+ All Categories
Home > Documents > New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2...

New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2...

Date post: 27-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
29
New physics in final states with HEAVY Standard Model particles @ CMS Tulika Bose Boston University (On behalf of the CMS Collaboration) March 21 st , 2016 Rencontresde Moriond:QCD and High Energy Interactions
Transcript
Page 1: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

New  physics  in  final  states  with  HEAVY  Standard  Model  particles  

@  CMS

Tulika  BoseBoston  University

(On  behalf  of  the  CMS  Collaboration)March  21st,  2016

Rencontres  de  Moriond:  QCD  and  High  Energy  Interactions

Page 2: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

The  Energy  Frontier

Outline:• Strategies   for  analyzing  final  states  with  heavy  Standard  Model  particles• Subset  of  results   focusing  on  recent  13  TeV LHC  searches

• Di-­‐bosons   [WW,  WZ,  VH]• Vector-­‐like   quarks• ttbar,  tb resonances

2

LHC  @  13  TeV

Higher  energy  →  boost

Higher   luminosity  →  pileup  

Higher   reach  to  new  energy  regimes(heavier  particles,   higher  pT particles)

For  a  comprehensive   list  of  searches   undertaken   by  CMS:  https://cms-­‐results.web.cern.ch/cms-­‐results/public-­‐results/publications/ [B2G,  EXO]

Page 3: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Strategies  for  boosted  analyses

Leptonic final  states:  • Lepton  is  no  longer  isolatedHadronic final  states:• Jets  with  large  distance  parameter   (R)  pick  up  all  the  radiation  from  original  decay  • Use  “substructure”   techniques   to  analyze  constituents  of  “fat”  jets

• Is  it  a  1-­‐prong,  2-­‐prong  or  3-­‐prong  decay  ?• Is  the  energy  equally  split  among  “sub-­‐jets”  ?  ….• Many  observables/discriminators 3

Resolved Boosted

These   strategies   need  to  be  kept  in  mind  not  only  for  the  offline  analysis  but  also  for  the  trigger!

Top  taggingW  taggingHiggs  tagging

Page 4: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

1τ/2τ0 0.2 0.4 0.6 0.8 1

Nor

mal

ized

Dis

tribu

tion

0

0.1

0.2

0.3

, Pythia6LWL W→X + <PU> = 22 + sim. + <PU> = 12 + sim.W+jets, MG+Pythia6 + <PU> = 22 + sim. + <PU> = 12 + sim.

= 8 TeV, W+jetssCMS Preliminary Simulation,

CA R=0.8 < 350 GeV

T250 < p

|<2.4η|

Strategies  for  boosted  analysesExamples:N-­‐subjettiness Thaler,  Tilburg,  JHEP03(2011)240001

• τN:  Topological  compatibility  with  hypothesis  of  N  subjets• As  τN à0,  jet  is  more  consistent  with  having  

N  subjets• Ratios  typically  used  as  discriminators

• τ2/τ1   :  separate   “W”  jets   from  QCD• τ3/τ2   :  separate   “top”  jets  from  “W”  jets

Jet  mass• “groom”  the  fat  jet  to  remove  unwanted  soft  QCD  

contributions    &  pileup  • pushes   the  jet  mass  scale  of  the  background   to  

lower  values  while  preserving   the  hard  scale  of  the  heavy  resonance  

4pruned jet mass

0 50 100 150

arb

itrary

units

0

0.1

0.2

SM Higgs, m = 600 GeV

ungroomed jet mass

W+Jets, MadGraph+Pythia6

ungroomed jet mass

CMS Simulation

HIG-­‐13-­‐008

JME-­‐13-­‐006

Page 5: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Searches  forDi-­‐boson  Resonances

5

Page 6: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

• Comprehensive   set  of  dibosonsearches   in  Run  1

• Cover  many  different   final  states• All  hadronic,   semi-­‐leptonic

and  fully  leptonic signatures

• Cover  different   theoretical  interpretations:– composite  heavy  vector  

triplet  (HVT)   spin-­‐1  model  • Randall-­‐Sundrum Graviton  

(RSG)   spin-­‐2  model• Radion in  Warped  Extra  

Dimensions   (WED)  spin-­‐0  model

Diboson  Resonances

6

Resonance mass [TeV]1 1.5 2 2.5 3

X) [

pb]

