+ All Categories
Home > Documents > New Restoration management in degraded fens and bogs · 2009. 7. 21. · Growth of Sphagnum is...

New Restoration management in degraded fens and bogs · 2009. 7. 21. · Growth of Sphagnum is...

Date post: 22-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
67
BIOGEO OCHEMICAL W Restoration management in degraded fens and bogs WATER-MANA Restoration management in degraded fens and bogs AGEMENT & A Fons Smolders APPLIED RESE EARCH ON EC COSYSTEMS Institute for Wetland and Water Research Radboud University Nijmegen, the Netherlands
Transcript
  • BIOG

    EOOCH

    EMICAL WRestoration management in degraded fens and bogs WATER-M

    ANA

    Restoration management in degraded fens and bogs

    AGEM

    ENT &

    A

    Fons Smolders

    APPLIED

    RESEEARCH

    ON

    ECCOSYSTEM

    S

    Institute for Wetland and Water ResearchRadboud University Nijmegen, the Netherlands

  • Growth of Sphagnum is often observed in minerotrophic fens where the top layer is acidified

    G di t "S h B "6.5 3000

    M)

    Gradient "Scragh Bog"

    S

    6

    2000 bon

    (µCO2

    Sphagnu

    5.5

    pH ic c

    arb

    pH

    um pap

    51000

    norg

    an

    HCO -

    pillosum

    4.5 InHCO3

    m

    40 20 40 60 80 100

    Depth (cm)

    0

    Depth (cm)

  • 50000

    60000

    70000

    ol/L

    )

    10000

    20000

    30000

    40000

    Tota

    l-Ca

    (µm

    o

    0

    10000

    Depth (m)

    0,07

    0,08

    0,09

    y (g

    /L)

    0 04

    0,05

    0,06

    bulk

    den

    sity

    0,03

    0,04

    Depth (m)

    4000

    5000

    mol

    /L)

    1000

    2000

    3000

    Tota

    l-Ca

    (µm

    0

    Depth (m)

  • Sphagnum spec. may form an Acrotelm

    wet conditions

    Lateral discharge

    Sponge

    •Increased retention of rain water•Desiccation capitulae Hyaline cells become filled with air and show white

    decreased evaporationcoloration increased albedo and lower temperatures

    Sphagnum magellancium, Sphagnum papillosum, Sphagnum rubellump g g , p g p p , p g

  • Acidification of floating fens

  • Acidifying processes

    - Accumulation of rainwater (dillution)

    - Desiccation (oxidation)

    Nitrification of ammonium:

    (1) NH4+ + 2O2 NO3- + 2H+ + H2O

    Oxidation of reduced iron:

    (2) 4Fe2+ + O2 + 6H2O 4FeOOH + 8H+

    Oxidation of iron sulfide:Oxidation of iron sulfide:

    (3) 4 FeS + 9 O2 + 6H2O 4FeOOH + 4SO42-+ 8H+

    Oxidation of pyrite:Oxidation of pyrite:

    (4) 4 FeS2 + 15 O2 + 20H2O 4FeOOH + 8SO42-+ 16H+

  • 9

    8

    pH

    (bi)Carbonaatbuffertrajectbasisch

    Buffering processes7

    6

    5Calciumbuffertrajectzwak zuur

    (1) H CO H+ + HCO - H O + CO1

    3

    2

    4Aluminiumbuffertraject

    IJzerbuffertraject

    zuur

    zeer zuur

    (1) H2CO3 H + HCO3 H2O + CO2(2) CaCO3 + 2 H+ Ca2+ + CO2 + H2O

    1

    (3) CaMg(CO3)2 + 4 H+ Ca2+ + Mg2+ + 2 CO2 + 2 H2O

    9

    pH

    7

    6

    8(bi)Carbonaatbuffertrajectbasisch

    3

    4

    5Calciumbuffertraject

    Aluminiumbuffertraject

    IJzerbuffertraject

    zwak zuur

    zuur

    1

    2IJzerbuffertraject

    zeer zuur

    (4) ]-Ca2+ + 2 H+ ]- 2 H+ + Ca2+(4) ] Ca 2 H ] 2 H Ca

  • 1000

    1200

    600

    800

    1000

    mm

    ol k

    g-1

    )

