+ All Categories
Home > Documents > New Spin Mechanism for Negative Magnetoresistance in Hopping … · 2014. 6. 18. · Negative...

New Spin Mechanism for Negative Magnetoresistance in Hopping … · 2014. 6. 18. · Negative...

Date post: 05-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
22
Journal Club New Spin Mechanism for Negative Magnetoresistance in Hopping Regime PRB 89, 100201(R) 2014 Thuong T. Nguyen April 16, 2014
Transcript
  • Journal Club

    New Spin Mechanism forNegative Magnetoresistance in

    Hopping RegimePRB 89, 100201(R) 2014

    Thuong T. Nguyen

    April 16, 2014

  • Outline

    1 Overview of Magnetoresistance (MR) in Hopping Regime

    ♠ Orbital Mechanism

    ♠ Spin Mechanism

    2 New Spin Mechanism

    ♠ Qualitative picture

    ♠ Simple Model

  • Overview of Magnetoresistance

    in Hopping Regime

  • Hopping ConductionStrongly localized systems at low temperatureThe main contribution to electrical conductivity comes from

    electrons hopping between impurities (tunneling).

    MR in hopping regime NOT well understood.

    Orbital-related mechanisms Spin-related mechanisms

  • Orbital Mechanism

    Metallic regime: Negative MR is explained by weaklocalization theory (back-scattering).

    ∝ 1kF l

  • Orbital MechanismHopping regime: anomalously large negative MR1.

    ∝ B4/5

    Characteristics• field: H0 ∼ Φ0/S = ~c/eS.

    • ANISOTROPY in two dimension.

    1Ioffe & Spivak, JETP 117, 551 (2013)

  • Absence of interference effects for free spins2

    (more on Shumilin and Kozub, PRB 85,115203 (2012))

    2Shklovskii & Spivak, in Hopping Transport in Solid, 1991

  • Spin Mechanism

    {ISOTROPIC + POSITIVE} Magnetoresistance 3

    3Kamimura et. al, 1985

  • Spin Mechanism

    {ISOTROPIC + POSITIVE} Magnetoresistance 3

    3Kamimura et. al, 1985

  • Spin Mechanism

    {ISOTROPIC + POSITIVE} Magnetoresistance 3

    3Kamimura et. al, 1985

  • Summary

    Orbital Mechanism

    • Negative

    ∝ B4/5

    • Anisotropy

    Spin Mechanism

    • Positive

    ∝ B2

    • Isotropy

  • New Spin Mechanism

  • New Spin Mechanism

    • Characters: NEGATIVE + ISOTROPIC

    • Ingredients: fluctuation of g factor in space; long memory of

    non-equilibrium spin correlation.

  • Qualitative PictureHopping rate of an electron i→ j depends on the relative spin

    configuration of hoping electron and a spin nearby.

  • Qualitative Picture1 Spin-memory ←− nonequilibrium electric current: decreases

    conductivity for H = 0

    2 Strong disordered system: random g factor: increases

    conductivity.

  • Qualitative Picture1 Spin-memory ←− nonequilibrium electric current: decreases

    conductivity for H = 0

    2 Strong disordered system: random g factor: increases

    conductivity.

  • Qualitative Picture

    1 Spin-memory ←− nonequilibrium electric current

    2 Strong disordered system: random g factor

    Characteristic field:

    δgµBH∗τ ∼ 1

    with τ � τsEstimation: R ∼ 10−9Ω, δg ∼ 0.01 −→ µBnH∗/T ∼ 10−4, i.e

    field of order of gauss at T ∼ 1K .

  • Simple model

    • Main assumptions:� indirect transition rate: γij � 1 - perturbation parameter.� link spins are rare.

    • Parametrize states: P 0i + TrP̂ 1i = 1

    ni = TrP̂1i , Si = Tr(σP̂

    1i )

  • Simple model

    d 〈ni〉dt

    = −∑j

    [〈ni〉+ γij (〈ni〉 − 〈Si · sij〉)

    τi→j− (i↔ j)

    ]d 〈Si〉dt

    = hi × 〈Si〉 −∑j

    [〈Si〉+ γij (〈Si〉 − 〈nisij〉)

    τi→j− (i↔ j)

    ]d 〈sij〉dt

    = hij × 〈sij〉

  • Simple modelNon-equilibrium variables:

    〈ni〉 → neqi (1 + ψi) , Si → neqi S̃i, sij → sij

    =⇒

    neqidψidt

    =∑j

    1

    τij

    [ψj − ψi − γij

    〈(S̃j − S̃i

    )· sij

    〉]neql

    [(d

    dt+

    1

    τs

    )Cαβl;ij − �αγδh

    γl C

    αβl;ij − �βγδh

    γijC

    αδl;ij

    ]= −

    ∑k 6=l

    Cαβl;ij − Cαβk;ij

    τlk+ γijδαβ (δil − δjl)

    ψi − ψjτij

    γij

    〈(S̃j − S̃i

    )· sij

    〉= Qij (H) (ψj − ψi)

    Gij =e2

    Tτij[1−Qij (H)]

  • Simple model: Resultσ(H →∞)− σ(0)

    σ(0)∼ A = ργ2ij !Small

    δσ(H)

    Aσ(0)∼ −Γ

    (−ds

    2

    ) 1∑l=−1

    [(ilH

    H∗+τ

    τs

    )ds/2+

    τs

    )ds/2]

  • Conclusion

    Negative Magnetoresistance

    Spin memory effect Strongly disordered systems

    Thanks for Your Attention!

    Overview of Magnetoresistance (MR) in Hopping Regime Orbital Mechanism Spin Mechanism

    New Spin Mechanism Qualitative picture Simple Model


Recommended