→(p

p 95

-210

-110

1

(EXO-12-025)ν lll→ WZ →X qqqq (EXO-12-024)→ WV →X

qq (EXO-13-009)ν l→ WV →X qqll (EXO-13-009)→ WZ →X

bb (EXO-14-010)ν l→ WH →X (EXO-13-007)ττ qq→ VH →X

qqbb,6q (EXO-14-009)→ VH →X )0 X→(pp THσ)+- X→(pp THσ)++ X→(pp THσ

= 3)V

HVT Model B (gWH)→ BR(X≈WZ) →BR(X

ZH)→ BR(X≈WW) → BR(X≈

, V = W / Z0 / X±X = X

(8 TeV)-119.7 fbCMS Preliminary

Page 7: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Dibosonsà qqqq,  qqlν @  13  TeV

7

All-­‐hadronic &  semi-­‐leptonic channels:• High  pT bosons• V  →  q ̄q  tagger  based  on  τ21 and  jet  mass  • Dedicated   trigger  with  substructure   info  (had.)

EXO-­‐15-­‐002

Exclusion   (HVTB)  :W'  bosons  <  2TeV  

semi-­‐leptonic bkg:W  +  jets:normalization,  shape  from  datat ̄t  :  normalization  and  shape  from  MC  with  scale  factors  from  data  control  regions    data  

All-­‐hadronic bkg:  di-­‐jets  events  modeled  with  a  power-­‐law  functionvalidated   in  MC,  data  control  regions  

qqqq

qqlν

qqqq +  qqlν

Page 8: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Pruned jet mass (GeV)40 60 80 100 120 140

data

σD

ata-

Fit

-202

Even

ts /

( 5 G

eV )

20406080

100120140160180200220240

→ signal region ←

νe→Data W W+jets

WW/WZ tt

Single Top Uncertainty

(13 TeV)-12.3 fb

CMSPreliminary

lνqq low  mass  extension  @  13  TeV

8

• Extension  of  the  X-­‐>VW-­‐>l  ν qq analysis  to  “low  mass”  i.e.  600  – 1000  GeV and  optimized  for  X  à WW

• probes   region  of  di-­‐photon  excess

• Optimized  event   selection:• lower  trigger   threshold   (isolated  

lepton  triggers   instead  of  higher  non-­‐isolated   triggers)

• lower  offline   lepton  pT cuts,   looser  lepton  IDs

• tau21 optimized  for  lower  masses• Jet  mass  window  optimized   for  W-­‐

only  selection

• Background/Signal  modeling:  same  strategy  as  EXO-­‐15-­‐002;    narrow  resonance  approximation,  Bulk  graviton  as  benchmark  

B2G-­‐16-­‐004 (GeV)WWM0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

310×

data

σD

ata-

Fit

-202

Even

ts /

( 50

GeV

)

100

200

300

400

500

600

700νl→Data W W+jets

WW/WZ tt

Single Top Uncertainty

20)×=750 GeV (G MBulkG

(13 TeV)-12.3 fb

CMSPreliminary

Page 9: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

9

lνqq  low  mass  extension  @  13  TeV

Obs.  Limits:  623  – 63  fb(mG =  600-­‐1000  GeV)  

B2G-­‐16-­‐004

(GeV)GM600 700 800 900 1000

WW

)(pb)

→ Bu

lk x

BR(

G95

-310

-210

-110

1

10

210 (13 TeV)-12.3 fb

CMSPreliminary Expected

SAsympt. CL

1 s.d.± Expected S

Asympt. CL 2 s.d.± Expected

SAsympt. CL

, k = 0.5 WW→BulkG BR× THσ

ObservedS

Asympt. CL

ν l→W

Improves  over  EXO-­‐15-­‐002  in  the  common  range  (800-­‐1000  GeV)