    200

    400

    600

    tota

    l-S (m

    High sulphur content indicates formation of floating fen under relatively sulphur rich

    00 100 200 300 400 500 600 700

    total-Fe (mmol kg-1)

    g y pconditions (sulphate rich groundwater).

    total Fe (mmol kg )

    3500,0 Upon desiccation:

    2000,0

    2500,0

    3000,0

    r) (m

    mol

    L-1

    )

    4 FeS2 + 15 O2 + 20H2O 4FeOOH + 8SO42-+ 16H+

    ] Ca2+ + 2 H+ ] 2 H+ + Ca2+

    1000,0

    1500,0

    +Mg

    (por

    ewat

    e ]-Ca2+ + 2 H+ ]- 2 H+ + Ca2+

    ]-Mg2+ + 2 H+ ]- 2 H+ + Mg2+

    0,0

    500,0

    0 500 1000 1500 2000 2500 3000

    Ca+

    SO4 porewater (mmol L-1)

  • 100

    60

    70

    80

    90

    kg-1

    )

    30

    40

    50

    60H

    + (m

    mol

    k

    0

    10

    20

    0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

    Ca+Mg (mmol kg-1)

    7,0

    6,0

    6,5

    er)

    5,0

    5,5

    pH (p

    orew

    ate

    4,0

    4,5

    0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

    H+ (mmol kg-1)

  • If totalIf total--S/(totalS/(total--Ca+Mg) > 0.67: Ca+Mg) > 0.67: acidificationacidification

  • Treatments:

    0 kg ha-11000 kg ha-12000 kg ha-1g4000 kg ha-1

    Liming of acidfied floating fen in the ‘Nieuwkoopse plassen’

  • Sakes

    7,5

    8,0

    6 0

    6,5

    7,0

    l)

    t=0t=6t=12t=24

    5,0

    5,5

    6,0

    pH (N

    aCl

    0,6

    0,7

    t 24

    3,5

    4,0

    4,5

    t=0t=60,4

    0,5

    mol

    /l FW

    )

    3,00 1000 2000 4000

    t=12t=24

    0,2

    0,3

    Ols

    en-P

    (m

    0 0 0 0 e

    0

    0,1

    After two years:Strong decrease of Sphagnum spec after 0

    1000

    2000

    4000

    2000

    +Fe

    Sakes

    Strong decrease of Sphagnum spec. after liming

  • The taming of the water level…The taming of the water level…

    Water shortage in summer:Is compensated by the inlet of alkaline sulphate rich river water

  • External eutrofication:External eutrofication:External eutrofication:External eutrofication:Eutrofication due to an Eutrofication due to an increased external supplyincreased external supply

    BIOG

    EOCH

    Eincreased external supply increased external supply of nutrients.of nutrients.

    EMICAL W

    ATE

    Internal eutroficationInternal eutrofication ::

    ER-MAN

    AGEMInternal eutroficationInternal eutrofication ::

    Eutrofication due to an Eutrofication due to an increased mobilisation ofincreased mobilisation of

    MEN

    T & A

    PPLincreased mobilisation of increased mobilisation of nutrients already present nutrients already present in a system (mainly in in a system (mainly in

    LIED R

    ESEARCy ( yy ( yshallow waters with a shallow waters with a peaty (organic) sediment.peaty (organic) sediment.

