meta-StructuresExhibiting Focusing, Frequency-Scanning Radiation, SP next time

2

Microwave Electronics Lab

Anisotropic RH / LH Structures

Γ X

MY

xk

yk

1Rω 2Rω

1Lω2Lω

2 1 0 1 2L L R Rω ω ω ω ω< < < <

(b)

RH

LH Lβ

−2

0

2

−3−2

−10

12

3

−8

−6

−4

−2

0

2

4

6

8

xkyk

( ),x yk kω

Brillouinzone

Γ

YX

M

(a)

0 0k cω =

radiation(leakage)

cone

Microwave Electronics Lab

2D Transmission Line Unit-Cell ModelsIsotropic RH

yz

x

RC

2RL

2RL2RL

2RL

2RL2 LC

RC

LL

Anisotropicx-RH & y-LH

sZ

2RL2 LC

yz

x x-RH

y-LH

LL

Isotropic LH2 LC

2 LC

2 LC2 LC

yz

x

( )

( )

( )

( )

( )

2

2

2

2

2

2

1SHUNT IMPEDANCE: , with 1

1 1 low-freq:

(capacitive)1

1 high-freq:

1 (ind

os

os

oss os L R

R

osos s

R eq

Req R

os

osos s eq

R

oseq L

R

Z j L CC

Z j jC C

CC C

Z j j LC

L LC

ω ω

ω ω

ω ωω

ω

ω ωω ω

ω ω

ω ω

ω ωω ω ω

ω

ω ωω

−= =

−< ⇒ = − = −

= =−

−> ⇒ = =

−= = uctive)

2RL

eqC

2RL

x-RH

2 LC

eqL2 LC

y-LH

3

Microwave Electronics Lab

Dispersion Relation Computation (1)arbitrary unit-cell

x

yz

ABCD Matrix

Y

ZZ

1A1B1C1D

2A2B

2C2D

5A 5B5C 5D

3A3B3C3D

4A4B

4C4D

xI

+−

+−

+−

+−

xV

yI

yV

xjk axI e

xjk axV e

yjk ayI e

yjk ayV e

Kirchhoff&

Bloch(periodic)

0V

ZZ

5inI

Kirchhoff Equations

( )

( )

1 11 0

1 1 1 1

2 22 0

2 2 2 2

3 0 3 3

4 0 4 4

x

y

out x x

y yout

jk dinx x

jk diny y

D V B IV VA D B C

D V B IV V

A D B C

V V A V B I e

V V A V B I e

−= =

−= =

= = −

= = −

( ) ( )

( ) ( )

center52 21 1node

1 1 1 1 1 2 2 2 2

3 3 4 4

5 5

5 5 5 5

0

yx

y yx xk

kjk djk d

x x y yin

C V A IC V A II

A D B C A D B CC V D I e C V D I eA I

A D B C

=−−

− +− += +

− −− + − +

− =−

0 5

6 equations / 6 unknowns:, , , , , inx x y yV I V I V I

Microwave Electronics Lab

Dispersion Relation Computation (2)

( )11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

00

matrix system: M = det 000

x

x

y

y

m m m m Vm m m m I

v Mm m m m Vm m m m I

⋅ = ⇒ =

1 1 2 23 3 4 4

1 1 2 2

where x x y yC A C AC e D e C e D eα β γ δ= − − = − − = − − = − +∆ ∆ ∆ ∆

5 1 5 111 12 13 14

5 1 5 1

5 2 5 221 22 23 24

5 2 5 2

3 5 5 331 32 33 34

5 5

4 5 5 441 42 43 44

5 5

x x

y y

A D A Bm m m mB B

A D A Bm m m mB B

MA A e A B em m m mB B

A A e A B em m m m

B B

α β γ δ

α β γ δ

α β γ δ

α β γ δ

= − = + = = ∆ ∆

= = = − = + ∆ ∆ =

= − = − = =

= = = − = −

( )with 1, 2 and , yx jk djk dk k k k k x yA D B C k e e e e−−∆ = − = = =

4

Microwave Electronics Lab

Particular Case of Anisotropic x-RH / y-LH

( )

01 1

01 1

02 2

02 2

3 3 0

3 3 0

cos( 2) sin( 2)1 2sin( 2) cos( 2)0 1

cos( 2) sin( 2)1 1 2sin( 2) cos( 2)0 1

cos( 2) sin( 2)1 2si0 1

R

L

R

kd jZ kdA B j LjY kd kdC D

kd jZ kdA B j CjY kd kdC D

A B kd jZ kdj LC D jY

ω

ω

ω

=

=

=

( )