Page 10: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

VH  à (0,1,2)  leptons  +  bb  @  13  TeV

10

• Search  for  heavy  resonances   (mX >  1  TeV)    decaying  into  a  V  (Z,  W)  + H→  bb  boson  

(0  ch. lepton,  1  ch. lepton,  2  ch. leptons)

• Look  for  peaks  in  invariant  mass  spectrum  (mX )• Standard  W  and  Z  candidate   reco• 0  lepton:

• Main  backgrounds:• V +  jets:  normalization  and  shape   from  

data  (jet  mass  sideband  à signal  region  transfer   factor  from  MC)

• t ̄t  :  normalization  and  shape   from  simulation  with  scale  factors  from  control  regions   in  data  

• Separated  by  lepton  flavor  and  number,   for  1  and  2  (subjet)   b-­‐tag  categories   separately  

b  tag  subjets

B2G-­‐16-­‐003

𝑍 → 𝜈𝜈, 𝑊   → ℓ𝓁𝜈, 𝑍 → ℓ𝓁ℓ𝓁

(GeV)VhTm

1000 1500 2000 2500 3000

Even

ts /

100.

0 G

eV2−10

1−10

1

10

210

(13 TeV)-12.17 fb

CMSPreliminary

)bbνν,ν (ll,l→ Vh →X

0l, 1 b-tag

DataV+jetsTop, STVV, VHBkg. unc.

=2000 GeVXmHVT model B

(GeV)VhTm

1000 1500 2000 2500 3000

Pulls

4−2−024

Page 11: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

11

• No  significant  excess  over  standard  model  expectation• Limits  on  σ(X)  × B(X  →  VH)  combined   for  (ee,   μμ,  νν)  and  (eν,  μν)  • Data  interpreted   in  HVT  (A  and  B)  models

(GeV)W'm1000 1500 2000 2500 3000 3500 4000

bb)

(pb)

→ B

(h

× W

h)

→ B

(W'

×(W

') σ

0.0030.004

0.01

0.020.030.04

0.1

0.20.30.4

1

23

95% CL limitsObservedExpected

σ 1±Expected σ 2±Expected

W' (HVT model B)

bbν l→ Wh →W'

1l channel

(13 TeV)-12.17 fb

CMSPreliminary

(GeV)Z'm1000 1500 2000 2500 3000

bb)

(pb)

→ B

(h

× Z

h)

→ B

(Z'

×(Z

') σ

0.0030.004

0.01

0.020.030.04

0.1

0.20.30.4

1

23

95% CL limitsObservedExpected

σ 1±Expected σ 2±Expected

Z' (HVT model B)

)bbνν (ll,→ Zh →Z'

0l, 2l channel

CMSPreliminary

(13 TeV)-12.17-2.52 fb

Obs.  Limits:  10  – 200  fbmW’ >=  ~1.6  TeV (HVT  model B)

Combination   of  0  lepton,  2lepton  channels Combination   of  1  lepton  channels

First  CMS  result   in  VH-­‐>0l,   2l  channels!

1  l  channel  better  than  CMS  Run  1!

B2G-­‐16-­‐003

VH  à (0,1,2)  leptons  +  bb  @  13  TeV

Page 12: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Vector-­‐like  Quarks

Page 13: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Fermionic Partners

13

• Vector-­‐like   quarks  (VLQs)   [non-­‐chiral  fermions]• Predicted  by  a  large  variety  of  

models• Little  Higgs  models• Warped  extra  dimensions• Composite  Higgs  model…

• Not  excluded  by  Higgs  measurements

• Can  have  same  charge  as  b,  t  (B,  T)  or  exotic  charge  (X5/3 or  Y-­‐4/3)  • In  many  models   the  X5/3 is  the  lightest  of  these   top  partners,  more  easily  accessible…

• Rich  phenomenology  with  many  different   final  states• Inclusive  analyses  +  

dedicated/optimized   searches• Run  1  analyses:  mostly  pair  production

• Single  production  imp.  for  Run  2

Page 14: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

X5/3  (same-­‐sign  di-­‐lepton)  @  13  TeV

14

• Pair-­‐production:   same-­‐sign  di-­‐lepton   final  state  (charge  5/3e)• Striking  signature   -­‐>  clean  channel  with  

relatively   small  SM  background• 8  TeV CMS  analysis:  stringent  limit  of  800  