    CH O

    N ECO

    SYp y ( g )p y ( g ) YSTEMS

  • BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEM

    4000

    5000

    2.5

    3

    Alkalinity

    MEN

    T & A

    PPL3000

    4000

    y (µ

    eq. L

    -1)

    2

    (µm

    ol L

    -1)Phosphate

    LIED R

    ESEARC

    2000

    Alk

    alin

    ity

    1

    1.5

    Phos

    phat

    e

    CH O

    N ECO

    SY0

    1000

    0

    0.5

    P

    YSTEMS

    00 50 100 150 200 250 300 350 400 450

    Time (days)

    0

  • Electron acceptorsElectron acceptorsSO4, NO3, Fe(III)

    BIOG

    EOCH

    E

    NHD iti

    N2

    EMICAL W

    ATE

    NH4DecompositionOrganic matter

    S2-

    Fe(II)FeS

    ER-MAN

    AGEMHCOCO

    Fe(II)

    MEN

    T & A

    PPL

    HCO3(alkalinity)PO4

    CO2Fe(O)OH

    LIED R

    ESEARCreleases CH O

    N ECO

    SY

    stimulates

    reacts with

    YSTEMS

    Co-precipitates with or adsorbs to

  • 3500

    4000Nederland

    2500

    3000

    3500(µ

    mol

    L-1)

    1000

    1500

    2000

    Am

    mon

    ium

    ( BIOG

    EOCH

    E

    0

    500

    1000A

    300

    Nederland

    EMICAL W

    ATE

    0 2000 4000 6000 8000 10000 12000 14000

    Alkaliniteit (µequiv L-1)

    200

    250

    l L-1

    )

    ER-MAN

    AGEM

    100

    150sf

    aat (

    µmo

    MEN

    T & A

    PPL

    50

    100Fos LIED

    RESEARC

    00 2000 4000 6000 8000 10000 12000 14000

    Alkaliniteit (µequiv L-1)

    CH O

    N ECO

    SY

    SO42- + 2CH2O-N-P -----> HS- + HCO3- + CO2 + H2O + PO4 + NH4

    Alkaliniteit (µequiv L ) YSTEMS

  • BIOG

    EOCH

    EEMICAL W

    ATE300 ER-MAN

    AGEM

    250

    NederlandSchutsloterwijdeWormer- en Jisperveld

    Tot-Fe:tot-S < 0,5

    MEN

    T & A

    PPL150

    200

    t (µm

    ol L

    -1)

    LIED R

    ESEARC

    100Fosf

    aat

    Tot-Fe:tot-S = 3 0 CH O

    N ECO

    SY0

    50Tot-Fe:tot-S = 3,0

    YSTEMS

    0 2000 4000 6000 8000 10000 12000 14000

    Alkaliniteit (µequiv L-1)

  • PO43-

    FeO(OH)-PFeSx Fe

    S2S2- Rewetting of fens with and without sulphate

    SO42- 60L-1)

    0

    304050

    3-(µ

    mol

    2S

    S

    102030

    PO

    43 4S

    -4 0 4 8 12 16 20 24 28 32 360

    weeks

  • stagnant + chloridestagnant + chloride stagnant + sulfatestagnant + sulfateBIO

    GEO

    CHEEM

    ICAL WATEER-M

    ANAG

    EM

    8

    MEN

    T & A

    PPL

    4

    6

    mol

    L-1

    )

    LIED R

    ESEARC

    2 S1 S2

    4

    o-P

    (µm

    CH O

    N ECO

    SY

    1 S0.5 S

    Control4 Cl0

    2

    YSTEMS

    ControlOutside

    Month

    46

    810 12

  • PO 3-

    Fe2+ + PO43- FeOOH/FePO4

    PO4

    BIOG

    EOCH

    EFe2+ PO43- Fe2+ PO43- EMICAL W

    ATEER-MAN

    AGEM1200

    1400

    ) 250

    300

    L-1

    )IronPhosphate M

    ENT &

    APPL800

    1000

    t.) (µ

    mol

    L-1

    )

    200

    250

    wat

    .)(µm

    ol

    LIED R

    ESEARC400

    600

    n (p

    ore

    wat

    100

    150

    phat

    e (p

    ore

    CH O

    N ECO

    SY

    0

    200

    0 1 10 100

    Iro

    0

    50

    Phos

    p

    YSTEMS

    0 1 10 100

    total-Iron/total-Sulphur (sediment) (mol mol-1)