( ) ( )

04 4

04 4

25 5

5 5

n( 2) cos( 2)

cos( 2) sin( 2) 1 1 2sin( 2) cos( 2) 0 1

1 1

0 1

L

R L R

kd kd

kd jZ kdA B j CjY kd kdC D

C L j CA BC D

ω

ω ω

=

− =

yz

x x-RH

y-LH

Anisotropicx-RH & y-LH

unit-cell

Appropriate Transmission Matrixes

2RL 2 LC

RC

LL

2RL2 LC

2d2d

2d2d

Microwave Electronics Lab

Anisotropic Dispersion Diagram

0

11

31.6

1

R L

R L

R L

R L

C C pFL L nH

L LZC C

d mm

= == =

= = = Ω

=

Components Values

Freq

uenc

y (G

Hz)

- : , 0x yX k kΓ =- : , 0y xY k kΓ =

: , x yX M k d kπ− =: , y xY M k d kπ− = : x yM k k− Γ =

ΓΓ ,X Y ,X Y M M

GAP GAPGAP

- XΓ

- XΓ

- XΓ

-YΓ

-YΓ

-YΓ

RH

LH

Brillouin Zone

Γ

M

Xxk

yk

Y

0

dπ−

dπ−

5

Microwave Electronics Lab

Effect of Transmission Lines Interconnects

ΓΓ ,X Y ,X Y M M

d = 1 mm

Freq

uenc

y (G

Hz)

d = 5 mm

ΓΓ ,X Y ,X Y M M

Freq

uenc

y (G

Hz)

ΓΓ ,X Y ,X Y M M

d = 2.5 mm

Freq

uenc

y (G

Hz)

d = 7.5 mm

ΓΓ ,X Y ,X Y M M

Freq

uenc

y (G

Hz)

Microwave Electronics Lab

Circuit Simulation Results

Freq

uenc

y (G

Hz)

Dispersion Diagram

ΓXY M MXY

RHf

LHf

2RL2 LC

RC

LLsZ

2RL2 LC

yz

x x-RH

y-LH

ΓLHf f=

voltage magnitude

voltage magnitude power

powerRHf f=

6

Microwave Electronics Lab

Sensitivity to Terminations (f=10GHz: LH => y)

0Uniform Terminations: Z mismatch cavity effectsL C= ⇒ →

voltage magnitude x-curentvoltage phase y-curent

voltage magnitude x-curentvoltage phase y-curent

Optimized Terminations (array of coupled lines)

Microwave Electronics Lab

Conventional Surface Plasmons (SPs)

SP: electromagnetic surface wave (TM) which exists at theinterface between 2 media whose ε have opposite signs

Surface Plasma Oscillation: coherent fluctuations of the electroncharges on the metal boundaryfollowed by the SP mode

Reference: Heinz Raether, “Surface Plasmons on Smoothand Rough Surfaces”, Springer-Verlag, Berlin, 1988

+++ --- +++ --- +++ ---

dielectric: ε2 >0

metal: ε1 <0

x

zEur

Huur

kr

x pk β=

zk

TM

metaltanˆsJ z H≅ ×

r r

7

Microwave Electronics Lab

Smooth Surface: Non-Radiative SPsField components:

( )0 , 1, 2ix zj k x t

i iF F e e iαω −− −= =

1 2i xkα ε ε′→∞⇒ →∞⇒ →−

1 2

1 2x x x xk k jk jk

cω ε ε

ε ε′

′ ′′ ′′= + = +′ +

22

zi x i ik j k jcωε α ′= − = −

Confined x-propagating mode SP:

( )2

21 2metal: 1 , 4p

p ne mω

ε ω ω πω

′ = − =

1 22

and 1

pSP

ωω ε ε ω ω

ε′↑⇒ →− → =

+

1 1 2metal: 0, with realxkε ε ε′ ′ ′< > ⇒

metal: 1 1 1jε ε ε′ ′′= +

dielectric: 2ε

x

z

1xk

2xk1 2x x xk k k= =

2xckω ε=

SPω

xk

ω

SP

lightline

0 2x pk π λ=

Dipersion diagram

( ) 3 2 21 2 1 2 1 12xk c

ω ε ε ε ε ε ε′′ ′ ′ ′′ ′ = + ⋅ 1 1 2

2

1automatic if 1 (air)

xk cε ε ε ωε

′ ′ ′> − ⇒ >=

Microwave Electronics Lab

RH/LH Interface Plasmon (IP)