GeV• Require  >  5  jets  and  2  same-­‐sign   leptons,  

optimize  HT  (scalar  sum  of  pT of  leptons  and  jets)

• Primary  background  (fake   leptons)  estimated  using  a  data-­‐driven   fake-­‐rate  method• Charge  mis-­‐id  also  taken  into  account• rare  decays  from  MC  (WW,  ZZ,  ttbarW,  

ttbarZ,  WWW)

14Exclude  RH  (LH)  X53  <  950  (910)  GeV

Better  than  Run  1!First  LHC  result  in  this  channel  @  13  TeV

B2G-­‐15-­‐006

Page 15: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

15

• Semi-­‐leptonic final  state:• 1  W  boson  decays  leptonically,   the  others  

decay  hadronically• Boosted  X53  decay  products  (merged   jets)

• W  tagged  jets,  jet  mass,  τ2/τ1• Dominant  backgrounds:  ttbar,  V+jets

• Taken   from  simulation;  checked  using  control  regions  in  data

• Main  discriminating  variable:  min(M[lepton,   b])• 8  event  categories:

• (e,  μ)  [#  b  tags  (1,  2+),  #  W  jets   (0,  1+)]

15

X5/3  (semi-­‐leptonic)  @  13  TeV

Exclude  RH  (LH)  X53  <  700  (715)  GeV First  LHC  result  in  this  channel!

Combination  of  same-­‐sign   di-­‐lepton  +  semi-­‐leptonic analyses:Exclude  RH  (LH)  X53  <  960  (940)  GeV

Same-­‐sign+semi-­‐lep.

B2G-­‐15-­‐006

Page 16: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

TT  search  (semi-­‐leptonic)  @  13  TeV• Pair  production  of  vector-­‐like   T(+2/3e)

• Benchmark:   “Nominal”  BRs  of  50%  bW,  25%  tZ,  tH• 8  TeV exclusion:  696  GeV

• Analysis  strategy  similar  to  B2G-­‐15-­‐006  • Event  selection:

• Single  lepton,  3+  jets,  W-­‐tagged  jets• Veto  Higgs-­‐tagged   jets  (non-­‐boosted   Higgs  

regime)• Main  discriminating  variable:  min(M[lepton,   b])• Event  categorization:  16  categories

• (e,  μ)  [#  b  tags  (0,  1,  2,  3+),  #  W  tags(0,  1+)]

𝑇𝑇,  𝑇→  𝑏𝑊 50%  ,  𝑡𝑍 25%,  𝑡𝐻 25%  Exclude  m(T)  <  750  GeVAlso  scan  over  BRs  and  set  limits

Better  than  Run  1!

B2G-­‐16-­‐002

Page 17: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Single  Production:  T-­‐>  tH @  13  TeV• Single  production  of  vector-­‐like   T  quark

• Exclusive  decay  to  tH• bW/tZ coupling  in  production

• Optimized  for  leptonic top  decay,  H  à bb• Event  reconstruction  w/  top  and  H  candidates

• For  large  masses,   top  and  H  are  boosted  • Merged   jets,  non-­‐isolated   leptons

• Forward  jet  present   in  events

17

ST:  scalar   sum  over  ETmiss,  lepton  pT,    pT of  all  reco.  jets

ΔR(top  cand.,  Higgs  cand.)  >  2.  

B2G-­‐15-­‐008

Page 18: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

• Primary  background:  ttbar +  W+jets• Derived   from  sideband  region  in  data  

(no  forward  jets,  only  1  subjet b-­‐tagged)