  • Parapoynx stratiotataDolomedes fimbriatus

    Aeshna viridisAeshna viridis

    Zwarte stern

  • 25brackish waterfreshwater

    20

    L-1 )

    Lemna gibba

    Azolla filiculoides

    Ceratophyllum submersum Zannichellia pedunculata

    BIOG

    EOCH

    E10

    15

    phat

    e (µ

    mol

    Azolla filiculoides

    IIIRanunculus

    baudotii

    EMICAL W

    ATE

    5Pho

    sp Enteromorpha species

    I

    II

    ER-MAN

    AGEM

    00 500 1000 1500 2000 2500

    Sulphate (µmol L-1) MEN

    T & A

    PPL

    I Stratiotes aloides II Nymphoides peltataHydrocharis morsus ranae Ranunculus circinatusPotamogeton acutifolius Spirodela polyrhizaP t t L t i l

    LIED R

    ESEARC

    Potamogeton compressus Lemna trisulcaPotamogeton lucens Potamogeton mucronatusUtricularia vulgaris

    III Potamogeton pectinatus CH O

    N ECO

    SY

    g pMyriophyllum spicatumCeratophyllum demersum

    YSTEMS

  • BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEMM

    ENT &

    APPLLIED

    RESEARCCH

    ON

    ECOSYYSTEM

    S

  • BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEM Glimmen Tienhoven Zegveld

    045 A

    MEN

    T & A

    PPL

    Iron content (µmol g-1 Dwt): Apoplastic iron in root (n=12) 68.1 + 29.1 11.3 + 10.2 0.7 + 0.4 Iron in shoot (n=12) 21.0 + 7.2 5.7 + 1.0 0.1 + 0.1

    0

    5

    30

    35

    40

    45

    days

    )

    A

    LIED R

    ESEARC

    Surface water (µmol l-1): Sulphate (n=3) 323 + 43 254 + 32 899 + 101 Sediment pore water (µmol l-1): Iron 555 + 161 89 + 27 1 1 + 1 3

    10

    15

    20

    25

    30

    Surv

    ival

    tim

    e (d

    CH O

    N ECO

    SY

    Iron 555 + 161 89 + 27 1.1 + 1.3Sulphide (n=5) < 0.1 < 0.1 24.7 + 8.8 Ortho-phosphate (n=5) 4.1 + 0.7 8.0 + 3.0 25.1 + 6.8 Bicarbonate (n=5) 3111 + 551 3096 + 620 4786 + 712 Ch t i ti I i h H lth h t d R t di b k d t

    1000500250100

    50

    25

    0

    5

    10

    S

    YSTEMS

    Characteristics: Iron rich seepage, iron precipitation in and on the roots leads to root-die-back

    Healthy shoots and roots.

    Root die-back due to sulphide toxicity, chlorotic iron deficient shoots

    0 1 2 3

    Log [sulphide] (µmol l-1)

  • 45 0

    540

    45 A

    30

    35

    (day

    s)

    1020

    25va

    l tim

    e (

    2510

    15Surv

    iv

    1000500250100

    50

    25

    5

    10

    00 1 2 3

    Log [sulphide] (µmol l-1)Log [sulphide] (µmol l )

  • Stratiotes aloides

    Littorella uniflora

  • 100 B

    80

    ) 40

    60

    italit

    y (%

    )

    20

    40V

    0

    20

    05 10 50 100 500

    NH4+ in water layer (µmol l-1)

  • A200

    DW

    )

    ArginineA i

    A

    100

    150

    ds (µ

    mol

    g-1

    Asparagine

    50

    100

    amin

    o ac

    id0

  • f t

    atmosphere

    eutrophication

    surface water

    toxicity

    SO4 2- PO43- NH4+

    toxicitySO42- + 2 CH2O HCO3- + CO2 + H2O + HS-

    Fe~PO43-

    FeSx Fe def.

    Fe mineralisationgroundwater

  • Shallow peat lake (Geerplas, the Netherlands)Shallow peat lake (Geerplas, the Netherlands)

    45 µmol/L!

    dredging

    45 µmol/L!