0cR cL R L L RZ Z Z L C L C LC= = ⇒ = =Matched interface :( )int 0Γ =

220 1 2

1

1 SP condition !!!L RL R

L CL CLC

ε ω ε εε

′ ′′ ′⇒ = − = − = − ≡ → −

Same EM densities in RH & LH :matched

0 04

1 1

R R L LL C L C LCω ω ω= = ⇒ =( )L Rn n= −

Under matched condition, the equi-density frequency ω0corresponds an surface plasmon (IP) frequency:

IP0 1 LCω ω= =

RH LH

RC

2RL

2RL2RL

2RLR

cRR

LZC

=

LL

2 LC2 LC

2 LC2 LC

LcL

L

LZC

=

2

2

R R

R R

CL

ε εµ µ

′= =′= =

( )( )

1 2

1 2

1 i.e. 1

1 i.e. 1

eL p L

Lm

L p LL

LL

CC

ε ε ωω

µ µ ωω

′= = − =′

′= = − =′

: plasma: dielectricintΓ intΓ

R R Rn L C′ ′=

2LL L

cnL Cω

= −′ ′x

z

[ ][ ] [ ] [ ][ ] [ ]NB: and R L R L L R L RL C L C L C L CH m F m H F H m F m H F

′ ′ ′ ′= =⋅ ⋅ ⋅ ⋅

2

1

NB: also 1R LL CLC

µµ

′ ′= − = −

8

Microwave Electronics Lab

Difference Conventional SP and RH/LH-SP

RH/LHRH LHx

z

( )

( )

( )( )

2

1 1 1 12

2 2

TM 1 2

1 2

2TM TM TM2

TM1 2

2

0 and 0 : 1 and 1

cste 0 and cste 0

small : 0 , or

large (SP) : 1

p

x

x x x

px SP

kc

k k ckc

k

ωε µ ε µ

ωε µ

ω ε εε ε

ω εω ω ε

ωε ε ω ω

ε

> = − =

= > = >

=+

→ = =

→ − ⇒ = =+

<

conventionaldielectric metalx

z

2xckω ε=

SPω

xk

ω

SP

lightline

loosely bound

tightly bound

non-radiativeSP

radiativeSP

SP gap

Rexk

RexkImxk

( ) ( )

( )

( )

( )

( )

1 1 1 12 2

2 2

1 2 1 2 2 1TM2 22 1

TM TM

TM1 2

1 10 and 0 : and

and

small : 0

1 1 large (SP) :

L L

R R

x

R Rx x L R

L L

x SPR L

L CC L

kc

C Lk k j L CC L

kL C LC

ε µ ε µω ω

ε µ

ε ε µ ε µ εωε ε

ω

ε ε ω ω

∗ ∗∗

= − = −′ ′

′ ′= =

−=

′ ′′ ′→ = + ′ ′

→ ± ⇒ = = =′

<

<

SPω

xk

ω

SP

lightline

2xckω ε=

Rexk

Imxk

tightly bound

loosely bound

non-radiativeSP

radiativeSP

Microwave Electronics Lab

Dispersion Diagram of a RH/LH SP

case 1: perfect matching @ ω0

( )

1 2 1 2

B.H.1 2 1 2 2 1

1 12 22 1

and

1x

L L

kc c L C

ε ε µ µ

ε ε µ ε µ εω ω ε µε ε ω

= − = −

−= → = −

− ′ ′

case 2: small mismatch @ ω0 ( Γ = -30 dB)

case 2: larger mismatch @ ω0 ( Γ = -15 dB) case 2: very large mismatch @ ω0 ( Γ = -3 dB)

SPω

xk

ω

SPω

xk

ω

SPω

xk

ω

( )1 2 1 2 2 12 22 1

xk cε ε µ ε µ εω

ε ε−

=−

Dispersion of LH only !SP radiative and non-radiative

SP essentially non-radiative SP non-radiative

9

Microwave Electronics Lab

Interface Plasmon at a RH/LH 2D-TL Interface

mag

nitu

deph

ase

Voltage distribution @ f = f0 = f IP = 2.826 GHz

RH LH

zRk zLk

xk

xkz

x

RH LH

zRk zLk

xk

xk LR φφ ∆=∆z

x

( )0 : L R L Rn nω ω β β= = − = −

β

ω

RβLβ

LH RH

R R RL Cβ ω ′ ′=

1L

L LL Cβ

ω= −

′ ′

plasmon frequencyRH LH

RC

2RL

2RL2RL

2RL

LL

2 LC2 LC

2 LC2 LC

zx

zRk zLk

xk

xk

1SP LC

ω =

xk

ωlightline

2xckω ε=

Rexk

Imxk

non-radiativeSP

radiativeSP

Dispersion Diagram

L Rβ β≅ −

Microwave Electronics Lab

Power Distributions of Interface Plasmon

Source(much smallerthan plasmon)