• No  significant  excess   in  T  quark  mass  distribution• Set  limits  on  production  cross  section  

x  BR  and  on  T  quark  coupling  parameters

18

Single  Production:  T-­‐>  tH @  13  TeV

Associated  Tb  prod.RH,  bW coupling

B2G-­‐15-­‐008

First  LHC  result  for  singly  produced  T  quarks  @  13  TeV

Coupling   limitX-­‐section   limit

Associated  Tb  prod.RH,  bW coupling

T quark mass / GeV0 500 1000 1500 2000

even

ts /

80 G

eV

10

20

30

40

T quark mass / GeV0 500 1000 1500 2000

MC

Dat

a-M

C

01

DatatH→(1700)lhTtH→(1200)lhT

tH→(700)lhTStat. uncert. BkgBkg. post-fit

(13 TeV)-12.3 fb

CMSPreliminary

electron+muonchannel

Page 19: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Searches  for  ttbar,  tb resonances

19

Page 20: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

ttbar,  tb resonances

20

• Several  models  of  new  physics  predict  massive  gauge  bosons  decaying  into  final  states  with  top  quarks

• ttbar:• Generic  narrow  and  wide  Z’  models,  Kaluza

Klein  excitations   (Randall-­‐Sundrum),   Heavy  Higgs  models,  generic  excess   (or  deficit)   in  the  ttbar mass  spectrum

• tb:• Sequential   Standard  Model,  Little   Higgs,  Extra  

Dimensions,  Minimal   Higgsless Models…

• Analyses   split  on  the  basis  of  final  states:• Hadronic,  leptonic (“Resolved”  and  

“boosted”)  and  then  combined

20

20

W’à tb (comb.):  M(W’)  >  2.15  TeV

8  TeV JHEP  02  (2016)  122 Narrow (1.2%)  Z’  :  M(Z’)  >  2.4  TeVWide  (10%)  Z’  :  M(Z’)  >  2.9  TeVRS  KK  gluon:  M(KKG)   >  2.8  TeV

8  TeV PRD  93  (2016)  012001

Complementary   to  other  searches:• (W’)  No  assumptions wrt M(νR)• Couplings   to  3rd  generation  

fermions  may  be  enhanced  

Page 21: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

21

ttbar  resonances  @  13  TeV

• kinematical  reconstruction   of  the  ttbar system  • Primary  backgrounds:  ttbar production,  W/Z  +  

jets• simultaneous  max.  likelihood  fit  to  the  data

• final  event  categorization  based  on  number  of  b-­‐tagged  and  t-­‐tagged   jets:  

Lepton  (e,  µ)  +  jets  analysis  optimized  for  heavy  resonance  masses:• leptonic top:  non-­‐isolated   lepton,  missing  ET,  

b-­‐tagged   jet• hadronic top  (“fat”  jet):  use  top  tagging  (e.g.  

nsubjettiness)

B2G-­‐15-­‐002

Page 22: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

22

ttbar  resonances  @  13  TeVNo  significant  deviation   from  the  Standard  Model  prediction⇒ Limits  extracted   for  different   BSM  scenarios

• Z’  bosons  of  relative  widths  1%,  10%,  30%• KK  excitation  of  a  gluon  in  the  RS  model

Excluded  mass  regions  [TeV]

Competitive  with  Run  1!

B2G-­‐15-­‐002

Page 23: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

W’  -­‐-­‐>  tb  @  13  TeV

23

• Lepton  (e,  µ)  +  jets  analysis  optimized  for  Run  2• non-­‐isolated   lepton,  use    relative  momentum  

b/w    lepton  and  closest   jet  for  QCD  rejection• Consider   right-­‐handed   WRʹ′  with  SM-­‐like  

couplings  as  benchmark  model• Exploit  the  tb invariant  mass  distribution• Dominant  background  contributions:

• ttbar:  check  top  pT distribution   in  control  regions  and  derive  corrections  

• W  +  jets:  :  0  b-­‐tag  region  to  get  shape  and  normalization

• Treat  1  and  2  b-­‐tag  categories   separately  and  then  combine

Exclude  RH  W'  bosons  <  2.38  TeV

B2G-­‐15-­‐004

Better  than  Run  1!