    /m3

    dredging

    inlet P-stripped water!

    g PO

    4-P/

    13 µmol/L!

    g

    Michielsen et al. 2008

  • Nit t i bili i

    NH4+

    Nitrate immobilizes iron

    4 BIOG

    EOCH

    EM

    600

    MICAL W

    ATE

    NO3- NO3-

    500

    600

    y = 194.2x-0.3623

    R2 = 0 976780

    100

    120

    140

    l L-1

    )

    R-MAN

    AGEM

    E

    Fe2+ Fe(ox)400

    (µm

    ol L

    -1)

    R = 0.9767

    20

    40

    60

    80

    Iron

    (µm

    o

    ENT &

    APPLI

    200

    300

    Iron

    (

    0

    20

    0 500 1000 1500 2000 2500

    Nitrate (µmol L-1)

    ED RESEARCH

    100

    H O

    N ECO

    SYS

    00-10 10-25 25-50 50-100 100-500 500-1000 >1000

    Nitrate (µmol L-1)

    STEMS

  • NH4+

    BIOG

    EOCH

    EMMICAL W

    ATE

    NO3- NO3-

    ER-MAN

    AGEM

    FeS2 Fe(ox) SO42-Pyrite containing soil

    MEN

    T & APPLIIED

    RESEARC

    SO 2

    H O

    N ECO

    SY

    SO42-Groundwater

    STEMS

  • The sulphur bridgep gBIO

    GEO

    NO3-

    FeS F ( ) SO 2

    NH4+

    OCH

    EMICAL W

    FeS2 Fe(ox) SO42-Pyrite bearing soil layer

    WATER-M

    ANA

    SO42-Ground water

    Ground water fed wetland

    AGEM

    ENT &

    A

    Ground water

    FeSxFe-PO43-

    PO43-

    APPLIED

    RESE

    x

    SO42-S2- EARCH O

    N EC

    4

    COSYSTEM

    S

  • 10

    12

    8

    10

    ilabi

    lity

    anent in

    undatio

    n

    4

    6

    N a

    nd P

    ava Perm

    ane

    Yearly temporal desiccation

    0

    2

    N

    01 2 3 4Year 1

    JaarYear 4

    JaarYear3 Year 2

    FeO(OH) PFeS

    Pdesiccation

    A BFe

    SO42-

    FeO(OH)-PFeSx

    wetNH4+ NO3-

    SO42-P

    desiccation

    NH4 NO3

    Oxidized top layer

    FeO(OH)-PFeSx N2 NO3-Anaerobic sediment

  • II: FensII: Fens

    Wetland restoration !Wetland restoration !Rewetting measures inRewetting measures inRewetting measures in Rewetting measures in Alder carr woods: high summer Alder carr woods: high summer levellevel

    beforebeforeafterafter

  • R i d b i th N th l dRaised bogs in the Netherlands

    BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEMM

    ENT &

    APPLLIED

    RESEARCCH

    ON

    ECOSYYSTEM

    S

    Janssonius 1658

  • The area covered by raised bogs (1,000,000 ha) has been BIO

    GEO

    CHE

    g ( , , )almost completely lost due to peat cutting activities.....

    EMICAL W

    ATEER-MAN

    AGEMM

    ENT &

    APPLLIED

    RESEARCCH

    ON

    ECOSY

    Nowadays less than 3,600 ha are covered by ‘bogs’.

    h b li f

    YSTEMS

    These bog relics are often severely desiccated…….