Power along x-direction

Power along z-direction

x

z

x

z

10

Microwave Electronics Lab

Plasmons in Waveguides ConfigurationsFull-Wave FEM (Ansoft-HFSS) simulations of the

WR-650 rectangular waveguide (6.5 3.25’, fc= 0.908GHz)loaded by an ideal LH material,

below cutoff operation: f = 0.85GHz (f< fc)

RH

LH

RH

E-field

z

RH

LH

RH

H-field

z

RH: 1LH: 1

r r

r r

ε µε µ

= = += = −

z

surface plasmons in super-lens

0 a+a− 2a+2a−

Microwave Electronics Lab

Backfire-to-Endfire Leaky-Wave Antenna: ResultsAntenna

Configuration

x

z

ysource

bwd

fwd

broadside

θ

-30

-20

-10

0

0

30

6090

120

150

180

210

240270

300

330

-30

-20

-10

0

f<f0 f=f0 f>f0

RadiationPatterns

ωω

2 3 4 5 6 7-90

-60

-30

0

30

60

90

Scan

ning

Ang

le (d

eg)

Frequency (GHz)

II.LW-LH

III.LW-RH

0f0 2c β π maxf

x y

z

θ

θ versus ω

I.Guided

-LH

2 3 4 5 6 7-4

-3

-2

-1

0

1

2

β / k0 α / k0

Frequency (GHz)

β / k

0

0.00

0.02

0.04

0.06

0.08

0.10

0.12α

/ k0

II.LW-LH

III. LW-RH

0f0 2c β π maxfα / β diagram

I. Guided

-LH

11

Microwave Electronics Lab

Single-Element Purely Passive Retro-Reflector

z

x

y

0θ >

RH range 0ω θ∈ ⇒ >

0Z

1Γ = −

incPreflP

incβreflβ

incSreflS0Z

z

x

y

0θ <

LH range 0ω θ∈ ⇒ <

0Z

incP reflP

1Γ = −

incβ reflβ

reflSincS0Z

θ θ

θ θ

short-circuit

matchedload

Microwave Electronics Lab

Arbitrary Reflective Angle LW Reflecto-Director

LOf

Mixer

1f 12 LOff f−=BPFBPF

RF Oscillator

LW Antenna

( )1 1f θ ( )2 2f θ

1β 1β

principle

practical implementationSchottky

diodemixer CRLH antenna

Mixer1

inf ,2

,2 ,1

22

LO m

L

out

LinO O

f fff f

f = +

= + −BPFBPF

Oscillator 1

Mixer2

Oscillator2,2LOf,1LOf

,1inm LOff f= −

IF-Amp.

LW Antenna

( )in inf θ ( )out outf θ

inβ outβ

,1

,1,2

if is fixed, then

2ou

L

t

O

OL

i LO

n

ff

fff

− +=

12

Microwave Electronics Lab

Reflector Array of CRLH-TLs Terminated by Shorts

Array Alternating Stub CRLH-TLs

-25

-20

-15

-10

-5

0

0

30

60

90

120

150

180-25

-20

-15

-10

-5

0

3.3 GHz 3.5 GHz 3.7 GHz 4.3 GHz

Mono-Static RCS

Frequency-Scanning observedBackward retrodirectivity observedSpecular reflection (GP) can be removedby using a reference PEC reflectorSpecular reflection may be minimized byetching appropriate slots in the GP

ω θ

Motivations• Larger RCS than single-element reflector• Real surface, possibly conformal to any geometry• Simple and cheap with conv. photolithography• Can include cheap/simple passive mixers for arbitrary angle

Microwave Electronics Lab

Potential Future Applications of Focus / LW / SPLeaky-Wave Full-ScanningSurface Antenna/Reflector

Surface Plasmon Antennas

Pre-Focus Radiation

RH LH

virtual focus

radiationaperture

aperture size (directivity) can be modulated by varying focal length

2D-LW structure

EndfireDispersion Diagram

1SP LC

ω =

xk

ωlightline

2xckω ε=

Rexk

Imxk

non-radiativeSP

radiativeSP

L Rβ β≅ −

Broadside

RH

LH

RH

LH


Recommended