Page 24: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Summary  &  Conclusions

24

• Wide  range  of  searches   are  being  performed   in  final  states  with  heavy  Standard  Model  particles• ttbar resonances,   tb resonances,   di-­‐boson  searches,   vector-­‐like   quark  

searches

• Already,  with  limited  13  TeV data,  searches  cover  comprehensive   spectrum  of  final  states• Improve  upon  Run  1  sensitivity  and  exclude  large  regions  of  parameter   space• Lots  of  progress   in  exploring  difficult  regions  of  parameter  

space/complicated/boosted   final  states  and  new  channels

• Eagerly  awaiting  the  2016  LHC  dataset  which  will  provide  even  greater   sensitivity  to  new  physics  discoveries  

Stay  tuned!

Page 25: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Extra

25

Page 26: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

ttbar  resonances

26

• Several  models  of  new  physics  predict  massive  neutral  bosons  decaying  via  a  top  antitop quark  pair

• Generic  narrow  and  wide  Z’  models• Kaluza Klein  excitations  (Randall-­‐Sundrum)

• Heavy  Higgs  models• Generic  excess   (or  deficit)   in  the  ttbar mass  spectrum

• Analyses   split  on  the  basis  of  final  states:– Hadronic,  Di-­‐leptonic,  Semi-­‐leptonic

(“Resolved”   and  “boosted”)

26

Narrow (1.2%)  Z’  :  M(Z’)  >  2.4  TeVWide  (10%)  Z’  :  M(Z’)  >  2.9  TeVRS  Kaluza-­‐Klein  gluon:  M(KKG)  >  2.8  TeV

8  TeV PRD  93  (2016)  012001

Page 27: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

Searches  for  W’  bosons

2727

Another  way  to  cancel  fine-­‐tuning  problems   in  top,gauge  and  Higgs  self-­‐coupling   loops  • Predicted  by  many  new  physics  theories

– Sequential   Standard  Model,  Little   Higgs,  Extra  Dimensions,  Minimal   Higgsless Models,  Technicolor,   etc.

Single  top  quark  decay  channel  is  a  promising  searching  ground  for  a  W'  that  interacts  hadronically• Relatively   small  QCD  multijet backgrounds,   compared  

to  the  decay  to  light  quarks• Couplings  to  third  generation   fermions  may  be  

enhanced   in  some  models  • Phys.  Lett.  B  392  383  (1996)  345,  Phys.  Lett.  B  385  (1996)  304

• No  assumptions regarding mass of  νR==>  Complementary   to  W’à lν searchesIf  right-­‐handed   neutrino   is  v.  heavy,  W’à lν is  suppressed

Lepton+jets :  M(W’)  >  2.05  TeVAll-­‐hadronic :  M(W’)  >  2.02  TeVW’à tb (comb.):  M(W’)  >  2.15  TeV

8  TeV

JHEP  02  (2016)  122

Page 28: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

WW,  WZ,  ZZ  à qqqq @  13  TeV

28

• All-­‐hadronic channel  w/high  pT bosons  • Dedicated   trigger  with  substructure   info• V  →  q ̄q  tagger  based  on  τ21 and  jet  mass  

• Dominant  background  contribution   from  di-­‐jets  events  modeled  with  a  power-­‐law   function  

• validated   in  simulation,  data  control  regions  • Six  signal  regions  defined  based  on:

• V-­‐jet  mass  category  • WW,  WZ,  ZZ  

• τ21• High  purity• Low  purity  

High  Purity

Low    Purity

Z:  85-­‐105  GeVW:  65-­‐85  GeVEXO-­‐15-­‐002

Page 29: New$physics$in$final$states$with$ …moriond.in2p3.fr/QCD/2016/MondayMorning/Bose.pdfτ 2/τ 1 0 0.2 0.4 0.6 0.8 1 Normalized Distribution 0 0.1 0.2 0.3 W L, Pythia6 L X → W +

WW,  WZ  à qq lν @  13  TeV

29

• Semi-­‐leptonic channel  w/high  pT bosons  

• V  →  q ̄q  tagger  based  on  τ21 and  jet  mass• Main  backgrounds:

• W  +  jets    :  normalization  and  shape  from  data• t ̄t  :  normalization   and  shape  from  simulation  

with  scale  factors  from  control  regions   in  data  

EXO-­‐15-­‐002

Exclusion   (HVTB)  :W'  bosons  <  2TeV  


Recommended