  • Rewetting of cut-over bogs

    L f d l i d t d Large areas of deeply inundated, strongly humified peat with no growth of Sphagnum mosses

  • CO COCO2 CO2

  • BIOG

    EOCH

    E

    Development of S. cuspidatum carpets is usually EM

    ICAL WATE

    p p yobserved in the more shallowly inundated zones

    ER-MAN

    AGEMM

    ENT &

    APPLLIED

    RESEARCCH

    ON

    ECOSYYSTEM

    S

  • Relationship between colour of the water layer d li ht i t it t diff t d th

    100

    and light intensity at different depths

    BIOG

    EOCH

    E80

    90

    100

    EMICAL W

    ATE

    70

    80

    cm) L

    i ER-MAN

    AGEM

    50

    60

    Dep

    th (c i

    ght MEN

    T & A

    PPL30

    40t

    in LIED

    RESEARC10

    20

    5 %

    ten CH

    ON

    ECOSY

    0

    050 00 50 200

    250

    300

    3 50

    400

    450

    500

    sit YSTEM

    S

    0.0

    0.1

    0.1

    0.2

    0 .2

    0.3

    0.3

    0.4

    0.4

    0.5

    Colour density (E450)

    y

    Smolders et al. 2003Wetlands Ecology & Management

  • Submerged Sphagnum needs substrate derived CO2 f thfor growth

    BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEMM

    ENT &

    APPLLIED

    RESEARCCH

    ON

    ECOSYYSTEM

    S

  • Growth of S. cuspidatum at different light conditions and CO2 concentrations

    40

    50

    rate

    )shallow

    inundation

    2

    BIOG

    EOCH

    E20

    30

    ynth

    etic

    h-

    1 g-1

    DW

    )

    Shallow inundation & 2000 µmol l-1 CO2

    EMICAL W

    ATE

    10

    20

    pho

    tosy

    (µm

    ol C

    O 2

    deep inundation

    ER-MAN

    AGEM

    -10

    0100 2000 100 2000N

    et(

    MEN

    T & A

    PPL20

    25

    30

    e LIED R

    ESEARC

    10

    1520

    s in

    crea

    s1 D

    W d

    -1)

    CH O

    N ECO

    SY-50

    5

    100 2000 100 2000Bio

    mas

    (mg

    g-

    Deep inundation & 100 µmol l-1 CO2 YSTEMS

    -15

    -10

    5 Deep inundation & 100 µmol l CO2

    Smolders et al. 2003Wetlands Ecology & Management

  • Growth of Sphagnum magellanicum at different CO2 concentrations

    2000 µmol l-1 CO220 µmol l-1 CO2

  • Atmosphere

    CO2 CH42 1

    C incorporated WaterCO2 CH4in SphagnumWater

    PeatAnaerobic decompositionAnaerobic decomposition

    1

    Photosynthesis

    Methane oxidation by methanotrophic bacteria

    2

  • BIOG

    EOCH

    EWith the aid of FISH (Fluorescence In Situ Hybridisation) EMICAL W

    ATE

    methanotrophic bacteria have been found in the hyaline cells of S. cuspidatum and on stem leaves

    ER-MAN

    AGEM

    16S rRNA sequence shows highest similarity with uncultured α-Proteobacteria/type II methanotrophic b t i

    MEN

    T & A

    PPL

    bacteria

    Isotopic mass balance calculation: methane contributed LIED R

    ESEARC

    between 5 and 20% of the total carbon fixated by S. cuspidatum (field measurements)

    CH O

    N ECO

    SY

    This symbiosis is important in the view of global change (efficient recycling of methane)

    YSTEMS

    Raghoebarsing, Smolders et al. Nature (2005)

  • 25)

    Biogeoc

    20

    m-2

    d-1

    )

    + Sphagnum

    chemical W

    at

    15(µm

    ol

    ter-managem10is

    sion

    ment &

    Appli5C

    H 4 e

    m

    ied Research0

    C

    h on Ecosyste

    00 100 200 300 400 500 600 700

    1

    emsCH4 concentration acrotelm (µmol l-1)

  • 25

    + Sphagnum20

    m-2 d

    -1) + Sphagnum

    - Sphagnum

    BIOG

    EOCH

    E

    15(µm

    ol EMICAL W

    ATE

    10

    mis

    sion

    ER-MAN

    AGEM

    5CH 4

    em

    MEN

    T & A

    PPL

    0

    5 LIED R

    ESEARC00 100 200 300 400 500 600 700

    CH O

    N ECO

    SY

    CH4 concentration acrotelm (µmol l-1)

    YSTEMS

  • Spontaneous development of floating rafts

    BargerveenBargerveen

    Maria Peel

  • Haaksbergerveen

    800Buoyant

    600

    800

    l l-1

    )

    Inundated

    200

    400

    CH

    4 (µm

    ol

    0

    200

    8 9 9 9 0 0

    Nov-

    98

    Apr-

    99

    Juli-

    99

    okt-9

    9

    Apr-

    00

    jun-

    00

  • y = 9355.4x-1.181115

    -1) y 9355.4x

    R2 = 0.7313

    10ol g

    -1 d

    10

    on (µ

    m

    5

    rodu

    ctio

    0

    C-p

    r

    0 2000 4000 6000 8000Lignin:P ratio

  • 16d-1 )

    y = 226.63x1.6204

    R2 = 0.716512

    14

    16-1

    DW

    d

    10

    12

    µmol

    g-

    6

    8

    ctio

    n (µ

    2

    4

    C p

    rodu

    0

    2

    0 0 05 0 1 0 15 0 2

    C

    0 0.05 0.1 0.15 0.2

    pH/bulk density

  • Introduction of suitable substrates Introduction of suitable substrates with different amounts of lime added

    BIOG

    EOCH

    EEMICAL W

    ATEER-MAN

    AGEMM

    ENT &

    APPL

    4 l ti M i l

    LIED R

    ESEARC

    4 locations: Mariapeel

    Haaksbergerveen

    CH O

    N ECO

    SY

    Bargerveen

    Tuspeel YSTEMS

    Tuspeel

    0 – 2 – 4 – 8 mg dolokal g-1 fresh peat

  • 84 8 8

    1600 MariapeelBargerveen

    4

    28

    4

    4

    2

    0

    1200

    mol

    l-1

    Tuspeel

    Haaksbergervee

    2

    42

    0400

    800

    [CH

    4] µ

    m

    0

    0

    0

    0

    400

    0%

    75%

    25%

    03 4 5 6 7

    pH

  • Black peat “Inundated”

    Black peat “Dry”

    Black peat “Waterlogged”

  • Inundation of desiccated sites with ‘white’ peat

    Fochteloerveen

  • 80feb-00

    60

    70eb 00

    nov-00nov-01okt-02

    40

    50

    ver (

    %)

    30

    40

    Cov

    10

    20

    0

    aeru

    lea

    tetr

    alix

    vulg

    aris

    phor

    umgi

    natu

    m

    phor

    umst

    ifoliu

    m

    hagn

    umpi

    llosu

    m

    hagn

    umus

    p/re

    c

    wat

    er

    olin

    iar)

    Mol

    inia

    ca

    Eric

    a

    Cal

    luna

    v

    Erio vag

    Erio

    pan

    gus

    Sph

    pap

    Sph cu

    Ope

    n (w

    ith M

    olit

    ter

  • ConclusionsIntroduction of species and compartimentation may be required

    Redevelopment of Sphagnum carpet depends on abundance and establishment of Sphagnum spec. and fluctuations of water levels.

    Waterlogging/Shallow inundation(< 30 )

    Growth of Sphagnum cuspidatum may result in floating raft formation only when coloration of the water is not to high and if

    Black peat

    (< 30 cm)

    Introduction of species may be

    Floating raft formation may occur if adequate substrate becomes buoyant (depends on substrate

    coloration of the water is not to high and if inorganic carbon fluxes are sufficiently high

    Deep inundation(>> 30 cm)

    required

    Introduction of species may be y ( p

    qualities).

    Bog remnant

    (>> 30 cm)

    No development of Sphagnum carpets due t it bl diti

    required

    Introduction of substrate and to unsuitable conditions species may be required

    White peat/acrotelm

    Shallowinundation

    Swelling of peat surface Sphagnum species show a rapid horizontal expansion when conditions become wetter

    Introduction of species may be requiredbecome wetter.


Recommended